A3-初二上册-轴对称
- 格式:docx
- 大小:183.85 KB
- 文档页数:12
2022-2023学年人教版八年级数学上册《第13章轴对称》解答题优生辅导训练(附答案)1.如图,△ABC中,AC<AB<BC,D、E为边BC上的点,且满足BD=BA,CE=CA,连接AD、AE.(1)①若∠B=40°,∠C=60°,则∠EAD=°;②若∠BAC=α,则∠EAD=;(用含α的式子表示)(2)如图,DP∥AB,EP∥AC,连接AP.求证:AP平分∠BAC.2.如图,在正方形网格中,每个小正方形的边长均为1.(1)作四边形ABCD关于直线l的对称图形;(2)在直线l上找一点P,使P A+PC最小;(3)四边形ABCD的面积=.3.如图坐标系中,按要求完成作图:(1)作出△ABC关于x轴对称的图形;(2)求出△ABC的面积;(3)在x轴上画出点Q,使QA+QC最小,写出Q点的坐标.4.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1).(1)在图中作△A'B'C',使△A'B'C'和△ABC关于x轴对称,并写出点B'的坐标;(2)求△A'B'C'的面积.5.如图,在等边△ABC外侧作直线AP,记∠BAP=α(0°<α<60°),点B关于直线AP 的对称点为D,连接BD,CD,CD交AP于P,交AB于E.(1)当α=20°时,求∠ACP的大小;(2)试找出P A、PC、PD三条线段的长度之间满足的用等号连接的数量关系,并说明理由.6.如图,在等边△ABC中,点D是线段BC上一点作射线AD,点B关于射线AD的对称点为E,连接EC并延长,交射线AD于点F.(1)补全图形;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.7.如图,在△ABC中,AB=AC,AD是△ABC的中线,DE∥AB.求证:△ADE是等腰三角形.8.已知图①、图②都是轴对称图形.仅用无刻度直尺,按要求完成下列作图(保留作图痕迹,不写作法):(1)在图①中,作出该图形的对称轴l;(2)在图②中,作出点P的对称点P'.9.如图,在锐角三角形ABC中,AB=AC,作边AB上的高线CE,并延长CE至点G,使EG=CE,连结AG,作边AC上的高线BD,并延长BD至点F,使DF=BD,连结AF,CE与BD相交于点H.(1)按照上述语句,用尺规作图,补全图形(保留作图痕迹,不写作法).(2)判断AG与AF之间的数量关系,并说明理由.(3)补全后的图形是轴对称图形吗?若是,画出对称轴,并指明对称轴;若不是,请说明理由.10.如图,等腰三角形ABC的周长是21cm,底边BC=5cm.(1)求AB的长;(2)若N是AB的中点,点P从点B出发以2cm/s的速度向点C运动.同时点Q从点C 出发向点A运动,当△BPN与△CQP全等时,求点Q的速度.(3)点D、E、F分别是BC、AB、AC上的动点,当△DEF的周长取最小值时,探究∠EDF与∠A之间的数量关系,并说明理由.11.如图,在△ABC中,∠ABC=∠C,BD是∠ABC的平分线,BE是AC边上的高,垂足为E,设∠BAC=α.(1)探究与发现①如图1,若α=30°,则∠C的度数为,∠DBE的度数为;②如图2,若α=80°,则∠DBE的度数为;③试探究∠BDC与α的数量关系,并说明理由.(2)拓展与思考如图3,∠BDC的平分线DF交BC于点F.当DF∥AB时,求∠DBE的度数.12.如图,在△ABC中,AB=AC,过点A在△ABC的外部作直线l,作点C关于直线l的对称点M,连接AM、BM,线段BM交直线l于点N.(1)依题意补全图形;(2)连接CN,求证:∠ACN=∠ABM;(3)过点A作AH⊥BM于点H,用等式表示线段BN、2NH、MN之间的数量关系,并证明.13.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,Rt△ABC中,∠C=90°,CD=BD,求证:CD是Rt△ABC的一条特异线.(2)如图2,△ABC是一个等腰锐角三角形,AB=AC,且它是特异三角形,请求出∠A 的度数.14.如图所示.点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F.(1)若MN=20cm,求△PEF的周长.(2)若∠AOB=35°,求∠EPF的度数.(3)若连接OP,请说明OP平分∠EPF.15.用一条长为25cm的绳子围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么三角形的各边长是多少?(2)能围成有一边的长是6cm的等腰三角形吗?为什么?16.如图,在平面直角坐标系中,A(0,3),B(﹣2,1),C(3,2).(1)在图中作出△ABC关于y轴对称的△A'B'C'.(2)点C′的坐标为,△A'B'C'的面积为.(3)在x轴上找出一点P,使得P A+PB的值最小.(不写作法,保留作图痕迹)17.完成下面证明过程并写出推理根据:已知:如图所示,AB=AC,EP⊥BC,∠1=∠2.求证:AE=AF.证明:∵AB=AC(已知),∴∠B=∠C(),∵EP⊥BC(已知),∴∠E+∠C=90°,∠B+∠BFP=90°,∴∠E=∠BFP(),又∵∠EF A=∠BFP∴,∴AE=AF().18.如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①求∠BEA的度数;②连接PE,交AM于点N,证明AM垂直平分PE;(3)点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.19.如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发时间为t秒.(1)BP=(用t的代数式表示)(2)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(3)当点Q在边CA上运动时,出发秒后,△BCQ是以BC或BQ为底边的等腰三角形?20.如图,在△ABC中,AH⊥BC,垂足为H,且BH=CH,E为BA延长线上一点,过点E 作EF⊥BC,分别交BC,AC于F,M.(1)求证∠B=∠C;(2)若AB=5,AH=3,AE=2,求MF的长.参考答案1.解:(1)①•∵BD=BA,∠B=40°,∴∠BDA==70°,∵CE=CA,∠C=60°,∴∠CEA==60°,∴∠EAD=180°﹣∠BDA﹣∠CEA=180°﹣70°﹣60°=50°;故答案为:50;②∵∠BDA=,∠CEA=,∴∠EAD=180°﹣﹣=,又∵∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠EAD==90°﹣;故答案为:90°﹣;(2)证明:延长PE交AB于点F,∴EF∥AC,∠APF=∠P AC,又∵BE=BC﹣CA,∴BF=,EF=,∴AF=BA﹣BF=BA﹣=,∵DP∥AB,又∵DE=BA+CA﹣BC,∴EP=×,∵PF=EP+EF=,∴PF=AF,∴∠P AF=∠APF,∠P AC=∠P AF,∴AP平分∠BAC.2.解:(1)如图,四边形A′B′C′D′即为所求;(2)如图,点P即为所求;(3)四边形ABCD的面积=4×4﹣2××1×2﹣2××2×3=8,故答案为:8.3.解:(1)如图,△DEF即为所求;(2)△ABC的面积=2×3﹣×1×2﹣×1×2﹣×1×3=.(3)如图,点Q即为所求,Q(﹣3,0).故答案为:(﹣3,0).4.解:(1)如图,△A'B'C'即为所求,点B'的坐标(﹣1,﹣4);(2)△A'B'C'的面积=4×7﹣×2×3﹣×1×7﹣×4×5=11.5.5.解:(1)∵B,D关于AP对称,∴AD=AB,∠DAP=∠BAP=20°,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∴∠DAC=100°,AD=AC,∴∠ADC=∠ACD=40°,即∠ACP=40°;(2)结论:PC=PB+P A.理由:连接PB.在PC上取一点J,使得PB=PJ,连接BJ.∵∠DAC=60°+2α,∴∠ACD=∠ADC=(180°﹣60°﹣2α)=60°﹣α,∴∠BCE=∠P AE=α,∵∠AEP=∠BEC,∴∠APC=∠EBC=60°,∴∠APD=∠APB=120°,∴∠BPC=60°,∵PB=PJ,∴△PBJ是等边三角形,∴∠PBJ=∠ABC=60°,BJ=BP,∴∠APB=∠CBJ,∵BA=BC,∴△ABP≌△CBJ(SAS),∴P A=CJ,∴PC=PJ+CJ=PB+P A.6.解:(1)补全图形如下,(2)结论:AF﹣CF=EF.理由:如图,作∠FCG=60°交AD于点G,连接BF,AE.由翻折的性质可知,AE=AB=AC,∠ABF=∠AEF,BF=EF,∠AFB=∠AFE,∴∠ACE=∠AEF,∴∠ACE=∠ABF,∵∠ACE+∠ACF=180°,∴∠ABF+∠ACF=180°,∴∠BFC+∠BAC=180°,∵∠BAC=60°,∴∠BFC=120°,∴∠AFC=∠AFB=60°,∵∠FCG=60°,∴△FCG是等边三角形,∴CG=CF=DG,∵∠ACB=∠GCF=60°,∴∠ACG=∠BCF,∵CA=CB,∴△ACG≌△BCF(SAS),∴BF=AG=EF,∵AF﹣FG=AG,∴AF﹣CF=EF.7.证明:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠CAD=∠ADE,∴DE=AE,∴△ADE是等腰三角形.8.解:(1)如图①:(2)如图②.9.解:(1)图形如图所示:(2)结论:AG=AF.理由:∵AB⊥CG,EC=EG,∴AG=AC,同法可证,AB=AF,∵AB=AC,∴AG=AF.(3)是轴对称图形,对称轴是直线AH.10.解:(1)AB=(cm);(2)∵N是AB的中点,AB=8cm,∴BN=4cm,∵△BPN与△CQP全等,∴BN=CP=4cm,BP=CQ,∵BC=5cm,∴BP=CQ=1cm,∴P、Q点的运动时间为:1÷2=0.5(s),∴点Q的速度为:1÷0.5=2(cm/s);(3)∠EDF+2∠EAF=180°.理由如下:过D点作AB、AC的对称点M、N,连接MN分别与AB、AC交于点E、F,连接AD、AM、AN、DE、CF,则DE=ME,DF=NF,∴△DEF的周长为DE+EF+DF=ME+EF+FN=MN,由两点之间线段最短知,此时△DEF的周长=MN的值最小,根据对称性质可得,∠MAE=∠DAE,∠NAF=∠DAF,∠AMN=∠ADE,∠ANM=∠ADF,∴∠EDF+∠EAF=∠AMN+∠ANM+∠MAN,∵AMN+∠ANM+∠MAN=180°,∴∠EDF+∠EAF=180°﹣∠MAN,∴∠EDF+∠EAF=180°﹣∠EAF,∴∠EDF+2∠EAF=180°.11.解:(1)①∵∠BAC=30°,∴∠ABC=∠C=×(180°﹣30°)=75°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=37.5°,∴∠BDE=∠A+∠ABD=67.5°,∵BE⊥AC,∴∠BED=90°,∴∠DBE=90°﹣∠BDE=12.5°,∴∠C的度数为75°,∠DBE的度数为12.5°,故答案为:75°,22.5°;②∵∠BAC=80°,∴∠ABC=∠C=×(180°﹣80°)=50°,∵BD是∠ABC的平分线,∴∠CBD=∠ABC=25°,∴∠ADB=∠C+∠CBD=75°,∵BE⊥AC,∴∠BED=90°,∴∠DBE=90°﹣∠ADB=15°,∴∠DBE的度数为15°,故答案为:15°;③∠BDC与α的数量关系为:∠BDC=45°+α,理由:∵∠BAC=α°,∴∠ABC=∠C=(180°﹣α)=90°﹣α,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=45°﹣α,∴∠BDC=∠A+∠ABD=45°+α,∴∠BDC与α的数量关系为:∠BDC=45°+α;(2)由(1)可得:∠ABD=45°﹣α,∠BDC=45°+α,∵DF平分∠BDC,∴∠BDF=∠BDC=22.5°+α,∵AB∥DF,∴∠ABD=∠BDF,∴45°﹣α=22.5°+α,∴α=36°,∴∠BDC=45°+α=72°,∵BE⊥AC,∴∠BED=90°,∴∠DBE=90°﹣∠BDC=18°,∴∠DBE的度数为18°.12.(1)解:补全图形如图所示;(2)证明:∵点C关于直线l的对称点为点M,N在对称轴上∴△ACN≌△AMN.∴∠1=∠ACN,AC=AM.∵AB=AC,∴AB=AM.∴∠1=∠2.∴∠ACN=∠ABM(3)解:结论:BN=2NH+MN.证明:在BM上截取BD=MN,连接AD.在△ABD和△AMN中,,∴△ABD≌△AMN(SAS).∴AD=AN.∵AH⊥BM,∴DN=2NH∴BN=DN+BD=2NH+MN.13.解:(1)在Rt△ABC中,∠C=90°,CD=BD,∴∠B=∠BCD,∴∠A=∠ACD,∴AD=CD,∴CD是Rt△ABC斜边上的中线,∴CD=BD=AD=AB,∴△CDB和△ADC是等腰三角形,∴CD是Rt△ABC的一条特异线;(2)当△ABC是一个等腰锐角三角形,且它是特异三角形时,有两种情形:如图1,∵AB=AC,AD=BD=BC,∴∠ABC=∠C=∠BDC,∠A=∠ABD,设∠A=x,则x+2x+2x=180°,解得x=36°,∴∠A=36°,如图2,∵AB=AC,AD=BC,BC=CD,∴∠ABC=∠C,∠A=∠ABD,∠CDB=∠CBD,∵∠CDB=∠A+∠ABD=2∠A,设∠A=x,则2x+2x+3x=180°,解得x=()°.∴∠A=()°.故∠A的度数是36°或()°.14.解:(1)∵点M、N分别是点P关于OA、OB的对称点,∴ME=PE,NF=PF,MN=20cm,∴ME+EF+NF=PE+EF+PF=MN=20cm,即△PEF的周长是20cm;(2)如图,∵点M、N分别是点P关于直线0A、OB的对称点,∴OA垂直平分PM,OB垂直平分PN,∴∠PRE=∠PTF=90°,∴在四边形OTPR中,∴∠MPN+∠AOB=180°,∵∠EPF+2∠M+2∠N=180°,即∠MPN+∠M+∠N=180°,∴∠M+∠N=∠AOB=35°,∴∠EPF=180°﹣35°×2=110°;(3)如图,连接OM,ON,OP.∵P,M关于OA对称,∴OA垂直平分线段PM,∴OM=OP,EM=EP,∴∠OPM=∠OMP,∠EPM=∠EMP,∴∠OPE=∠OME,同法可证∠OPF=∠ONF,∵OM=ON,∴∠OME=∠ONF,∴∠OPE=∠OPF,∴OP平分∠EPF.15.解:(1)设底边长为xcm,则腰长为2xcm,依题意,得2x+2x+x=25,解得x=5.∴2x=10.∴三角形三边的长为10cm、10cm、5cm;(2)能围成有一边的长是6cm的等腰三角形,理由如下:分两种情况:①若腰长为6cm,则底边长为25﹣6﹣6=13(cm),而6+6<13,所以不能围成腰长为6cm的等腰三角形;②若底边长为6cm,则腰长为(25﹣6)=9.5(cm),此时能围成等腰三角形,三边长分别为6cm、9.5cm、9.5cm.综上所述,能围成有一边的长是6cm的等腰三角形.16.解:(1)如图所示,△A'B'C'即为所求;(2)由图形可知,C'(﹣3,2),△A'B'C'的面积为=2×=4,故答案为:(﹣3,2);4;(3)如上图所示,点P即为所求.17.证明:∵AB=AC(已知),∴∠B=∠C(等边对等角),∵EP⊥BC(已知),∴∠E+∠C=90°,∠B+∠BFP=90°,∴∠E=∠BFP(等角的余角相等),又∵∠EF A=∠BFP∴∠EF A=∠E,∴AE=AF(等角对等边).故答案为:等边对等角;等角的余角相等;∠EF A=∠E;等角对等边.18.(1)证明:∵∠ABC=∠ADC=90°,BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠ACB=∠ACD;(2)①解∵Rt△ABC≌Rt△ADC,∴∠BAC=∠CAD,∵CA=CE,∴∠CAE=∠CEA,∵∠EBA=90°,∴∠BEA=∠BAC=∠CAE=30°;②证明:∵PD⊥AE,MP⊥PD,∴AE∥MP,∴∠PMC=∠MAE=30°,∵ME∥AB,∴∠MEB=∠ABE=90°,∴∠MEA=90°+30°=120°,∵∠MAE=30°,∴∠EMA=30°,∵CP⊥MP,CE⊥ME,∠MCP=∠MCE=60°,∴△NEC≌△NPC(SAS),∴EN=PN,∴N是EP的中点,NC⊥PE,∴AM垂直平分PE;(3)证明:延长PD、ME交于Q点,由①知,∠BEA=30°,∠MEB=90°,∴∠MEA=120°,∴∠DEQ=60°,∵PD⊥AE,∴∠EDQ=90°,∴∠EQD=30°,∵∠CPN=30°,∴∠EPD=∠DQE,∴PE=EQ,∴ME+PE=QE+ME≥MQ,此时ME+PE的值最小,∵点O是直线AE上的动点,∴当MO+PO的值最小时,E点与O点重合.19.解:(1)由题意可知AP=t,BQ=2t,∵AB=16cm,∴BP=AB﹣AP=(16﹣t)cm,故答案为:(16﹣t)cm;(2)当点Q在边BC上运动,△PQB为等腰三角形时,则有BP=BQ,即16﹣t=2t,解得t=,∴出发秒后,△PQB能形成等腰三角形;(3)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(cm),∴BC+CQ=22(cm),∴t=22÷2=11;②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(cm),∴t=24÷2=12,综上所述:当t为11或12时,△BCQ是以BC或BQ为底边的等腰三角形.故答案为:11秒或12.20.(1)证明:∵AH⊥BC,垂足为H,且BH=CH,∴AH是BC的垂直平分线.∴AB=AC.∴∠B=∠C;(2)解:∵AH⊥BC,AB=AC,∴∠BAH=∠CAH.∵AH⊥BC,EF⊥BC,∴∠AHB=∠EFB=90°.∴AH∥EF.∴∠BAH=∠E,∠CAH=∠AME.∴∠E=∠AME.∴AM=AE=2.∵AB=AC=5,∴CM=AC﹣CM=3.∵AH∥EF,∴MF=.。
初二数学知识点之轴对称初二数学知识点之轴对称1经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
等腰三角形的性质:等腰三角形的两个底角相等。
(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)(附:顶角+2底角=180°)如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)有一个角是60°的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
初二数学知识点之轴对称2一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的`直线,叫做这条线段的垂直平分线,也叫中垂线。
2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。
苏教版初二数学知识点《轴对称图形》查字典数学网为大伙儿整理了苏教版初二数学知识点《轴对称图形》,期望对大伙儿有所关心,感谢。
一、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形沿某直线对折能够完全重合,是两个图形之间的一种关系,而轴对称图形是两部分能完全重合的一个图形。
联系:两者都有完全重合的特点,都有对称轴,都有对称点。
二、轴对称的性质1、定义垂直同时平分一条线段的直线,叫做这条线段的垂直平分线。
2、把一个图形沿着一条直线折叠,假如它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
3、把一个图形沿着一条某直线折叠,假如直线两旁的部分能够互相重合,那么称那个图形是轴对称图形,这条直线确实是对称轴。
4、成轴对称的两个图形全等。
假如两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
三、线段、角的轴对称性1、线段是轴对称图形,线段的垂直平分线是它的对称轴。
线段的垂直平分线上的点到线段两端的距离相等;2、到线段两端距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线是到线段两端距离相等的点的集合。
3、角是轴对称图形,角平分线所在直线是它的对称轴。
角平分线上的点到角的两边距离相等;角的内部到角的两边距离相等的点,在那个角的平分线上。
四、等腰三角形的轴对称性1、等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴。
2、等腰三角形的两个底角相等(简称等边对等角)。
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、假如一个三角形有两个角相等,那么这两个角所对的边也相等(简称等角对等边)。
4、直角三角形斜边上的中线等于斜边的一半。
5、直角三角形中30角所对的直角边是斜边的一半。
6、三边相等的三角形叫做等边三角形或正三角形。
等边三角形是轴对称图形,同时有3条对称轴。
等边三角形的每个角都等于60。
7、三条边都相等的三角形是等边三角形。
一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D 解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 首先根据等边三角形性质得出BC=AC ,CD=CE ,∠ACB=∠ECD=60°,即可证明△BCD 与△ACE 全等、△BCF 与△ACG 全等以及△DFC 与△EGC 全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC 与△CDE 为等边三角形,∴BC=AC ,CD=CE ,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD ,∠ACD=60°,即:∠ACE=∠BCD ,在△BCD 与△ACE 中,∵BC=AC ,∠ACE=∠BCD ,CD=CE ,∴△BCD ≌△ACE(SAS),∴AE=BD ,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 5.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180°D 解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 6.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE ≌△DCB 和△ACM ≌△DCN 是解题的关键.7.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.8.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°A解析:A【分析】 根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 二、填空题11.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A 1B 2//x 轴,∴∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=3212-, 同理可得,A 4的横坐标为12+1+2+4=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 6的横坐标是62163==31.522-, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.12.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.【分析】作A 关于CD 的对称点H 由CD 是△ABC 的角平分线得到点H 一定在BC 上过H 作HF ⊥AC 于F 交CD 于E 连接AE 则此时AE +EF 的值最小AE +EF 的最小值=HF 过A 作AG ⊥BC 于G 根据垂直平分线的解析:4【分析】作A 关于CD 的对称点H ,由CD 是△ABC 的角平分线,得到点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A 关于CD 的对称点H ,∵CD 是△ABC 的角平分线,∴点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,∵△ABC 的面积为12,BC 长为6,∴AG =4,∵CD 垂直平分AH ,∴AC =CH ,∴S △ACH =12AC•HF =12CH•AG , ∴HF =AG =4,∴AE +EF 的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B = 解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.16.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.9【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P (x-yy )与点Q (-1-5)关于x 轴对称得x-y =-1y =5解得x =4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P (x-y ,y )与点Q (-1,-5)关于x 轴对称,得x-y =-1,y =5.解得x =4,y =5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17.如图所示的网格是正方形网格,点A,B,C,D,O是网格线交点,那么∠___________CODAOB∠(填“>”,“<”或“=”).>【分析】如图过点B作BE⊥AC于E证明△BOE是等腰直角三角形得到∠BOE=过点C作CF⊥OC使FC=OC证明△OCF是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD即可得到∠AOB>∠CO解析:>【分析】如图,过点B作BE⊥AC于E,证明△BOE是等腰直角三角形,得到∠BOE=45︒,过点C 作CF⊥OC,使FC=OC,证明△OCF是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD,即可得到∠AOB>∠COD.【详解】如图,过点B作BE⊥AC于E,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.18.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N 为OB上一动点,当PM+PN最小时,则∠PMO的度数为___________.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P 及点N 的位置是关键.19.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.20.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC 从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE ;③由②得:△ADE 的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF ,EF=EC ,从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DF ,EF=EC ,所以DE=DF+EF=BD+CE ;③由②得:△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;④因为∠ABC 不一定等于∠ACB ,所以∠FBC 不一定等于∠FCB ,所以BF 与CF 不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.解析:(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 22.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.解析:(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.23.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.解析:(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB.【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED=EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出EF BC交AC于点F)BD与AE的数量关系;若成立,请给予证明;(提示:过E作//(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,ABC 的边长为1,AE=2,请直接写出CD的长.解析:(1)AE=BD;见解析;(2)成立;AE=BD;见解析;(3)CD的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB=30°,由DE=CE,求出∠D=∠ECB=30°得到∠DEB=30°,推出BD=BE,根据AE=BE证得结论;(2)过E作EF∥BC交AC于点F,得到△AEF是等边三角形,推出BE=CF,利用∠DBE=∠EFC=120°,∠BED=∠ECF,证得△DEB≌△ECF(AAS),得到BD=EF=AE;(3)作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,利用∠CEF=∠EDB,EB=CF=3,∠F=∠B=60°,证得△CEF≌△EDB(AAS),得到BD=EF=2,求出CD=BD-BC =1,同理可得CD=3【详解】解:(1)AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE =EC ,∴∠D =∠ECD ,∴∠BED =∠ECF ,∴△DEB ≌△ECF (AAS ),∴BD =EF ,∴AE =BD ;(3)CD 的长为3或1如图2,作EF ∥BC 交CA 的延长线于点F ,则△AEF 为等边三角形,∴AF =AE =EF =2,∠BEF =60°,∴∠CEF =60°+∠BEC .∵∠EDC =∠ECD =∠B +∠BEC =60°+∠BEC ,∴∠CEF =∠EDB .又∵EB =CF =3,∠F =∠B =60°,∴△CEF ≌△EDB (AAS ),∴BD =EF =2,∴CD =BD -BC =1,如图3,同理可得CD =3,综上所述,CD 的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.25.如图,在Rt ABC △中,90ACB ∠=︒,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .(1)求证:CE BF =;(2)求证:AEM DEM ∠=∠.解析:(1)证明见解析;(2)证明见解析【分析】(1)先证明CAE BCF ∠=∠,再证明CAE BCF ≌△△,从而可得结论;(2)连接CM ,FM ,先证明ECM FBM ∠=∠,再证明CME BMF ≌△△,可得EM FM =,EMC FMB ∠=∠,再证明FME 是等腰直角三角形,可得45MED ∠=︒,从而可得结论.【详解】证明:(1)AE CD ⊥,BF CD ⊥,90AEC CFB ∴∠=∠=︒.90ACB ∠=︒,90BCF ACE ACE EAC ∴∠+∠=︒=∠+∠CAE BCF ∴∠=∠.CA BC =. ()CAE BCF AAS ∴≌△△.CE BF ∴=.(2)连接CM ,FM在Rt ABC △中,CA CB =,点M 是AB 的中点,90,ACB ∠=︒BM AM ∴=,CM AB ⊥,CM 平分ACB ∠,45ACM BCM CBM CAM ∴∠=∠=∠=∠=︒,CM BM AM ==,由CAE BCF ≌△△可得:ACE CBF ∠=∠.,ACM ECM CBM MBF ∴∠+∠=∠+∠ECM FBM ∴∠=∠.又CE BF =,()CME BMF SAS ∴≌△△.EM FM ∴=,EMC FMB ∠=∠.90EMF FMB DME CME DME ∠=∠+∠=∠+∠=︒.FME ∴△是等腰直角三角形.45MED ∴∠=︒,90AED ∠=︒,45AEM DEM ∴∠=∠=︒.【点睛】本题考查的的三角形全等的判定与性质,等腰直角三角形的判定与性质,掌握以上知识是解题的关键.26.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0); (2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.27.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.28.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.解析:(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,。
轴对称知识点汇总3篇轴对称这一章,知识点琐碎,内容繁杂,极易混淆,多练这些题,有助同学们把握重难点,有所突破!下面是小编给大家带来的轴对称知识点汇总,欢迎大家阅读参考,我们一起来看看吧!轴对称最全知识点汇总一、知识梳理1、轴对称如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴.两个图形中的对应点叫对称点.2、轴对称图形把一个图形沿一条直线折叠,如果直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.这个图形关于这条直线(成轴)对称.3、轴对称与对称轴的区别与联系区别:轴对称指的是两个图形的位置关系,而轴对称图形指的是具有对称性的某一个图形.联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形.如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称.4、一些典型图形的对称轴条数和表述语言正方形有4条对称轴,分别是对角线所在直线,2条;对边中点连线所在直线,2条.长方形有2条对称轴,是对边中点连线所在直线,2条.等腰三角形有1条对称轴,是顶角顶点与对边中点连线所在直线.(或顶角角平分线,底边中线,底边上的高所在直线)等边三角形有3条对称轴,分别是任意顶点与对边中点连线所在直线,3条.(或任意角角平分线,任意边的中线,任意边上的高所在直线)等腰梯形有1条对称轴,是上底中点与下底中点连线所在直线.圆有无数条对称轴,分别是直径所在直线,无数条.5、垂直平分线(中垂线)定义垂直并且平分一条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平行(或在同一条直线上).(3)对应线段相等,对应角相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平行).7、对称轴的作法法1:作一条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定一条直线.法3:分别延长两对对应线段,确定两个交点,两点确定一条直线.8、给出一个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂足的距离为半径,截取相等,将所作对应点分别相连.八年级数学轴对称知识讲解轴对称【学习目标】1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.4.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.【要点梳理】要点一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.要点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心初二数学轴对称测试题及答案1.下列图形不是轴对称图形的是( )2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.163.已知am=5,an=6,则am+n的值为( )A.11B.30C.D.4.下列计算错误的是( )A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a65.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SASB.ASAC.SSSD.AAS6.计算(x+3y)2﹣(3x+y)2的结果是( )6.计算(x+3y)2﹣(3x+y)2的结果是( )A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.18C.26D.288.计算(﹣2x+1)(﹣3x2)的结果为( )A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是( )A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是( )A①②③ B、① C、② D、③二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=__________12.化简(1- )(m+1)的结果是 .13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题(共8题,共72分)17.(本题8分)计算:(1)(3a﹣2b)(9a+6b); (2)(﹣2m﹣1)2;18.(本题8分)分解因式:4m2﹣9n219.(本题8分)解分式方程 =20.(本题8分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.21.(本题10分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为;运用与拓广:22.(本题8分)2015年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?23.(本题10分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(本题12分)如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案一、选择题1. B.2. C.3. B.4. A.5. A.6. B.7. B.8. C.9. B. 10. A二、填空题11. 12. m. 13. 2+n. 14. 60 15. 15 16.十一.三、解答题17.解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1;18.解:4m2﹣9n2=(2m+3n)(2m﹣3n).19.解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.20.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,∠DEC=∠AFB,∠ C=∠A,DC=BA,∴△DEC≌△BFA,∴CE=AF,∴CE=5.21.解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);22.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.23.解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,OC=OD,∠EUC=∠BOE,OE=OE,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴B D=4厘米,∴PC=BD,在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t= = 秒,∴VQ= = 厘米/秒.。
人教版八年级音乐上册轴对称教案一、教学目标1. 了解轴对称的概念和相关术语;2. 掌握轴对称的基本操作方法;3. 通过音乐作品欣赏,体验轴对称的美感;4. 培养学生的审美意识和创新能力;二、教学重难点1. 轴对称的概念和基本操作方法;2. 音乐作品中的轴对称特征。
三、教学过程1.导入环节播放经典轴对称的建筑照片,引导学生发现轴对称的特征,并引入“轴对称”的概念。
2.理论讲解通过PPT讲解什么是轴对称,轴线,轴心等相关概念,让学生掌握轴对称的基本操作方法。
提供相关的样例让学生进行练。
3.音乐欣赏播放多首 classical crossover 音乐作品如<波莉维尔的小夜曲>,配合PPT演示作品中的轴对称特征,例如轴对称舞台和服装等。
4. 创作环节以二维图形为主要素材,利用轴对称和叠合的特点,让学生进行造型创新。
学生可以以音乐为灵感,创作出自己的轴对称设计图案。
5.分享展示学生分享自己的设计作品,老师评够,让学生在分享和评够中有所收获。
并且让学生开拓自己的视野,研究到不同的创新思维。
四、板书设计轴对称,轴线,轴心,音乐作品中的轴对称特征等。
五、教学评估1. 自我评估:在完成轴对称设计的过程中,学生是否具有掌握轴对称的基本技能;2. 同伴评估:学生之间进行作品评估,了解其他同学的设计思路;3. 老师评估:老师对于学生的轴对称感知的合理性和准确性,通过学生作品的评估考核。
六、教学后记通过轴对称音乐创作教学,让学生感受音乐和美学上的交互和创新,培养学生审美意识和创新能力。
同时,老师也需要进行多次可能的更新或者更加实用有效的教学策略的使用,让学生更好的理解和掌握知识。
图形的轴对称(4种题型)【知识梳理】一.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.二.轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.三.作图-轴对称变换几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.四.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.【考点剖析】一.轴对称的性质例1.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.12【解答】解:∵点A与点E关于直线CD对称,∴AD=DE,AC=CE=9,∵AB=7,AC=9,BC=12,∴△DBE的周长=BD+DE+BE=BD+AD+BC﹣AC=AB+BC﹣AC=7+12﹣9=10.故选:B.【变式】如图,在△ABC中,点P为AB和BC垂直平分线的交点,点Q与点P关于AC对称,连接PC,PQ,CQ.若△PCQ中有一个角是50°,则∠B=度.【解答】解:连接AP、BP,如图:∵点P为AB和BC垂直平分线的交点,∴PA=PB=PC,∴∠PAB=∠PBA,∠PBC=∠PCB,∠PAC=∠PCA,∵点Q与点P关于AC对称,∴PC=QC,∠PCA=∠QCA,∴∠CPQ=∠CQP,①当∠CPQ=∠CQP=50°时,∠PCQ=80°,∴∠PCA=40°,∴∠PAC=40°,∴∠PAB+∠PBA+∠PBC+∠PCB=180°﹣∠PAC﹣∠PCA=100°,∴2∠ABP+2∠PBC=100°,∴∠ABP+∠PBC=50°,即∠ABC=50°,②当∠PCQ=50°时,∠PCA=25°,∴∠PAC=25°,∴∠PAB+∠PBA+∠PBC+∠PCB=180°﹣∠PAC﹣∠PCA=130°,∴2∠ABP+2∠PBC=130°,∴∠ABP+∠PBC=65°,即∠ABC=65°,综上所述,∠ABC为50°或65°,故答案为:50或65.二.轴对称图形例2.如图图案中,成轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意.故选:B.【变式1】如图,在3×3的正方形网格中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种【解答】解:如图,将图中剩余的编号为1至7的小正方形中任意一个涂黑共7种情况,其中涂黑1,3,5,6,7有5种情况可使所得图案是一个轴对称图形,故选:C.【变式2】如图1,▱ABCD的对角线交于点O,▱ABCD的面积为120,AD=20.将△AOD、△COB合并(A 与C、D与B重合)形成如图2所示的轴对称图形,则MN+PQ=()A.29B.26C.24D.25【解答】解:如图,连接PQ,则可得对角线PQ⊥MN,且PQ与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴MN=AD=20,12PQ⋅MN=12×12012EF×AD=12×120,∴PQ=6,又MN=20,∴MN+PQ=26,故选:B.三.作图-轴对称变换例3.如图,在△ABC中,点A(﹣3,1),B(﹣1,0).(1)根据上述信息在图中画平面直角坐标系,并求出△ABC的面积;(2)在平面直角坐标系中,作出△ABC关于y轴对称图形△A1B1C1.【解答】解:(1)如图所示,△ABC的面积=2×3﹣×2×2﹣×1×2=3;(2)如图所示,△A1B1C1即为所求.【变式1】如图都是3×3的正方形网格,点A、B、C均在格点上.在给定的网格中,按下列要求画图:(1)在图①中,画一条线段MN,使MN与AB关于某条直线对称,且M、N为格点.(2)在图②中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D、E、F为格点,并写出符合条件的三角形共有个.【解答】解:(1)如图①所示,线段MN即为所求(答案不唯一);(2)如图②所示,△DEF即为所求(答案不唯一),符合条件的三角形共有4个,故答案为:4.【变式2】如图,在平面直角坐标系中,△ABC的顶点在网格的格点上.(1)写出点A,B的坐标:A,B..(2)在图中作△ABC关于y轴对称的图形△A1B1C1.(3)求△ABC的面积.【解答】解:(1)由图知A(﹣1,1)、B(﹣3,3),故答案为:(﹣1,1)、(﹣3,3);(2)如图所示,△A1B1C1即为所求.(3)△ABC的面积为3×5﹣×1×5﹣×2×2﹣×3×3=6.【变式3】如图,△ABC的顶点分别为A(1,3),B(4,5),C(1,5),先将△ABC以第一象限的角平分线所在直线为对称轴通过轴对称得到△A′B′C′,再将△A′B′C′以x轴为对称轴通过轴对称得到△A″B″C″.(1)画出△A″B″C″;(2)写出A″,B″,C″三点的坐标;(3)一般地,某一点P(x,y)经过这样的两次轴对称变换后得到的点P″的坐标为.【解答】解:(1)如图,△A″B″C″即为所求;(2)A″(3,﹣1),B″(5,﹣4),C″(5,﹣1);(3)点P″的坐标为(y,﹣x).故答案为:(y,﹣x).【变式4】在平面直角坐标系中,已知△ABC的位置如图所示,(1)请画出△ABC关于y轴对称的△A′B′C′(其中点A′,B′,C′分别是点A,B,C的对应点,不㝍画法);(2)写出点A′,B′,C′的坐标.【解答】解:(1)如图,△A′B′C′即为所求;(2)A′(﹣1.3),B′(﹣3,0C′(﹣4,4).四.轴对称-最短路线问题例4.如图所示,点P为∠O内一定点,点A,B分别在∠O的两边上,若△PAB的周长最小,则∠O与∠APB 的关系为()A.2∠O=∠APB B.∠O=2∠APBC.∠O+∠APB=180°D.2∠O+∠APB=180°【解答】解:如图,作点P关于OM的对称点P',点P关于ON的对称点P'',连接OP',OP'',P'P'',其中P'P''交OM于A,交ON于B,此时△PAB的周长最小值等于P'P''的长,由轴对称性质可知:OP=OP',OP=OP'',∠AOP=∠AOP',∠BOP=∠BOP'',∴∠P'OP''=2∠AOB,∴∠P'=∠P''==,∴∠APB=∠P'+∠P''=180°﹣2∠AOB,即2∠O+∠APB=180°,故选:D.(1)求AP PB+;(2)若点M是直线l上异于点(3)如图2,在l上求作一点【详解】(1)点A'与A关于直线l对称,AP A P '∴=,AP PB A P PB A B ''∴+=+=,A B a '=,AP PB a ∴+=;(2)连接A M ',点A '与A 关于直线l 对称,AM A M '∴=,AP A P '=,AM MB A M MB '∴+=+,AP PB A P PB A B ''+=+=,A MB '△中A M MB A B ''+>,AM MB AP PB ∴+>+;(3)作点A 关于直线l 对称点A 'A B '交直线l 于点M ,如下图所示.【过关检测】一、单选题 1.(2021秋·浙江宁波·八年级浙江省余姚市实验学校校考期中)环保理念深入人心,垃圾分类的标识中,是轴对称图形的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的概念即可解决本题.【详解】由轴对称图形概念,平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形,能够判断出A为轴对称图形.故答案为A.【点睛】本题考查了轴对称图形的概念,难度系数不高,解题的关键在于正确理解轴对称图形的概念.2.(2023·浙江·八年级假期作业)小明以四种不同的方式连接正六边形ABCDEF的两条不同的对角线,那么连接后的四个图形,不是轴对称图形的是()....【答案】D【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A、B、C选项都是轴对称图形,不符合轴对称图形的只有D选项;故选D.【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.3.(2020秋·浙江温州·八年级校考期中)将一张长方形纸对折,然后用笔尖在纸上扎出“B”,再把纸铺平,可以看到的是()A.B.C.D.【答案】C【分析】轴对称图形的定义是,在一个平面内,平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.根据定义即可得到正确答案【详解】解:A、不是轴对称图形,答案错误;B、不是轴对称图形,答案错误;C、是轴对称图形,答案正确;D、不是轴对称图形,答案错误.故选:C【点睛】本题考查轴对称图形的定义,根据定义解题是关键.八年级假期作业)如图,将ABC折叠,使A.2cm B.2.5cm C.3cm D.3.5cm【答案】C∠的角平分线,根据垂线段最短即可解答.【分析】由折叠可得:PA为BAC【详解】解:∵将ABC折叠,使AC边落在AB边上,∠的角平分线,∴PA为BAC∵点Q为AC上任意一点,∴PQ的最小值等于点P到AB的距离3cm.故选C.【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.5.(2023·浙江·八年级假期作业)如图,将一个长方形纸条折成如图所示的形状,若253∠=︒,则1∠的度数是( )A .86︒B .74︒C .106︒D .126︒【答案】C 【分析】如图,记AD 的延长线为DC ,则由折叠的性质可得3253∠=∠=︒,得到106CDE ∠=︒,再根据平行线的性质即可得出答案.【详解】解:如图,记AD 的延长线为DC ,则由折叠的性质可得:3253∠=∠=︒,∴106CDE ∠=︒,∵BE AC ∥,∴1106CDE ∠=∠=︒;故选:C.【点睛】本题考查了折叠的性质和平行线的性质,正确添加辅助线,得出106CDE ∠=︒是解题的关键.6.(2023·浙江·八年级假期作业)如图,弹性小球从点P 出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q ,第2次碰到矩形的边时的点为M ,….第2022次碰到矩形的边时的点为图中的( )A .点PB .点QC .点MD .点N【答案】A【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,经过6次反弹后动点回到出发点P,∵2022÷6=337,∴当点P第2022次碰到矩形的边时为第337个循环组的最后一次反弹,∴第2022次碰到矩形的边时的点为图中的点P,故选:A.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【分析】利用轴对称画图可得答案.【详解】解:如图所示,球最后落入的球袋是2号袋,故选:B.【点睛】此题主要考查了生活中的轴对称现象,关键是正确画出图形. 8.(2022秋·浙江·八年级专题练习)如图,点A 在直线l 上,△ABC 与AB C ''关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是( )A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='【答案】D 【分析】利用轴对称的性质和全等三角形的性质逐项判断即可.【详解】解:ABC 与AB C ''关于直线l 对称,ABC AB C ∴≅'',BB l '⊥,CC l '⊥,AB AB =',AC AC =',BAC B AC ∴∠=∠'',CC BB '',即选项A 、B 正确;由轴对称的性质得:,OD OD OB OB ='=',OB OD OB OD ∴−='−',即BD B D ='',选项C 正确;由轴对称的性质得:AD AD =',但AD 不一定等于'DD ,即选项D 不一定正确;故选:D .【点睛】本题考查了轴对称的性质、全等三角形的性质,熟练掌握轴对称的性质是解题关键. 9.(2023·浙江·八年级假期作业)如图,小雨要用一个长方形纸片ABCD 折叠一个小兔子,第一步沿OG 折叠,使点B 落到CD 边上的点B '处,若35GB C ''∠=︒,则BOG ∠=( )A .65︒B .62.5︒C .55︒D .52.5︒【答案】B 【分析】根据折叠得出90OB C B ''∠=∠=︒,求出55OB G '∠=︒,根据平行线的性质得出18055125B OB '∠=︒−︒=︒.根据折叠得出162.52BOG B OB '∠=∠=︒.【详解】解:根据折叠可知,90OB C B ''∠=∠=︒,∵35GB C ''∠=︒,∴55OB G '∠=︒,∵AB CD ∥,∴18055125B OB '∠=︒−︒=︒.由折叠可知,162.52BOG B OB '∠=∠=︒,故B 正确.故选:B .【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.A .152B .【答案】D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC EF +的最小值即为点C 到AB 的垂线段长度.【详解】解:在AB 上取一点G ,使AG AF =,如图,CAD BAD ∠=∠,AE AE =,(SAS)AEF AEG ∴≌,FE EG ∴=,CE EF CE EG ∴+=+,则最小值是CG 垂直AB 时,CG 的长度, ∵1122AB CG AC BC ⨯=⨯,125CG ∴=.故选:D .【点睛】本题考查了轴对称−最短路线问题,解题的关键是根据角平分线构造全等以及线段和差极值问题.二、填空题 11.(2023·浙江·八年级假期作业)将长方形纸片按如图方式折叠,EF FG ,为折痕,则EFG ∠的度数为 .【答案】90︒/90度【分析】根据折叠的性质得到1112BFE B FE BFB ∠=∠=∠,1112CFG C FG CFC ∠=∠=∠,然后根据平角为180︒求解即可. 【详解】∵将长方形纸片按如图方式折叠,EF FG ,为折痕, ∴1112BFE B FE BFB ∠=∠=∠,1112CFG C FG CFC ∠=∠=∠, ∴111111190222EFG B FE C FG BFB CFC BFC ∠=∠+∠=∠+∠=⨯∠=︒. 故答案为:90︒.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等.也考查了平角的定义. 12.(2023·浙江·八年级假期作业)如图,在ABC 中,90ACB ∠=︒,D 在AB 上,将ABC 沿CD 折叠,点B 落在AC 边上的点B '处,若35A ∠=︒,则ADB ∠'的度数为 ︒.【答案】20【分析】根据题意,可得ABC 是直角三角形,B ∠的度数,根据折叠可知,CB D B '∠=∠,再根据CB D '∠是AB D 'V 的外角,由外角的性质即可求解.【详解】解:在ABC 中,90ACB ∠=︒,35A ∠=︒,∴ABC 是直角三角形,且903555B ∠=︒−︒=︒,根据折叠,55CB D B '∠=∠=︒,∵CB D '∠是AB D 'V 的外角,即CB D A ADB ''∠=∠+∠,∴553520ADB CB D A '∠'=∠−∠=︒−︒=︒,故答案为:20.【点睛】本题主要考查直角三角形,三角形的外角知识的综合,掌握直角三角形的性质,折叠的性质,三角形外角的性质的知识是解题的关键.13.(2022秋·浙江·八年级专题练习)已知:如图,P 是AOB ∠内的一点,12,P P 分别是点P 关于OAOB 、的对称点,12PP 交于点OA 于点M ,交OB 于点N ,若125cm PP =,则PMN △的周长是 cm .【答案】5【分析】根据轴对称的性质进行等量代换,便可知12PP与PMN △的周长是相等的,即可求解. 【详解】解:∵12PP ,分别是点P 关于OA OB 、的对称点, ∴12PM MPPN NP =,=, ∴2121++=++==5P M MN NP PM MN PN PPcm , ∴PMN △的周长为5cm.故答案为:5.【点睛】本题考查轴对称的性质,难度一般,关键是熟练掌握轴对称的性质特点,并能灵活运用.【答案】40°/40度【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=−∠−∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40°.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键. 15.(2022秋·浙江·八年级专题练习)如图,在△ABC 中,点P 为AB 和BC 垂直平分线的交点,点Q 与点P 关于AC 对称,连接PC ,PQ ,CQ .若△PCQ 中有一个角是50°,则∠B = 度.【答案】50或65【分析】连接AP 、BP ,由点P 为AB 和BC 垂直平分线的交点,得PA =PB =PC ,知∠PAB =∠PBA ,∠PBC =∠PCB ,∠PAC =∠PCA ,又点Q 与点P 关于AC 对称,可得PC =QC ,∠PCA =∠QCA ,∠CPQ =∠CQP ,分两种情况:①当∠CPQ =∠CQP =50°时,∠PCQ =80°,可得∠PCA =40°,∠PAC =40°,即得2∠ABP+2∠PBC =100°,∠ABC =50°,②当∠PCQ =50°时,同理可得∠ABC =65°.【详解】解:连接AP 、BP∵点P 为AB 和BC 垂直平分线的交点,∴PA =PB =PC ,∴∠PAB =∠PBA ,∠PBC =∠PCB ,∠PAC =∠PCA ,∵点Q 与点P 关于AC 对称,∴PC =QC ,∠PCA =∠QCA ,∴∠CPQ =∠CQP ,①当∠CPQ =∠CQP =50°时,∠PCQ =80°,∴∠PCA =40°,∴∠PAC =40°,∴∠PAB+∠PBA+∠PBC+∠PCB =180°﹣∠PAC ﹣∠PCA =100°,∴2∠ABP+2∠PBC =100°,∴∠ABP+∠PBC =50°,即∠ABC =50°,②当∠PCQ =50°时,∠PCA =25°,∴∠PAC =25°,∴∠PAB+∠PBA+∠PBC+∠PCB =180°﹣∠PAC ﹣∠PCA =130°,∴2∠ABP+2∠PBC =130°,∴∠ABP+∠PBC =65°,即∠ABC =65°,综上所述,∠ABC 为50°或65°,故答案为:50或65.【点睛】本题考查轴对称的性质,解题的关键是掌握三角形内角和定理的应用及轴对称的性质.【答案】都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.17.(2022秋·浙江金华·八年级校考阶段练习)如图,在锐角ABC 中,8AB =,16ABC S =V ,BD 平分ABC ∠,M 、N 分别是 BD 、BC 上的动点,则CM MN +的最小值是 .【答案】4【分析】过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于N ,则CE 为CM MN +的最小值,根据三角形的面积公式求出CE 的长,即为CM MN +的最小值.【详解】解:过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于N ,∵BD 平分ABC ∠,ME AB ⊥于点E ,MN BC ⊥于N ,∴MN ME =,∴CE CM ME CM MN =+=+,即CE 为CM MN +的最小值,∵ABC 的面积为16,8AB =,∴12816CE ⨯⨯=,∴4CE =,即CM MN +的最小值为4.故答案为:4.【点睛】本题考查的是轴对称—最短路线问题,解题的关键是学会利用垂线段最短解决最值问题,属于中考常考题型.18.(2022秋·浙江杭州·八年级杭州绿城育华学校校考期中)如图,在ABC 中,DE 是AC 的垂直平分线,4,7AB BC ==,则ABD △的周长为 .【答案】11【分析】根据垂直平分线的性质,可知AD CD =,进而可知B C B D C D B D A D =+=+,即可求出ABD △的周长.【详解】解:DE 是AC 的垂直平分线,AD CD ∴=,B C B D C D B D A D \=+=+,ABD ∴的周长4711A B B D A D A B B C =++=+=+=,故答案为:11.【点睛】本题考查了线段垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等,熟练掌握垂直平分线的性质是解题关键.三、解答题19.(2023·浙江·八年级假期作业)如图,ABC 和ADE V 关于直线l 对称,已知15AB =,10DE =,70D ∠=︒.求B ∠的度数及BC 、AD 的长度.【答案】70B ∠=︒,10BC =、15AD =【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】解:ABC 和ADE 关于直线l 对称,AB AD ∴=,BC DE =,B D ∠=∠,又15AB =,10DE =,70D ∠=︒.70B ∴∠=︒,10BC =,15AD =,【点睛】本题考查轴对称的性质,两个图象关于某直线对称,对应边相等,对应角相等. 20.(2022秋·浙江·八年级专题练习)如图,△ABC 与△ADE 关于直线MN 对称,BC 与DE 的交点F 在直线MN 上.若ED =4cm ,FC =1cm ,∠BAC =76°,∠EAC =58°.(1)求出BF 的长度;(2)求∠CAD 的度数;(3)连接EC ,线段EC 与直线MN 有什么关系?【答案】(1)BF =3cm(2)∠CAD =18°(3)直线MN 垂直平分线段EC【分析】(1)先根据轴对称的性质得出BC =ED =4cm ,再根据FC =1cm ,求出BF 的长度即可;(2)根据轴对称的性质得出∠EAD =∠BAC =76°,再根据∠EAC =58°求出结果即可;(3)直接根据轴对称的性质即可得出答案.【详解】(1)解:∵△ABC 与△ADE 关于直线MN 对称,ED =4cm ,FC =1cm ,∴BC =ED =4cm ,∴BF =BC ﹣FC =3cm .(2)解:∵△ABC 与△ADE 关于直线MN 对称,∠BAC =76°,∠EAC =58°,∴∠EAD =∠BAC =76°,∴∠CAD =∠EAD ﹣∠EAC =76°﹣58°=18°.(3)解:直线MN 垂直平分线段EC .理由如下:如图,∵E,C关于直线MN对称,∴直线MN垂直平分线段EC.【点睛】本题主要考查轴对称的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(2022秋·浙江宁波·八年级校考期中)在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使涂黑部分图形是一个轴对称图形(最少三种不同方法).【答案】见解析【分析】根据轴对称图形的定义,结合题意,补充图形即可【详解】如图:有5种方法:【点睛】本题考查了轴对称图形的概念,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,掌握轴对称图形的定义是解题的关键.22.(2022秋·八年级单元测试)如图,ABC的顶点A,B,C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画111A B C △,使它与ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A ,点B 的距离之和最短;(3)在直线l 上找一点Q ,使点Q 到边AC BC ,的距离相等.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)如图所示,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11AC、11B C 即可;(2)连接1A B 交直线l 于P ,利用两点之间线段最短可判断P 点满足条件;(3)根据角平分线上的点到角两边的距离相等进行作图即可.【详解】(1)解:如图, 111A B C △为所作;(2)解:根据(1)的结论,点A 、点1A 关于直线l 成轴对称,∴1PA PA =∴1PA PB PA PB +=+,如下图,连接1A B∴当点P 在直线l 和1A B的交点处时,11PA PB A B +=为最小值, ∴当点P 在直线l 和1A B 的交点处时,PA PB +取最小值,即点P 到点A 、点B 的距离之和最短;(3)解:如图所示,连接1CC ,根据题意的:11ACC BCC ∠=∠∴点Q 在直线l 和1CC 的交点处时,点Q 到边AC BC ,的距离相等.【点睛】本题主要考查了画轴对称图形,轴对称最短路径问题,角平分线的性质等等,熟知相关知识是解题的关键. 23.(2023·浙江·八年级假期作业)如图所示,牧马人从A 地出发,到一条直的河流l 边的C 处饮马,然后到达B 地.牧马人到河边的什么地点饮马,可以使所走的路程最短?请用尺规作图,在图中找出路程最短的饮马点C ,并用轴对称的性质说明理由.【答案】牧马人到河边的点C 处饮马,可以使所走的路程最短,见解析【分析】过点B 作直线l 的对称点B ',连接AB ',与直线l 的交点即为点C ,此时所走的路程最短,取直线l 上另一点C ',根据三角形三边关系证明得到牧马人到河边的点C 处饮马,可以使所走的路程最短.【详解】解:如图,过点B 作直线l 的对称点B ',连接AB ',与直线l 的交点即为点C ,此时所走的路程最短,即AC BC AC B C AB ''+=+=,取直线l 上另一点C ',根据轴对称得到AC BC AC B C AB ''''''+=+≥,∴牧马人到河边的点C 处饮马,可以使所走的路程最短..【点睛】此题考查了最短路径问题,轴对称作图,三角形三边关系的应用,正确理解最短路径问题作图方法是解题的关键.24.(2023·浙江·八年级假期作业)如图,P 在AOB ∠内,点M ,N 分别是点P 关于AO BO ,的对称点,MN 分别交OA OB ,于E ,F .(1)若PEF !的周长是10cm ,求MN 的长;(2)若30AOB ∠=︒,试求MON ∠的度数.【答案】(1)10cm(2)60︒【分析】(1)由轴对称的性质可得EM EP FP FN ==,,由三角形周长公式得到10cm PE EF PF ++=,则10cm EM EF FN ++=,即10cm MN =;(2)根据轴对称的性质得到AOM AOP BON BOP ==∠∠,∠∠,进一步推出260MON AOB ∠=∠=︒.【详解】(1)解:∵点M ,N 分别是点P 关于AO BO ,的对称点,∴EM EP FP FN ==,,∵PEF !的周长是10cm ,∴10cm PE EF PF ++=,∴10cm EM EF FN ++=,即10cm MN =;(2)解:如图所示,连接OM ON OP ,,,∵点M ,N 分别是点P 关于AO BO ,的对称点,∴AOM AOP BON BOP ==∠∠,∠∠,∴()2260MON AOM AOP BOP BON AOP BOP AOB =+++=+==︒∠∠∠∠∠∠∠∠ .【点睛】本题主要考查了轴对称图形的性质,正确得到EM EP FP FN ==,,AOM AOP BON BOP ==∠∠,∠∠是解题的关键. 25.(2022秋·浙江·八年级专题练习)如图,△ABC 和△ADE 关于直线MN 对称,BC 与DE 的交点F 在直线MN 上.(1)图中点C 的对应点是点 ,∠B 的对应角是 ;(2)若DE =5,BF =2,则CF 的长为 ;(3)若∠BAC =108°,∠BAE =30°,求∠EAF 的度数.【答案】(1)E ,∠D(2)3(3)∠EAF =39°【分析】(1)根据△ABC 和△ADE 关于直线MN 对称,得到图中点C 的对应点是点E ,∠B 的对应角是∠D ;(2)根据△ABC 与△ADE 关于直线MN 对称,得到△ABC ≌△ADE ,推出BC =DE =5,根据BF =2,得到CF =BC ﹣BF =3;(3)根据∠BAC =108°和∠BAE =30°,推出∠CAE =108°﹣30°=78°,根据对称性得到∠EAF =∠CAF ,推出∠EAF =CAE 12Ð=39°.【详解】(1)∵△ABC 与△ADE 关于直线MN 对称,∴图中点C 的对应点是点E ,∠B 的对应角是∠D ;故答案为:E ,∠D .(2)∵△ABC 与△ADE 关于直线MN 对称,∴△ABC ≌△ADE ,∴BC =DE =5,∵BF =2,∴CF =BC ﹣BF =3.故答案为:3.(3)∵∠BAC =108°,∠BAE =30°,∴∠CAE =108°﹣30°=78°,根据对称性知,∠EAF =∠CAF ,∴∠EAF =CAE 12Ð=39°.【点睛】本题主要考查了轴对称,解决问题的关键是熟练掌握轴对称的定义,成轴对称的两个图形的全等性. (1)当70PEC ∠=︒时,求DPQ ∠;,将PDQ 沿PQ 【答案】(1)20︒;(2)72︒或120︒;(3)65︒.【分析】(1)结合已知先证AD BC ∥,利用平行线和平角的性质得到90PEC DPQ ∠+∠=︒可求解;(2)当点Q 在边CD 上时,利用(1)中关系可求解,当点Q 在CD 的延长线上时,如图,由(1)可知AD BC ∥,90EPQ ∠=︒可求得90DPE DPQ ∠=︒−∠,结合已知利用同旁内角互补可求解;(3)由翻折和已知可求得50PD E ∠='︒,从而得到DPD '∠,再由翻折可求得DPQ ∠,最后结合(1)中的关系可求解.【详解】(1)90D C ∠=∠=︒180D C ∴∠+∠=︒AD BC ∴∥70APE PEC ∴∠=∠=︒PQ PE ⊥90EPQ ∴∠=︒90APE DPQ ∴∠+∠=︒90PEC DPQ ∴∠+∠=︒90907020DPQ PEC ∠=︒−∠=︒−︒=︒(2)当点Q 在边CD 上时,由(1)有,90PEC DPQ ∠+∠=︒,APE PEC ∠=∠∵4PEC DPQ ∠=∠,∴18DPQ ∠=︒,72PEC ∠=︒,72APE ∴∠=︒;当点Q 在CD 的延长线上时,如图,由(1)可知AD BC ∥,90EPQ ∠=︒90DPE DPQ ∴∠=︒−∠180DPE PEC ∠+∠=︒,APE PEC ∠=∠∵4PEC DPQ ∠=∠,904180DPQ DPQ ∴︒−∠+∠=︒解得:30DPQ ∠=︒4120APE PEC DPQ ∴∠=∠=∠=︒即APE ∠为72︒或120︒.(3)∵90D D '∠=∠=︒,90QD C PD E ∴'+∠='∠︒,∵40QD C '∠=︒,50PD E ∴='∠︒,由(1)可知AD BC ∥,90PEC DPQ ∠+∠=︒50DPD PD E ∴'=∠='∠︒由翻折可知1252DPQ DPD ∴∠=∠='︒9065PEC DPQ ∠=︒−∠=︒故答案为65︒.【点睛】本题考查了平行线的判定和性质,翻折的性质;解题的关键是证明AD BC ∥并灵活应用平行线的性质求解.。
课程名称学生姓名___________学科_________年级_____________教师姓名___________平台_________上课时间_____________1.通过轴对称的引入,理解轴对称的概念并熟练掌握性质。
2.通过对学生的动觉刺激,促进学生掌握掌握轴对称的概念、性质以及轴对称的应用;3.通过动觉类比法,引导学生建构学科知识体系,激发解决相关问题的潜能(25分钟)回顾旧知识探索新知识1.轴对称概念(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
这时,我们也说这个图形关于这条直线(成轴)对称。
(2)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
(4)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
2. 轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)关于某条直线成轴对称的两个图形是全等图形。
轴对称图形的性质:(轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3. 线段的垂直平分线的性质及判定(1)线段垂直平分线上的点与这条线段两个端点的距离相等。
如图①,若PC是线段AB的垂直平分线(AC=BC,PC⊥AB),则PA=PB(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
如图②,若PA=PB,则点P在线段AB的垂直平分线上。
任务一:轴对称的定义任务二:轴对称的性质任务三:线段的垂直平分线的性质及判定(15分钟)例1:在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.例2:一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17例3:如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°例4:如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.16例5:已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12例6:如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5D.6考点:________________考点:______________________考点:________________考点:________________考点:________________考点:________________例7:如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.例8:如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=°.例9.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.例10:如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.考点:________________考点:________________考点:________________考点:________________1、若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°点评_________________________________________________________________________2、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°点评_________________________________________________________________________3、如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°点评_________________________________________________________________________4、如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个点评_________________________________________________________________________5、如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°点评_________________________________________________________________________6、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③ B.①②④ C.①③D.①②③④点评_________________________________________________________________________7、如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.点评_________________________________________________________________________8、如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC 的周长分别是40cm,24cm,则AB=cm.点评_________________________________________________________________________9、如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.点评_________________________________________________________________________10、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.(5分钟)(20分钟)任务B:1、如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°2、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°3、如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°4、如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为.5、如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC=m2.任务B:6、如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.7、如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.8、如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.参考答案记忆再现1.A 2.A 3.C 4. A 5.C 6. B7. 87.8. 15.9. 证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°10. 证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).追踪演练1.D 2.C 3. A 4. A 5.B 6、D7、6. 8、16.9、52.10、解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.11、证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.任务B 1、B 2、A 3、D4、m+n.5、4.6、证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.7、解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°﹣40°)÷2=70°∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°;(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.8、证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.。