现代控制理论第9章动态规划法
- 格式:ppt
- 大小:1.08 MB
- 文档页数:44
华中科技大学现代控制理论--动态规划与离散系统最优控制Ch.7 最优控制原理目录 1/1 目录 7.1 最优控制概述 7.2 变分法 7.3 变分法在最优控制中的应用 7.4 极大值原理7.5 线性二次型最优控制 7.6 动态规划与离散系统最优控制 7.7 Matlab问题本章小结动态规划与离散系统最优控制 1/3 7.6 动态规划与离散系统最优控制前面讨论了连续系统最优控制问题的基于经典变分法和庞特里亚金的极大值原理的两种求解方法。
所谓连续系统,即系统方程是用线性或非线性微分方程描述的动态系统。
该类系统的控制问题是与传统的控制系统和控制元件的模拟式实现相适应的,如模拟式电子运算放大器件、模拟式自动化运算仪表、模拟式液压放大元件等。
随着计算机技术的发展及计算机控制技术的日益深入,离散系统的最优控制问题也必然成为最优控制中需深入探讨的控制问题,而且成为现代控制技术更为关注的问题。
动态规划与离散系统最优控制 2/3 离散系统的控制问题为人们所重视的原因有二。
1 有些连续系统的控制问题在应用计算机控制技术、数字控制技术时,通过采样后成为离散化系统, 如许多现代工业控制领域的实际计算机控制问题。
2 有些实际控制问题本身即为离散系统, 如某些经济计划系统、人口系统的时间坐标只能以小时、天或月等标记; 再如机床加工中心的时间坐标是以一个事件如零件加工活动的发生或结束为标志的。
动态规划与离散系统最优控制 3/3 本节将介绍解决离散系统最优控制的强有力工具--贝尔曼动态规划,以及线性离散系统的二次最优控制问题。
内容为最优性原理与离散系统的动态规划法线性离散系统的二次型最优控制最优性原理与离散系统的动态规划法 1/3 7.6.1 最优性原理与离散系统的动态规划法基于对多阶段决策过程的研究,贝尔曼在20世纪50年代首先提出了求解离散多阶段决策优化问题的动态规划法。
如今,这种决策优化方法在许多领域得到应用和发展,如在生产计划、资源配置、信息处理、模式识别等方面都有成功的应用。
动态规划法动态规划法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题性质和最优子结构性质的问题。
动态规划法通过把问题分解为更小的子问题,并将子问题的解存储起来,以避免重复计算,从而提高了算法的效率。
动态规划法有两个核心概念:状态和状态转移方程。
在动态规划过程中,我们需要定义状态,即问题的子问题解,以及状态之间的关系,即状态转移方程。
动态规划法的一般步骤如下:1. 定义问题的子问题:将问题划分为更小的子问题,并明确子问题的解是什么。
2. 定义状态:将问题的子问题解抽象为状态,即用一个变量或者数组表示子问题的解。
3. 定义状态转移方程:根据子问题的关系,定义状态之间的转移方程,即如何根据已知的子问题解计算出更大的问题的解。
4. 缓存子问题解:为了避免重复计算,我们需要将已经计算过的子问题解存储起来,以便后续使用。
5. 递推计算:通过状态转移方程和缓存的子问题解,逐步计算出更大的问题的解,直到计算出最终的问题解。
动态规划法的关键在于找到正确的状态转移方程和合理的存储子问题解的方式。
有些问题的状态转移方程比较容易找到,比如斐波那契数列,每个数都是前两个数的和;而有些问题的状态转移方程可能比较复杂,需要通过观察问题的特点和具体分析来确定。
动态规划法的时间复杂度通常为O(n),其中n 表示问题规模。
由于利用了子问题的解,避免了重复计算,因此动态规划法相对于暴力求解法能够大大提高算法的效率。
但是,动态规划法的空间复杂度通常较高,需要存储大量的子问题解,因此在实际应用中需要权衡时间和空间的消耗。
总的来说,动态规划法是一种非常灵活且强大的算法思想,能够解决许多复杂的问题,特别适用于具有重叠子问题性质和最优子结构性质的问题。
通过正确定义状态和状态转移方程,并结合缓存子问题解和递推计算,我们可以高效地求解这类问题,提高算法的效率。
最优控制问题的动态规划法动态规划法是一种常用的最优控制问题求解方法。
它通过将问题分解为子问题,并保存子问题的最优解,最终得到整体问题的最优解。
本文将介绍最优控制问题的动态规划法及其应用。
一、概述最优控制问题是指在给定控制目标和约束条件下,通过选择一组最优控制策略来实现最优控制目标。
动态规划法通过将问题分解为若干个阶段,并定义状态和决策变量,来描述问题的动态过程。
并且,动态规划法在求解过程中通过存储子问题的最优解,避免了重复计算,提高了计算效率。
二、最优控制问题的数学模型最优控制问题通常可以表示为一个关于状态和控制的动态系统。
假设系统的状态为$x(t)$,控制输入为$u(t)$,动态系统可以表示为:$$\dot{x}(t) = f(x(t), u(t))$$其中,$\dot{x}(t)$表示状态$x(t)$的变化率,$f$为状态方程。
此外,系统还有一个终止时间$T$,以及初始状态$x(0)$。
最优控制问题的目标是找到一个控制策略$u(t)$,使得系统在给定时间$T$内,从初始状态$x(0)$演化到最终状态$x(T)$,同时使得性能指标$J(x,u)$最小化。
性能指标通常表示为一个积分的形式:$$J(x,u) = \int_0^T L(x(t), u(t)) dt + \Phi(x(T))$$其中,$L$表示运动代价函数,$\Phi$表示终端代价函数。
三、最优控制问题的动态规划求解最优控制问题的动态规划求解包括两个主要步骤:状态方程的离散化和动态规划递推。
1. 状态方程的离散化将状态方程离散化可以得到状态转移方程。
一般来说,可以使用数值方法(如欧拉方法、龙格-库塔方法)对状态方程进行离散化。
通过选择适当的时间步长,可以平衡计算精度和计算效率。
2. 动态规划递推动态规划递推是最优控制问题的关键步骤。
假设状态函数$V(t,x)$表示从时刻$t$起,状态为$x$时的最优性能指标。
动态规划递推过程通常可以描述为以下几个步骤:(1)递推起点:确定最终时刻$T$时的值函数$V(T,x)$,通常可以根据终端代价函数$\Phi$直接得到。
最优控制问题的数值方法最优控制问题是应用数学中的一类重要问题,涉及到优化某些目标函数的控制策略。
这类问题在很多领域都有广泛的应用,如经济学、工程学、环境科学等。
为了求解最优控制问题,研究者们开发了多种数值方法,以提供高效准确的策略。
一、动态规划法动态规划法是求解最优控制问题中最常用的方法之一。
其基本思想是将问题划分为若干个阶段,在每个阶段选择最优的控制策略,以达到整体的最优目标。
动态规划法的核心是计算值函数或状态函数,通过递归的方式实现最优解的求解。
在动态规划法中,首先需要建立状态转移方程,描述状态之间的变化关系。
然后通过迭代求解,逐步更新值函数,直到收敛为止。
具体的计算方法可以根据不同的最优控制问题进行调整,以提高计算效率。
二、最优控制问题的间接方法除了动态规划法,最优控制问题还可以通过间接方法求解。
间接方法主要基于变分原理,通过构建哈密顿-雅可比-贝尔曼(HJB)方程来求解问题。
该方法将最优控制问题转化为一个偏微分方程,通过求解该方程得到最优解。
在应用最优控制问题的间接方法时,需要确定合适的控制参数,并在求解偏微分方程时进行迭代计算。
这种方法的优势在于能够处理一些非线性和约束等较为复杂的情况,但同时也带来了计算复杂度较高的问题。
三、最优控制问题的直接方法最优控制问题的直接方法是另一种常用的数值求解方法。
它直接构造控制策略的参数化形式,并通过参数调整来实现目标函数的最小化。
该方法需要事先构造一个合适的优化模型,并选择合适的优化算法进行求解。
在直接方法中,常用的优化算法有梯度下降法、共轭梯度法、牛顿法等。
通过迭代计算,优化参数逐步调整,直到达到最优解。
直接方法不需要建立状态函数或值函数,因此可以简化运算,但需要根据具体问题进行参数化建模和算法选择。
总结:在求解最优控制问题时,可以根据问题的特点选择适合的数值方法。
动态规划法适用于离散的最优控制问题,通过递归计算值函数实现最优策略的求解。
间接方法利用变分原理将问题转化为偏微分方程,并通过迭代计算获得最优解。
现代控制名词解释一最优控制:在可供选择的容许控制集U中,寻找一个控制矢量U(t)使受控系统在时间域[t1,t f]内,从初态X(t0)转移到终态X(t f)或目标集X(t f) ∈2f时,性能指标J取最小(大)值。
这时的控制U(t)称为最优控制U*(t)。
在U*(t)作用下状态方程的解成为最优轨线X*(t),沿最优轨线X*(t),使性能指标J所达到的最优值,称为最优指标J*。
二最优控制常用的几种方法:1古典变分法2 极小值原理3 动态规划三静态最优化问题:变量X与时间无关,或在所讨论的时间区间内为常量。
四动态最优化问题:受控对象是一个动态系统,所有变量都是时间的函数。
五泛函的概念:函数的函数,它的宗量不是独立的自变量,而是另一些独立的自变量的函数,则称该因变量是该宗量函数的泛函。
六所谓求最优控制U*(t),就是寻求使性能泛函J取极值时的控制U(t)。
七强极值:从零阶接近度的曲线中通过比较而得到的极值。
强极大值≥弱极大值弱极小值≤强极小值八设函极值定理:可微泛函J[y(x)]在y0(x)上达到极值,则y= y0(x)上的变分等于零,即j=0。
九动态规划法:动态规划的核心是“最优性原理”。
首先,将一个多步决策问题转化为一系列单步决策问题,然后从最后一步状态开始逆向递推到初始步状态为止的一套求解最优策略的完整方法。
十动态规划的特点:1 与穷举算法相比,可使计算大大减少 2 最优路线的整体决策时从终点开始,采用逆推方法,通过计算,比较各段性能指标逐段决策逐步延伸完成的3 动态规划法体现了多步最优决策的一个重要规律,即所谓的最优性原理。
十一动态规划模型的五个要素:1 阶段:按时间,空间分 2 状态:描述系统的特征3 决策:多个决策组成了一个决策链对应决策链 4 状态转移方程X k+1=f(X k,U k) 5 指标阶段指标L[X(k),U(k)], J*是泛函的最优解。