最优化:最速下降法和Newton法
- 格式:ppt
- 大小:611.50 KB
- 文档页数:34
Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。
无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。
而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。
本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。
一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。
其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。
然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。
2. 共轭梯度法共轭梯度法是一种改进的最速下降法。
它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。
相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。
3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。
它通过构建并求解特定的二次逼近模型来求解无约束问题。
然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。
二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。
它通过在可行域内进行边界移动来寻找最优解。
然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。
2. 内点法内点法是一种改进的线性规划问题求解方法。
与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。
内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。
三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。
它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。
信赖域算法既考虑了收敛速度,又保持了数值稳定性。
2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。
它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。
遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。
最速下降法与牛顿法及其区别摘要:无约束优化方法是优化技术中极为重要和基本内容之一。
它不仅可以直接用来求解无约束优化问题,而且很多约束优化问题也常将其转化为无约束优化问题,然后用无约束优化方法来求解。
最速下降法和牛顿法是比较常见的求解无约束问题的最优化方法,这两种算法作为基本算法,在最优化方法中占有重要的地位。
其中最速下降法又称梯度法,其优点是工作量少,存储变量较少,初始点要求不高;缺点是收敛慢,效率低。
牛顿法的优点是收敛速度快;缺点是对初始点要求严格,方向构造困难,计算复杂且占用内存较大。
同时,这两种算法的理论和方法渗透到许多方面,特别是在军事、经济、管理、生产过程自动化、工程设计和产品优化设计等方面都有着重要的应用。
因此,研究最速下降法和牛顿法的原理及其算法对我们有着及其重要的意义。
关键字:无约束优化最速下降法牛顿法Abstract: unconstrained optimization method is to optimize the technology is extremely important and basic content of. It not only can be directly used to solve unconstrained optimization problems, and a lot of constrained optimization problems are often transformed into unconstrained optimization problem, and then use the unconstrained optimization methods to solve. The steepest descent method and Newton-Raphson method is relatively common in the unconstrained problem optimization method, these two kinds of algorithm as the basic algorithm, the optimization method plays an important role in. One of the steepest descent method also known as gradient method, its advantages are less workload, storage variable is less, the initial requirements is not high; drawback is the slow convergence, low efficiency. Newtonian method has the advantages of fast convergence speed; drawback is the initial point of strict construction difficulties, directions, complicated calculation and larger memory. At the same time, these two kinds of algorithm theory and methods into many aspects, especially in the military, economic, management, production process automation, engineering design and product optimization design has important applications. Therefore, to study the steepest descent method and Newton-Raphson method principle and algorithm for us with its important significance.Keywords: unconstrained optimization steepest descent method一、算法的基本原理1.1 最速下降法的基本原理在基本迭代公式k k k k P t X X +=+1中,每次迭代搜索方向k P 取为目标函数)(X f 的负梯度方向,即)(k k X f P -∇=,而每次迭代的步长k t 取为最优步长,由此确定的算法称为最速下降法。
1、最速下降法function f=fun_obj(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;function g=fun_grad(x)g=[2*x(1)-400*x(1)*(-x(1)^2+x(2))-2,-200*x(1)^2+200*x(2)];% 用armijo搜索确定步长,其中xk是当前迭代点,rho,sigma为armijo参数,gk为当前下降方向function mk=armijo(xk,rho,sigma,gk )%assert(rho>0&&rho<1); % 限制Armijo参数rho在(0,1)之间%assert(sigma>0&&sigma<0.5); % 限制Armijo参数sigma在(0,0.5)之间mk=0;max_mk=100; % 最大迭代次数while mk<=max_mkx=xk+rho^mk*gk; % 求解x(k+1)iffeval('fun_obj',x)<=feval('fun_obj',xk)-sigma*rho^mk*(fun_grad(xk))*g k' %终止条件break;endmk=mk+1; % 更新迭代endfunction [xk,fk,k]=steepestmain(x0)max_iter=5000; % max number of iterationsEPS=1e-6; % threshold of gradient normrho=0.8;sigma=0.59; % Armijo parametersk=0;xk=x0; % initializationwhile k<max_iterdk=fun_grad(xk);d=-dk; % search directionif norm(dk)<EPS %precisionbreak;endmk=armijo(xk,rho,sigma,d); %armijo line searchxk=xk+rho^mk*d; %updatefk=fun_obj(xk);k=k+1;endx0=[-1,2];[xk,fk,k]=steepestmain(x0);2、Newton法function f=fun_obj(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;function g=fun_grad(x)g=[2*x(1)-400*x(1)*(-x(1)^2+x(2))-2,-200*x(1)^2+200*x(2)];function He=Hess(x)He=[1200*x(1)^2-400*x(2)+2,-400*x(1);-400*x(1),200];% 用armijo搜索确定步长,其中xk是当前迭代点,rho,sigma为armijo参数,gk为当前下降方向function mk=armijo(xk,rho,sigma,gk )%assert(rho>0&&rho<1); % 限制Armijo参数rho在(0,1)之间%assert(sigma>0&&sigma<0.5); % 限制Armijo参数sigma在(0,0.5)之间mk=0;max_mk=100; % 最大迭代次数while mk<=max_mkx=xk+rho^mk*gk; % 求解x(k+1)iffeval('fun_obj',x)<=feval('fun_obj',xk)-sigma*rho^mk*(fun_grad(xk))*g k' %终止条件break;endmk=mk+1; % 更新迭代endfunction [xk,fk,k]=Newtonmain(x0)max_iter=5000; % 最大迭代次数EPS=1e-6; % 精度rho=1;sigma=1e-4; % Armijo 参数k=0;xk=x0; % 初值while k<max_iter % 迭代次数超过最大迭代次数时跳出循环k=k+1;dk=fun_grad(xk); % x(k)处的梯度H=Hess(xk); % x(k)处的Hessian矩阵d=-H\dk'; % x(k)处的搜索方向if norm(dk)<EPS % 终止条件break;endmk=armijo(xk,rho,sigma,d'); % 利用armijo搜索确定步长xk=xk+rho^mk*d'; % 计算x(k+1)的值fk=fun_obj(xk); % 计算x(k+1)处函数的值endx0=[1.2,1.2];[xk,fk,k]=Newtonmain(x0);3、Newton-最速下降法function f=fun_obj(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;function g=fun_grad(x)g=[2*x(1)-400*x(1)*(-x(1)^2+x(2))-2,-200*x(1)^2+200*x(2)];function He=Hess(x)He=[1200*x(1)^2-400*x(2)+2,-400*x(1);-400*x(1),200];% 用armijo搜索确定步长,其中xk是当前迭代点,rho,sigma为armijo参数,gk为当前下降方向function mk=armijo(xk,rho,sigma,gk )%assert(rho>0&&rho<1); % 限制Armijo参数rho在(0,1)之间%assert(sigma>0&&sigma<0.5); % 限制Armijo参数sigma在(0,0.5)之间mk=0;max_mk=100; % 最大迭代次数while mk<=max_mkx=xk+rho^mk*gk; % 求解x(k+1)iffeval('fun_obj',x)<=feval('fun_obj',xk)-sigma*rho^mk*(fun_grad(xk))*g k' %终止条件break;endmk=mk+1; % 更新迭代endfunction [xk,fk,k]=newton_steepest(x0)max_iter=5000; % 最大迭代次数EPS=1e-6; % 精度rho=1;sigma=1e-4; % Armijo 参数 rho=0.8;sigma=0.59;k=0;xk=x0; % 初值while(k<max_iter)k=k+1;dk=fun_grad(xk); % x(k)处的梯度,注意dk为行向量G=Hess(xk); % x(k)处的Hessian矩阵d=-G\dk'; % x(k)处的搜索方向,注意此时d为列向量if norm(dk)<EPS % x(k)处的搜索方向break;end%% 判断d是否为下降方向if d'*dk'<0 % 若d'*dk<0,则d为下降方向d=d;else% 若d'*dk>=0,则d不为下降方向,令下降方向为负梯度方向 d=-dk';endmk=armijo(xk,rho,sigma,d'); % 利用armijo搜索确定步长 xk=xk+rho^mk*d'; % 计算x(k+1)的值fk=fun_obj(xk); % 计算x(k+1)处函数的值endx0=rand(1,2000);[xk,fk,k]=newton_steepest(x0);。
机器学习算法系列最速下降法牛顿法拟牛顿法最速下降法(Gradient Descent)最速下降法是一种常用的优化算法,用于求解无约束的最小化问题。
其原理是通过不断迭代更新参数的方式来逼近最优解。
在最速下降法中,每次迭代的方向是当前位置的负梯度方向,即沿着目标函数下降最快的方向前进。
具体地,对于目标函数f(x),在当前位置x_k处的梯度为g_k=▽f(x_k),则下一次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-α*g_k其中,α 是一个称为学习率(learning rate)的参数,用于控制每次迭代的步长。
最速下降法的优点是简单易实现,收敛速度较快。
然而,它也有一些缺点。
首先,最速下降法的收敛速度依赖于学习率的选择,过小的学习率会导致收敛速度过慢,而过大的学习率可能会导致跳过最优解。
其次,最速下降法通常会在目标函数呈现弯曲或者高度相关的情况下表现不佳,很难快速收敛到最优解。
牛顿法(Newton's Method)牛顿法是一种通过二阶导数信息来优化的算法,可以更快地收敛到目标函数的最优解。
在牛顿法中,每次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-(H_k)^{-1}*▽f(x_k)其中,H_k是目标函数f(x)在当前位置x_k处的黑塞矩阵。
黑塞矩阵描述了目标函数的二阶导数信息,可以帮助更准确地估计参数的更新方向。
牛顿法的优点是收敛速度较快,特别是对于目标函数呈现弯曲或者高度相关的情况下,相较于最速下降法可以更快地达到最优解。
然而,牛顿法也有一些缺点。
首先,计算黑塞矩阵的代价较高,尤其是当参数较多时。
其次,黑塞矩阵可能不可逆或者计算代价较大,这时可以通过使用拟牛顿法来避免。
拟牛顿法(Quasi-Newton Method)拟牛顿法是一类基于牛顿法的优化算法,通过估计黑塞矩阵的逆来逼近最优解,从而避免了计算黑塞矩阵的代价较高的问题。
在拟牛顿法中,每次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-B_k*▽f(x_k)其中,B_k是一个对黑塞矩阵逆的估计。