当前位置:文档之家› 原子发射光谱分析

原子发射光谱分析

原子发射光谱分析

练习题

一、判断题

1、原子光谱来源于原子的外层电子在不同能级之间的跃迁。()

2、高压火花光源与其它电弧光源比较,使分析具有更高的灵敏度。()

3、等离子体是一种电离的气体,它是由正离子和和负离子组成的。()

4、进行光谱定性全分析时,宜采用铁光谱比较法。()

二、选择题

1、矿石粉末的定性分析,一般选用下列哪种光源为好:

(A)交流电弧(B)直流电弧(C)高压火花(D)等离子体光源

2、下列四个激发光源中背景大不宜作痕量元素分析的是:

(A)直流电弧(B)等离子体(C)低压交流电弧(D)高压火花

3、原子发射光谱定量分析常用内标法,其目的是为了:

(A)提高灵敏度(B)提高准确度(C)减少化学干扰(D)减少背景

4、在原子发射光谱定量分析中,内标元素与分析元素的关系是:

(A)激发电位相近(B)电离电位相近(C)蒸发行为相近(D)熔点相近5、下列哪一种说法是正确的?

(A)一个元素的“最后线”就是这个元素的“最灵敏线”。

(B)一个元素的“最后线”往往也就是“最灵敏线”,但不一定是“最强线”。

(C)“最后线”就是这个元素的“最强线”。

(D)“灵敏线”就是这个元素的“最强线”。

(E)“最后线”就是这个元素的“最强线”,也就是“最灵敏线”。

三、简答题

1、解释下列名词。

灵敏线,最后线,共振线,第一共振线,自吸,自蚀,分析线,内标线,均称线对,黑度

2、原子发射光谱分析所用仪器装置由哪几部分组成,其主要作用是什么?

3、简述等离子体光源(ICP)的优点及应用。

4、光谱定性分析依据是什么?它常用的方法是什么?

四、计算题

1、Au的激发电位是5.10eV,计算其波长,波数和频率。

2、在两条铁谱线λ1=304.278nm和λ2=304.508nm之间有一条未知谱线,测得未知谱线与

λ1的距离为2.3nm,计算未知谱线的波长。

3、用发射光谱测定不锈钢中的Cr。用铁作内标,三个标样含Cr的浓度及测的相应的强度

未知试样的强度比为0.685,计算不锈钢试样中Cr的含量。

4、用等离子体发射光谱的标准加入法测定人体血液中的Li。100μL的血液稀释至1ml,在纪录仪上测得的发射信号为6.7cm。同样量的血液加入10μL 0.010mol.L-1的LiNO3,测得的信号为14.6cm。假定发射信号与Li的浓度呈线性关系,计算在血液中Li的浓度。(以mmol.L-1表示)

原子吸收光谱仪

原子吸收光谱仪高效、精确、可靠 Agilent 200 系列原子吸收系统

2Agilent 240Z AA Agilent 240FS AA 原子吸收解决方案系列 –A gilent 240 AA 将灵活性和硬件的可靠性相结合,为预算有限的用户提供高性价比的高性能火焰/石墨炉/氢化物分析原子吸收仪器 –A gilent 240FS/280FS AA 是快速高效的火焰原子吸收系统,其快速序列式操作可将样品通量增加一倍,从而大幅降低运行成本。它们可以轻松地进行多元素分析,是食品与农业或任何高通量实验室的理想选择 –A gilent 240Z/280Z AA 塞曼石墨炉原子吸收 (GFAA) 系统高效而精确,提供优异的石墨炉性能和准确的背景校正 –A gilent Duo系统可以成倍提高您的工作效率,它能够真正实现火焰和石墨炉同时分析,没有转换延时 安捷伦 AA 系列具有高效、易用和极其可靠的特性。该系列产品具有适用于任何分析所需要的高性能,并且同样适用于重视可靠性和易用性的常规实验室。 高效、精确、可靠

3 Agilent 280FS AA Agilent 280Z AA 满足您的应用需求 安捷伦始终致力于为您的应用提供有效的解决方案。我们的各种技术、平台和专家指导可帮助您 获得成功。 FS 火焰原子吸收系统 240FS/280FS AA + SIPS 20铁、钾、镁和钠FAME (脂肪酸甲酯) 中的钠和钾(SIPS 配件提供自动校准常量元素 银和铂族元素240Z/280Z AA 纯工艺用水中的钠、钙和硅元素 铅、钴和镍 水和土壤中的有毒元素 (US EPA 方法 200.9)电子产品与塑料产品中的铅、镉和铬 (WEEE/RoHs)

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

第七章 原子发射光谱分析 习题

第七章原子发射光谱分析(网上习题) 一、选择题 1. 原子发射光谱是由下列哪种跃迁产生的? ( ) (1) 辐射能使气态原子外层电子激发 (2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发 (4) 电热能使气态原子外层电子激发答案:(4) 2.发射光谱定量分析选用的“分析线对”应是这样的一对线() (1) 波长不一定接近,但激发电位要相近 (2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近 (4) 波长和激发电位都不一定接近答案:(3) 3.发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) 答案:(4) (1) 直流电弧 (2) 低压交流电弧 (3) 电火花 (4) 高频电感耦合等离子体 4. 电子能级差愈小, 跃迁时发射光子的() (1) 能量越大 (2) 波长越长 (3) 波数越大 (4) 频率越高 答案:(2) 5.下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度?()

(1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 6.下面几种常用激发光源中, 分析灵敏度最高的是() (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 7.下面几种常用的激发光源中, 最稳定的是() (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 8.下面几种常用的激发光源中, 背景最小的是 ( ) (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(1) 9.下面几种常用的激发光源中, 激发温度最高的是 ( ) (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(3) 10.用原子发射光谱法直接分析海水中重金属元素时, 应采用的光源是 ( )

原子吸收光谱仪品牌比较

原子吸收光谱仪品牌比较-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的 AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001则是以火焰原子吸收分析法为主、兼有流动注射氢化物原子吸收法(有内置流动注射氢化物发生器)、石墨炉原子吸收法、火焰发射法、可见/紫外溶液分子吸收法、流动注射在线富集法等多种功能的原子吸收光谱仪。价格方面,单火焰的国产原子吸收仪器的成交价格大致在 6~9万人民币,如果再配置石墨炉原子化器的话,成交价格则在10~15万人民币左右。(依具体配置不同而定 2

光谱分析仪多少钱

光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。它符合郎珀-比尔定律A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下光谱分析仪多少钱,希望可以帮助到您! 光谱分析仪是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中

外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。 合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行

仪器分析笔记《原子吸收光谱法》..

第四章原子吸收光谱法 ——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS)概述 4.1.1 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 ?灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达10—9 g /mL (某些元素可更高) ?几乎不受温度影响:由波兹曼分布公式 00 q E q q KT N g e N g - =知,激发态原子浓度与基态原子浓度的比 值 q N N 随T↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0 1% q N N =。也就是说, q N随温度而强烈变化,而 N却式中保持不变,其浓度几乎完全等于原子的 总浓度。 ?较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。RSD 1~2%,相对误差0.1~0.5%。 ?选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 ?应用范围广:可测定70多种元素(各种样品中)。 ?缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长285.2nm特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 ?确定待测元素。 ?选择该元素相应锐线光源,发射出特征谱线。 ?试样在原子化器中被蒸发、解离成气态基态原子。 ?特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 ?根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点 ①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

原子吸收光谱分析仪器原理及组成

原子吸收光谱分析仪器原理及组成 摘要 论述了原子吸收光谱分析的基本原理及仪器的主要构成,仪器主要有5部分组成:(1)光源:发射待测元素的锐线光谱:(2)原子化器:产生待测的原子蒸汽;(3)光禄系统:分光、分出共振线波长;(4)电路系统:包括信号变成电信号的转换器.放大电路.计算处理等电路;(5)显示系统等,旨在该类仪器用户逐 渐增多的情况下,获得交流和提高。 原子吸收光谱分析仪器具有灵敏度高(町达到10一~10 g/L)重复性和选择性好.操作简便、快速.结果准确、可靠。检测时样品用量少(在几微升至儿十微升之间),测量范同广(几乎能用来分析所有的金属元素和类金属元素元件)等优点。其可应用于冶金、化工、地质、农业及医药卫生等许多方面;在环境监测、食品卫生和生物机体内微量金属元素的测定以及医学和生物化学检验等应用也口益广泛。 人体中含有许多对维持正常生理过程有审要意义的金属元素,如钾、钠、钙、镁、铁、铜、锌、锰、钼和钴等。人体的血液、汗液、尿液、头发及机体组织。由于受环境和饮食污染会引进体内铅、汞、镉和砷等有害元素。埘这些金属元素的分析结果,可以反映机体内的生理过程及受环境污染中毒的情况。原子吸收光谱分析仪器既可用于血液、尿液、粪便及生物组织中微量元素的分析.也可对内脏、毛发、骨骼等 经一定处理后,进行分析测定 1 原子吸收光谱分析方法的基本原理 在自然界中.一切物质的分子均由原子组成,而原于是由一个原子核和核外电子构成。原子核内有中子和质子,质子带正电.核外电予带负电;其电子的数日和构型决定了该元素的物理和化学性质。电了按一定的轨道绕核旋转;根据电子轨道离核的距离,有不同的能量级,可分为不同的壳层。每一壳层所允许的电子数是一定的。当原子处于正常状态时.每个电子趋向占有低能量的能级,这时原子所处的状态叫基态(E0)。在热能、电能或光能的作用下,原子中的电子吸收一定的能量.处于低能态的电子被激发跃迁到较高的能态。原子此时的状态叫激发态(Eq)。原子从基态向激发态跃迁的过程是吸能的过程。处于激发态的原子是不稳定的,一般在10-10 ~-10-8s 内就要返回到基态(E0)或较低的激发态(Ep )。此时,原子释放出多余的能量,辐射出光子束,其辐射能量的大小由下列公式表示:AE=Eq-Ep(或E0)=hf=hc/λ (1)式中:h——普朗克常数为6.6234x10-27erg.s;f和λ ——电子从Eq能级返回到Ep(或E0)能级时所发射光谱的频率和波长;C——光速。Eq 、Ep 或E0。值的大小与原子结构有关,不同元素,其Eq、Ep 和E0。不相同,一般元素的原子只能发射由其Eq Ep 或Eo。决定的特定波长或频率的光,即:f=Eq。一E p(或E0)/h (2)每种物质的原子都具有特定的原子结构和外层电子排列,因此不同的原子被激发后.其电子具有不同的跃迁。能辐射出不同波长光,就是说.每种元素都有其特征的光谱线。由于谱线的强度与元素的含量成正比,以此可测定元素的含量,作定量分析。

原子发射光谱分析习题

原子发射光谱分析习题 一、简答题 1. 试从电极头温度、弧焰温度、稳定性及主要用途比较三种常用光源(直流、交流电弧,高压火花)的性能。 2.摄谱仪由哪几部分构成?各组成部件的主要作用是什么? 3.简述ICP的形成原理及其特点。 4. 何谓元素的共振线、灵敏线、最后线、分析线,它们之间有何联系? 5. 光谱定性分析的基本原理是什么?进行光谱定性分析时可以有哪几种方法?说明各个方法的基本原理和使用场合。 6. 结合实验说明进行光谱定性分析的过程。 7. 光谱定性分析摄谱时,为什么要使用哈特曼光阑?为什么要同时摄取铁光谱? 8. 光谱定量分析的依据是什么?为什么要采用内标?简述内标法的原理。内标元素和分析线对应具备哪些条件?为什么? 9.何谓三标准试样法? 10. 试述光谱半定量分析的基本原理,如何进行? 二、选择题 1. 原子发射光谱的光源中,火花光源的蒸发温度(T a )比直流电弧的蒸发温度 (T b ) ( ) A T a = T b B T a < T b C T a > T b D 无法确定 2. 光电直读光谱仪中,使用的传感器是 ( ) A 感光板 B 光电倍增管 C 两者均可 D 3. 光电直读光谱仪中,若光源为ICP,测定时的试样是 ( )

A 固体 B 粉末 C 溶液 D 4. 用摄谱法进行元素定量分析时,宜用感光板乳剂的 ( ) A 反衬度小 B 展度小 C 反衬度大 D 5. 在进行光谱定量分析时,狭缝宽度宜 ( ) A 大 B 小 C 大小无关 D 6. 用摄谱法进行元素定性分析时,测量感光板上的光谱图采用 ( ) A 光度计 B 测微光度计 C 映谱仪 D 7. 在原子发射光谱的光源中,激发温度最高的是 ( ) A 交流电弧 B 火花 C ICP D 8. 在摄谱仪中,使用的传感器是 ( ) A 光电倍增管 B 感光板 C 两者均可 D 9. 用摄谱法进行元素定量分析时,分析线对应的黑度一定要落在感光板乳剂特性曲线的 ( ) A 惰延量内 B 展度外 C 展度内 D 10. 在进行光谱定性分析时,狭缝宽度宜 ( ) A 小 B 大 C 大小无关 D 11. 用摄谱法进行元素定量分析时,测量感光板上的光谱图采用 ( ) A 光度计 B 仪映谱 C 测微光度计 D 12. 在原子发射光谱分析法中,选择激发电位相近的分析线对是为了 ( ) A 减小基体效应 B 提高激发几率 C 消除弧温的影 响 D 13. 矿石粉末的定性分析,一般选用下列哪种光源 ( )

原子吸收光谱分析

第8章原子吸收光谱分析 一、选择题 1. 空心阴极灯的主要操作参数是灯电流 2.在原子吸收测量中,遇到了光源发射线强度很高,测量噪音很小,但吸收值很低,难以读数的情况下,采取了下列一些措施,指出下列哪种措施对改善该种情况是不适当的改变灯电流B 调节燃烧器高度C 扩展读数标尺D 增加狭缝宽度 3.原子吸收分析对光源进行调制, 主要是为了消除原子化器火焰的干扰 4. 影响原子吸收线宽度的最主要因素是多普勒变宽 5. 原子吸收法测定钙时, 加入EDTA是为了消除下述哪种物质的干扰? 磷酸 6. 空心阴极灯中对发射线半宽度影响最大的因素是灯电流 7. 在原子吸收分析中,如怀疑存在化学干扰,例如采取下列一些补救措施,指出哪种措施不适当A加入释放剂B 加入保护剂C 提高火焰温度改变光谱通带 8.在原子吸收法中, 能够导致谱线峰值产生位移和轮廓不对称的变宽应是压力变宽 9. 在原子吸收光谱分析中,若组分较复杂且被测组分含量较低时,为了简便准确地进行分析,最好选择何种方法进行分析?标准加入法 10.石墨炉原子化的升温程序如下:干燥、灰化、原子化和净化 11. 原子吸收光谱法测定试样中的钾元素含量,通常需加入适量的钠盐, 这里钠盐被称为消电离剂 12. 空心阴极灯内充的气体是少量的氖或氩等惰性气体 13. 在火焰原子吸收光谱法中, 测定下述哪种元素需采用乙炔--氧化亚氮火焰钽 14. 在原子吸收光谱法分析中, 能使吸光度值增加而产生正误差的干扰因素是背景干扰 15. 原子吸收分光光度计中常用的检测器是光电倍增管 第3章高效液相色谱分析 一、选择题 1.液相色谱适宜的分析对象是高沸点大分子有机化合物 2.在液相色谱中,梯度洗脱适用于分离极性变化范围宽的试样 3.吸附作用在下面哪种色谱方法中起主要作用液一固色谱法 4.在液相色谱中,提高色谱柱柱效的最有效途径是减小填料粒度 5.液相色谱中通用型检测器是示差折光检测器 6.高压、高效、高速是现代液相色谱的特点,采用高压主要是由于采用了细粒度固定相所致 7.在液相色谱中,下列检测器可在获得色谱流出曲线的基础上,同时获得被分离组分的三维彩色图形的光电二极管阵列检测器 8.液相色谱中不影响色谱峰扩展的因素是涡流扩散项、分子扩散、项传质扩散项、柱压效应 9.在液相色谱中,常用作固定相又可用作键合相基体的物质是硅胶 10.样品中各组分的出柱顺序与流动相的性质无关的色谱是凝胶色谱 11.在液相色谱中,固体吸附剂适用于分离异构体 12.水在下述色谱中,洗脱能力最弱(作为底剂)的是反相色谱法 13.在下列方法中,组分的纵向扩散可忽略不计的是高效液相色谱法 14. 下列用于高效液相色谱的检测器示差折光检测器检测器不能使用梯度洗脱。 15. 高效液相色谱仪与气相色谱仪比较增加了梯度淋洗装置

第四章原子吸收光谱法与-原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法 4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比. 解: Mg原子的电子跃迁由31S0→31P1 ,则 g i/g0=3 跃迁时共振吸收波长λ=285.21nm ΔEi=h×c/λ =(6.63×10-34)×(3×108)÷(285.31×10-9) =6.97×10-19J 激发态和基态原子数之比: Ni/N0=(g i/g0)×e-ΔEi/kT 其中: g i/g0=3 ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕 代入上式得: Ni/N0=5.0×10-9 4-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施? 答: 因为: S1 =W1/D = (251.61-251.43)/1.6 = 0.11mm S2 =W2/D =(251.92-251.61)/1.6 =0.19mm S1<S2 所以应采用0.11mm的狭缝. 4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。 答: 原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。 原子吸收光谱与原子发射光谱的不同在于: 原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。

原子发射光谱原理及应用

原子发射光谱分析法一、 一、基本原理 基本原理 二、装置与仪器 三、等离子体发射光谱仪 四、 四、定性定量分析方法 定性定量分析方法 atomic emission spectrometry,AES 2009-10-23

第一节基本原理 一、概述 generalization 原子发射光谱分析法(atomic emission spectroscopy ,AES):元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 2009-10-23

2009-10-23 ?1859年,基尔霍夫(Kirchhoff Kirchhoff G R) G R)、本生(Bunsen R W Bunsen R W) )?研制第一台用于光谱分析的分光镜,实 现了光谱检验;

2009-10-23 ?1930年以后,建立了光谱定量分析方法; ?原子光谱 <> 原子结构 <> 原子结构理论<> 新元素 ?在原子吸收光谱分析法建立后,其在分析化学中的作用下降,新光源(ICP)、新仪器的出现,作用加强。

原子发射光谱分析法的特点: (1)可多元素同时检测 各元素同时发射各自的特征光谱; (2)分析速度快 试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高 各元素具有不同的特征光谱; 2009-10-23

2009-10-23 ?(4)检出限较低 10~0.1μg ?g-1(一般光源);n g ?g-1(ICP ) ?(5)准确度较高 5%~10% 10% ((一般光源); < <1% (1% (1% (ICP) ICP) ;? (6)(6)ICP-AES ICP-AES 性能优越 线性范围4~6数量级,可测高、中、低不同含量试样; ?缺点:非金属元素不能检测或灵敏度低。

原子发射光谱分析

练习题 一、判断题 1、原子光谱来源于原子的外层电子在不同能级之间的跃迁。() 2、高压火花光源与其它电弧光源比较,使分析具有更高的灵敏度。() 3、等离子体是一种电离的气体,它是由正离子和和负离子组成的。() 4、进行光谱定性全分析时,宜采用铁光谱比较法。() 二、选择题 1、矿石粉末的定性分析,一般选用下列哪种光源为好: (A)交流电弧(B)直流电弧(C)高压火花(D)等离子体光源 2、下列四个激发光源中背景大不宜作痕量元素分析的是: (A)直流电弧(B)等离子体(C)低压交流电弧(D)高压火花 3、原子发射光谱定量分析常用内标法,其目的是为了: (A)提高灵敏度(B)提高准确度(C)减少化学干扰(D)减少背景 4、在原子发射光谱定量分析中,内标元素与分析元素的关系是: (A)激发电位相近(B)电离电位相近(C)蒸发行为相近(D)熔点相近5、下列哪一种说法是正确的? (A)一个元素的“最后线”就是这个元素的“最灵敏线”。 (B)一个元素的“最后线”往往也就是“最灵敏线”,但不一定是“最强线”。 (C)“最后线”就是这个元素的“最强线”。 (D)“灵敏线”就是这个元素的“最强线”。 (E)“最后线”就是这个元素的“最强线”,也就是“最灵敏线”。 三、简答题 1、解释下列名词。 灵敏线,最后线,共振线,第一共振线,自吸,自蚀,分析线,内标线,均称线对,黑度 2、原子发射光谱分析所用仪器装置由哪几部分组成,其主要作用是什么? 3、简述等离子体光源(ICP)的优点及应用。 4、光谱定性分析依据是什么?它常用的方法是什么? 四、计算题 1、Au的激发电位是5.10eV,计算其波长,波数和频率。 2、在两条铁谱线λ1=304.278nm和λ2=304.508nm之间有一条未知谱线,测得未知谱线与 λ1的距离为2.3nm,计算未知谱线的波长。 3、用发射光谱测定不锈钢中的Cr。用铁作内标,三个标样含Cr的浓度及测的相应的强度 未知试样的强度比为0.685,计算不锈钢试样中Cr的含量。 4、用等离子体发射光谱的标准加入法测定人体血液中的Li。100μL的血液稀释至1ml,在纪录仪上测得的发射信号为6.7cm。同样量的血液加入10μL 0.010mol.L-1的LiNO3,测得的信号为14.6cm。假定发射信号与Li的浓度呈线性关系,计算在血液中Li的浓度。(以mmol.L-1表示)

原子荧光复习题

原子荧光法复习题 一、填空: 1.原子荧光分析中,荧光类型有、、、热助线荧光和敏化原子荧光等。 答案:共振荧光、直跃线荧光、阶跃线荧光 2.原子荧光光谱仪中,目前有和两类仪器。 答案:色散系统、非色散系统 3.七十年代末,由于、及各种高效原子化器的使用,AFS技术得到了较大发展。 答案:高强度空心阴极灯、激光器 4.荧光猝灭的程度与及有关。 答案:被测元素、猝灭剂的种类 5.在原子荧光分析中,原子浓度较高时容易发生,它可使荧光信号变化和荧光谱线,从而峰值强度。 答案:自吸、变宽、减少 6.在原子荧光分析中,无论是连续光源或者线光源,光源强度越高,其测量线性工作范围。答案:越宽 7.原子荧光光谱仪的检测部分主要包括、以及放大系统和输出装置。 答案:分光系统、光电转换装置 8.在原子荧光分析中,石英原子化器炉温过高会使降低、增高,但较高的炉温又有利于消除干扰,所以应根据实际情况确定原子化温度。 答案:灵敏度、噪声、气相 9.在原子荧光分析中,测定灵敏度随观测高度增加而,观测高度太低时,会增加,观测高度太高时,会使和下降。 答案:降低、噪声、灵敏度、精度 10.原子荧光光谱仪中,以供电的空心阴极灯,可以使增强几十至几百倍。 答案:脉冲、谱线 11.在原子荧光分析的实际工作中,会出现空白大于样品强度的情况,这是因为空白溶液中不存在的原因。 答案:荧光、干扰 12.在原子荧光分析中,样品分析时,标准溶液的应和样品完全一致,同时必须做。 答案:介质、空白 13.在原子荧光分析中,当光电倍增管的负高压增加时,和水平同时增加,当灵敏度可以满足要求时,应尽量采用的负高压。 答案:信号、噪声、较低 14. 原子荧光光谱仪一般由四部分组成:、、和。 答案:光源(激发光源)、原子化器、光学系统(单色仪)、检测器 15.石英原子化器的外屏蔽气是用以防止周围的进入,产生,以保证较高及稳定的。

光谱分析仪品牌

根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器。经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下光谱分析仪品牌,希望可以帮助到您! 原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种

过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。 合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行分析方案。公司产品遍布全国各省市地区,出口俄罗斯、蒙古国、吉尔吉斯斯坦、巴基斯坦、缅甸、越南、南非等数十个国家。

原子荧光光谱

第4章原子荧光光谱分析 4.1 原子荧光光谱的产生和特性 4.2 原子荧光光谱分析的定量关系 4.3 原子荧光光谱仪器 4.4 蒸气发生样品导入技术 4.5 蒸气发生-原子荧光光谱分析技术4.6 蒸气发生-原子荧光光谱分析的干扰4.7 蒸气发生-原子荧光测量要点 4.8 非蒸气发生原子荧光光谱分析技术

4.1 原子荧光光谱的产生和特性 原子荧光光谱分析法是上世纪60年代中期发展起来的一种新的痕量分析方法。 原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。

气态自由原子处于基态,当吸收激发光源发出的一定频率的辐射能量后,原子由基态跃迁至高能态,即处于激发状态。处于激发态的原子很不稳定,在极短的时间(≈10-8s)内即会自发地释放能量返回到基态。若以辐射的形式释放能量,则所发射的特征光即为原子荧光。 原子荧光是光致发光,所以当激发光源停止照射之后,再发射过程立即停止。

4.1.2.1 共振荧光 共振荧光是指激发波长与发射波长相同的荧光。 由于原子的激发态和基态之间共振跃迁的概率一般比其他跃迁的概率大得多,所以共振跃迁产生的谱线是最有用的分析谱线。 当原子处于由热激发产生的较低的亚稳能级,则共振荧光也可从亚稳能级上产生:称为热助共振荧光。

4.1.2.2 非共振荧光 非共振荧光是指激发波长与发射波长不同的荧光。 (1)斯托克斯荧光 当发射荧光波长比激发光波长长时,即为斯托克斯荧光。 ①直跃线荧光 直跃线荧光是指激发谱线和荧光谱线的高能级相同的荧光。原子受到光辐射激发,从基态跃迁到较高的激发态,然后直接跃迁到能量高于基态的亚稳态能级,发射出波长比激发光波长要长的原子荧光。 类似的,当原子处于由热激发产生的较低亚稳能级,再通过吸收非共振线而激发的直跃线荧光称为热助直跃线荧光。 ②阶跃线荧光 阶跃线荧光是指当激发谱线和发射谱线的高能级不同时所产生的荧光,也分为正常阶跃线荧光和热助阶跃线荧光两类。

原子吸收光谱分析仪器原理及组成

原子吸收光谱分析仪器原理及组成 冯念伦孙铁军刘玲铃 (山东省立医院济南市250021) 摘要论述了原子吸收光谱分析的基本原理及仪器的主要构成,仪器主要有5部分组成:(1)光源:发射待测元素的锐线光谱;(2)原子化器:产生待测的原子蒸汽;(3)光禄系统:分光、分出共振线波长;(4)电路系统:包括信号变成电信号的转换器,放大电路,计算处理等电路;(5)显示系统等,旨在该类仪器用户逐渐增多的情况下,获得交流和提高。 关键词原子吸收光谱分析;共振线;空心阴板灯 Studyonatomicabsorptionspectrometryinstrumentanditsanalytical methods FENGNian-lun,SUNTie-jun,LIULing-ling (Shandongprovincialhospital,Ji'nan250021,China) AbstractInthisarticle,theprincipleofatomicabsorptionspectrometryandconstructionofthisanalyzerareintroduced,sothatwecanexchangeandimproveourrelatedknowledgeastheusersincrease. Keywordsatomicabsorptionspectrometry;resonanceline;hollowcathodelamp 原子吸收光谱分析仪器具有灵敏度高(可达到10-9 ̄10-17g/L)重复性和选择性好,操作简便、快速,结果准确、可靠,检测时样品用量少(在几微升至几十微升之间),测量范围广(几乎能用来分析所有的金属元素和类金属元素元件)等优点。其可应用于冶金、化工、地质、农业及医药卫生等许多方面;在环境监测、食品卫生和生物机体内微量金属元素的测定以及医学和生物化学检验等应用也日益广泛。 人体中含有许多对维持正常生理过程有重要意义的金属元素,如钾、钠、钙、镁、铁、铜、锌、锰、钼和钴等。人体的血液、汗液、尿液、头发及机体组织,由于受环境和饮食污染会引进体内铅、汞、镉和砷等有害元素。对这些金属元素的分析结果,可以反映机体内的生理过程及受环境污染而中毒的情况。原子吸收光谱分析仪器既可用于血液、尿液、粪便及生物组织中微量元素的分析,也可对内脏、毛发、骨骼等经一定处理后,进行分析测定。 1原子吸收光谱分析方法的基本原理 在自然界中,一切物质的分子均由原子组成,而原子是由一个原子核和核外电子构成。原子核内有中子和质子,质子带正电,核外电子带负电;其电子的数目和构型决定了该元素的物理和化学性质。电子按一定的轨道绕核旋转;根据电子轨道离核的距离,有不同的能量级,可分为不同的壳层。每一壳层所允许的电子数是一定的。当原子处于正常状态时,每个电子趋向占有低能量的能级,这时原子所处的状态叫基态(E0)。在热能、电能或光能的作用下,原子中的电子吸收一定的能量,处于低能态的电子被激发跃迁到较高的能态,原子此时的状态叫激发态(Eq),原子从基态向激发态跃迁的过程是吸能的过程。处于激发态的原子是不稳定的,一般在10-10 ̄10-8s内就要返回到基态(E0)或较低的激发态(Ep)。此时,原子释放出多余的能量,辐射出光子束,其辐射能量的大小由下列公式表示:△E=Eq-Ep(或E0)=hf=hc/λ(1)式中:h—— —普朗克常数为6.6234×10-27erg.s;f和λ—— —电子从Eq能级返回到Ep(或E0)能级时所发射光谱的频率和波长;C—— —光速。 Eq、Ep或E0值的大小与原子结构有关,不同元素,其Eq、Ep和E0不相同,一般元素的原子只能发射由其Eq、Ep或E0决定的特定波长或频率的光,即: f=Eq-Ep(或E0)/h(2)每种物质的原子都具有特定的原子结构和外层电子排列,因此不同的原子被激发后,其电子具有不同的跃迁,能辐射出不同波长光,就是说,每种元素都有其特征的光谱线。由于谱线的强度与元素的含量成正比,以此可测定元素的含量,作定量分析。 当某种元素被激发后,核外电子从基态E0激发到最接近基态的最低激发态E1叫共振激发。当其又回到E0时发出的辐射光线即为共振线。而基态原子吸收共振线辐射也可以从基态上升至最低激发态,由于各种元素的共振线不相同,并具有一定的特征性,所以原子吸收仅能在同种元素的一定特征波长中观察到,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度A表示,A与被测样品中的待测元素含量成正比;即基态原子的浓度越大,吸收的光量越多,通过测定吸收的光量,就可以求出样品中待测的金属及类金属物质的含量,对于大多数金属元素而言,共振线是该元素所有谱线中最灵敏的谱线,这就是原子吸收光谱分析法的原理,也是该法之所以有较好的选择性,可以测定微量元素的根本原因。 2原子吸收光谱分析仪器 原子吸收光谱分析仪器的原理是通过火焰、石墨炉等将待测元素在高温或是化学反应作用下变成原子蒸气,由光源灯辐射出待测元素的特征光,在通过待测元素的原子蒸气时发生光谱吸收,透射光的强度与被测元素浓度成反比,在仪器的光路系统中,透射光信号经光栅分光,将待测元素的吸收线与其他谱线分开。经过光电转换器,将光信号转换成电信号, 中图分类号:O443.4;TH83文献标识码:B文章编号:1003-8868(2006)11-0062-02本栏目编辑/李玉坤 INSTRUMENTTHEORY 仪器原理 62 医疗卫生装备?2006年第27卷第11期 ChineseMedicalEquipmentJournal?2006Vol.27No.11

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

相关主题
文本预览
相关文档 最新文档