时序逻辑电路 课后答案
- 格式:doc
- 大小:7.46 MB
- 文档页数:28
5-1 分析图所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。
CLKZ图 题 5-1图解:从给定的电路图写出驱动方程为:00121021()n n n nn D Q Q Q D Q D Q ⎧=⎪⎪=⎨⎪=⎪⎩e 将驱动方程代入D 触发器的特征方程D Qn =+1,得到状态方程为:10012110121()n n n n n nn n Q Q Q Q Q Q Q Q +++⎧=⎪⎪=⎨⎪=⎪⎩e 由电路图可知,输出方程为2nZ Q =根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。
题解5-1(a )状态转换图1Q 2/Q ZQ题解5-1(b )时序图综上分析可知,该电路是一个四进制计数器。
5-2 分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入变量。
YA图 题 5-2图解:首先从电路图写出驱动方程为:()0110101()n n n n nD AQ D A Q Q A Q Q ⎧=⎪⎨==+⎪⎩将上式代入触发器的特征方程后得到状态方程()101110101()n n n n n n nQ AQ Q A Q Q A Q Q ++⎧=⎪⎨==+⎪⎩电路的输出方程为:01n nY AQ Q =根据状态方程和输出方程,画出的状态转换图如图题解5-2所示YA题解5-2 状态转换图综上分析可知该电路的逻辑功能为:当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位;当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。
5-3 已知同步时序电路如图(a)所示,其输入波形如图 (b)所示。
试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。
X(a) 电路图1234CLK5678X(b)输入波形 图 题 5-3图解:电路的驱动方程、状态方程和输出方程分别为:00101100011011011, ,n n n n n n n n n nJ X K X J XQ K XQ X Q XQ XQ XQ Q XQ XQ XQ Y XQ ++⎧==⎪⎨==⎪⎩⎧=+=⎪⎨⎪=+=+⎩= 根据状态方程和输出方程,可分别做出1110,n n Q Q ++和Y 的卡诺图,如表5-1所示。
第12章时序逻辑电路自测题一、填空题1.时序逻辑电路按状态转换情况可分为时序电路和时序电路两大类。
2.按计数进制的不同,可将计数器分为、和N进制计数器等类型。
3.用来累计和寄存输入脉冲个数的电路称为。
4.时序逻辑电路在结构方面的特点是:由具有控制作用的电路和具记忆作用电路组成。
、5.、寄存器的作用是用于、、数码指令等信息。
6.按计数过程中数值的增减来分,可将计数器分为为、和三种。
二、选择题1.如题图12.1所示电路为某寄存器的一位,该寄存器为。
A、单拍接收数码寄存器;B、双拍接收数码寄存器;C、单向移位寄存器;D、双向移位寄存器。
2.下列电路不属于时序逻辑电路的是。
A、数码寄存器;B、编码器;C、触发器;D、可逆计数器。
3.下列逻辑电路不具有记忆功能的是。
A、译码器;B、RS触发器;C、寄存器;D、计数器。
4.时序逻辑电路特点中,下列叙述正确的是。
A、电路任一时刻的输出只与当时输入信号有关;B、电路任一时刻的输出只与电路原来状态有关;C、电路任一时刻的输出与输入信号和电路原来状态均有关;D、电路任一时刻的输出与输入信号和电路原来状态均无关。
5.具有记忆功能的逻辑电路是。
A、加法器;B、显示器;C、译码器;D、计数器。
6.数码寄存器采用的输入输出方式为。
A、并行输入、并行输出;B、串行输入、串行输出;C、并行输入、串行输出;D、并行输出、串行输入。
三、判断下面说法是否正确,用“√"或“×"表示在括号1.寄存器具有存储数码和信号的功能。
( )2.构成计数电路的器件必须有记忆能力。
( )3.移位寄存器只能串行输出。
( )4.移位寄存器就是数码寄存器,它们没有区别。
( )5.同步时序电路的工作速度高于异步时序电路。
( )6.移位寄存器有接收、暂存、清除和数码移位等作用。
()思考与练习题12.1.1 时序逻辑电路的特点是什么?12.1.2 时序逻辑电路与组合电路有何区别?12.3.1 在图12.1电路作用下,数码寄存器的原始状态Q3Q2Q1Q0=1001,而输入数码D3D2D1D0=0110时,在CP的作用下,Q3Q2Q1Q0状态如何变化?12.3.2 题图12.2所示移位寄存器的初始状态为111,画出连续3个C P脉冲作用下Q2Q1Q0各端的波形和状态表。
第4章 触发器4.3 若在图4.5电路中的CP 、S 、R 输入端,加入如图4.27所示波形的信号,试画出其Q 和Q 端波形,设初态Q =0。
SRCP图4.27 题4.3图解:图4.5电路为同步RS 触发器,分析作图如下:S RQ4.5 设图4.28中各触发器的初始状态皆为Q =0,画出在CP 脉冲连续作用下个各触发器输出端的波形图。
Q 11CPQ 3CPCPQ 2Q 6Q 4Q 5CP图4.28 题4.5图解:Q Q nn 111=+ Q Q n n 212=+ Q Q nn 313=+Q Q n n 414=+ Q Q n n 515=+ Q Q nn 616=+Q 1CP Q 2Q 3Q 4Q 5Q64.6 试写出 图4.29(a)中各触发器的次态函数(即Q 1 n+1 、 Q 2 n+1与现态和输入变量之间的函数式),并画出在图4.29(b )给定信号的作用下Q 1 、Q 2的波形。
假定各触发器的初始状态均为Q =0。
1A BCP>1D C1=1A BQ 1Q 2Q 2(a)BA(b)图4.29题4.6图解:由图可见:Q B A AB Q n n 111)(++=+ B A Q n ⊕=+12B A Q 2Q 14.7 图4.30(a )、(b )分别示出了触发器和逻辑门构成的脉冲分频电路,CP 脉冲如图4.30(c )所示,设各触发器的初始状态均为0。
(1)试画出图(a )中的Q 1、Q 2和F 的波形。
(2)试画出图(b )中的Q 3、Q 4和Y 的波形。
Y(b )(c )CPQ 1Q 2(a )图4.30 题4.7图解: (a )Q Q nn 211=+ QQ nn 112=+ Q F 1CP ⊕= R 2 = Q 1 低电平有效CPQ 1Q 2F(b )Q Q Q n n n 4313=+ Q Q Q n n n 4314=+ Q Q Y nn43=CP 3= CP 上降沿触发 CP 4= CP 下降沿触发CPQ 3Q 4Y4.8 电路如图4.31所示,设各触发器的初始状态均为0。
第9章习题解答9.1 题9.1图所示电路由D 触发器构成的计数器,试说明其功能,并画出与CP 脉冲对应的各输出端波形。
Q CP题9.1图解:(1)写方程时钟方程:0CP CP =;10CPQ =;21CP Q = 驱动方程:00n D Q =;11n D Q =;22n D Q =状态方程:0100n n Q D Q CP +==↑;11110n n Q D Q Q +==↑;21221n nQ D Q Q +==↑(2)列状态转换表 (3)画状态转换图111210210n n n n n n CP Q Q Q Q Q Q +++0 0 0 0 1 1 11 1 1 1 1 1 02 1 1 0 1 0 13 1 0 1 1 0 04 1 0 0 0 1 15 0 1 1 0 1 06 0 1 0 0 0 17 0 0 1 0 0 0(4)画波形图CP 2Q 1Q 0Q(5)分析功能该电路为异步三位二进制减法计数器。
9.6 已知题9.6图电路中时钟脉冲CP 的频率为1MHz 。
假设触发器初状态均为0,试分析电路的逻辑功能,画出Q 1、Q 2、Q 3的波形图,输出端Z 波形的频率是多少?CP题9.6图解:(1)写方程时钟方程:123CP CP CP CP ===驱动方程:113n n D Q Q =;212n n D Q Q =⊕;312n n D Q Q =状态方程:11113n n n Q D Q Q CP +==↑;12212n n n Q D Q Q CP +==⊕↑;13312n n n Q D Q Q CP +==↑ 输出方程:3n Z Q =(2)列状态转换表 (3)画状态转换图111321321n n n n n n CP Q Q Q QQ Q Z+++0 0 0 0 0 0 1 01 0 0 1 0 1 0 02 0 1 0 0 1 1 03 0 1 1 1 0 0 04 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1(4)画波形图(5)分析功能该电路为能够自启动的同步5进制加法计数器。
第9章时序逻辑电路习题解答9.1 d R端和d S端的输入信号如题9.1图所示,设基本RS触发器的初始状态分别为1和0两种情况,试画出Q端的输出波形。
题9.1图解:9.2 同步RS触发器的CP、R、S端的状态波形如题9.2图所示。
设初始状态为0和1两种情况,试画出Q端的状态波形。
题9.2图解:9.3 设主从型JK触发器的初始状态为0,J、K、CP端的输入波形如题9.3图所示。
试画出Q端的输出波形(下降沿触发翻转)。
解:如题9.3图所示红色为其输出波形。
第9章时序逻辑电路225题9.3图9.4 设主从型JK触发器的初始状态为0,J、K、CP端输入波形如题9.4图所示。
试画出Q端的输出波形(下降沿触发翻转)。
如初始状态为1态,Q端的波形又如何?解:如题9.4图所示红色为其输出波形。
题9.4图9.5 设维持阻塞型D触发器的初始状态为0,D端和CP端的输入波形如题9.5图所示,试画出Q端的输出波形(上升沿触发翻转)。
如初始状态为1态,Q端的波形又如何?解:如题9.5图所示红色为其输出波形。
第9章时序逻辑电路226题9.5图9.6 根据CP时钟脉冲,画出题9.6图所示各触发器Q端的波形。
(1)设初始状态为0;(2)设初始状态为1。
(各输入端悬空时相当于“1”)题9.6图解:第9章时序逻辑电路2279.7 题9.7图所示的逻辑电路中,有J和K两个输入端,试分析其逻辑功能,并说明它是何种触发器。
题9.7图=⋅⋅⋅=⋅+⋅解:由图得D Q F J Q Q F J QJ K Q n D Q n+10 0 0 0 00 0 1 1 10 1 0 0 00 1 1 0 01 0 0 1 11 0 1 1 11 1 0 1 11 1 1 0 0此电路为D触发器和与非门组成的上升沿触发的JK触发器。
9.8 根据题9.8图所示的逻辑图和相应的CP、d R、D的波形,试画出Q1和Q2端的输出波形。
设初始状态Q1=Q2=0。
题9.8图解:第9章时序逻辑电路2289.9 试用4个D触发器组成一个四位右移移位寄存器。
第六章时序逻辑电路6.1 基本要求1. 正确理解组合逻辑电路、时序逻辑电路、寄存器、计数器、同步和异步、计数和分频等概念。
2. 掌握时序逻辑电路的分析方法,包括同步时序逻辑电路和异步时序逻辑电路。
3. 熟悉寄存器的工作原理、逻辑功能和使用。
4. 掌握二进制、十进制计数器的构成原理。
能熟练应用集成计数器构成任意进制计数器。
5. 掌握同步时序逻辑电路的设计方法。
6.2自测题一、填空题1.数字电路按照是否有记忆功能通常可分为两类:、。
2.由四位移位寄存器构成的顺序脉冲发生器可产生个顺序脉冲。
3.时序逻辑电路按照其触发器是否有统一的时钟控制分为时序电路和时序电路。
4. 用D触发器来构成12进制计数器,需要个D触发器。
二、选择题1.同步计数器和异步计数器比较,同步计数器的显著优点是。
A.工作速度高B.触发器利用率高C.电路简单D.不受时钟CP控制。
2.把一个五进制计数器与一个四进制计数器串联可得到进制计数器。
A.4B.5C.9D.203. N个触发器可以构成最大计数长度(进制数)为的计数器。
A.NB.2NC.N2D.2N4. N个触发器可以构成能寄存位二进制数码的寄存器。
A.N-1B.NC.N+1D.2N5.五个D触发器构成环形计数器,其计数长度为。
A.5B.10C.25D.326.同步时序电路和异步时序电路比较,其差异在于后者。
A.没有触发器B.没有统一的时钟脉冲控制C.没有稳定状态D.输出只与内部状态有关7.一位8421BCD码计数器至少需要个触发器。
A.3B.4C.5D.108.欲设计0,1,2,3,4,5,6,7这几个数的计数器,如果设计合理,采用同步二进制计数器,最少应使用级触发器。
A.2B.3C.4D.89.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。
A.1B.2C.4D.810.用二进制异步计数器从0做加法,计到十进制数178,则最少需要个触发器。
A.2B.6C.7D.8E.1011.某电视机水平-垂直扫描发生器需要一个分频器将31500H Z的脉冲转换为60H Z的脉冲,欲构成此分频器至少需要个触发器。
第九章习题参考答案9-1对应于图9-la 逻辑图,若输入波形如图9-54所示,试分别画出原态为0和原 态为1对应时刻得Q 和◎波形。
3D 八图9-54逆9-1图解得到的波形如题9-1解图所示。
9-2逻辑图如图9-55所示,试分析它们的逻辑功能,分别画出逻辑符号,列出逻辑 真值表,说明它们是什么类型的触发器。
解 对于(a ):由图可写出该触发器的输出与输入的逻辑关系式为:(9-1)原态为•丿京态为a) b)图9-55题9-2图下面按输入的不同组合,分析该触发器的逻辑功能。
(1) R n =1、S D =0若触发器原状态为0,由式(9-1)可得Q=0、Q =1 ;若触发器原状态为1,由式(9-1) 同样可得Q =0、Q = 1。
即不论触发器原状态如何,只要R D =1、S° =0,触发器将置成0态。
(2) R D=0、S°=l用同样分析可得知,无论触发器原状态是什么 > 新状态总为:Q =1・Q=0,即触发器被置成1态。
(3) R[)=Sj)=0按类似分析可知,触发器将保持原状态不变。
⑷= s° = 1两个“与非”门的输出端Q和Q全为0,这破坏了触发器的逻辑关系,在两个输入信号同时消失后,由于“或非”门延迟时间不可能完全相等,故不能确定触发器处于何种状态。
因此这种情况是不允许出现的。
逻辑真值表如表9-1所示,这是一类用或非门实现的基本RS触发器,逻辑符号如題9-2(a) 的逻辑符号所示。
对于(b):此图与(a)图相比,只是多加了一个时钟脉冲信号,所以该逻辑电路在CP =1时的功能与(a)相同,真值表与表9-1相同;而在CP=0时相当于(a)中(3)的情况,触发器保持原状态不变。
逻辑符号见趣9-2 (b)逻辑符号。
这是一类同步RS触发器。
Q1000]表9」題9・2 (a)真值表00不变1 1 不定题9・2 (a)的逻辑符号9-3同步RS 触发器的原状态为1,R 、S 和CP 端的输入波形如图9-56所示,试画出 对应的Q 和。
第六章 时序逻辑电路6-1 分析题图6-1所示的同步时序电路,画出状态图。
题图6-1解: 11221211n n n n J K Q T Q Z Q Q ====,,,,11111111212n n n n nn n nQ J Q K Q Q Q Q Q Q +=+=+=+122212n n n n Q T Q Q Q +=⊕=⊕,状态表入答案表6-1所示,状态图如图答案图6-1所示。
答案表6-1答案图6-16-2 分析题图6-2所示的同步时序电路,画出状态图。
题图6-2 解:按照题意,写出各触发器的状态方程入下:11J K A ==,21n J Q =,21K =,1212n n nQ Q Q +=,111n n Q A Q +=⊕状态表入答案表6-2所示,状态图如图答案图6-2所示。
答案表6-2答案图6-2Q 2n Q 1n Q 2n+1 Q 1n+1 Z0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1A Q 2n Q 1n Q 2n+1 Q 1n+1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0CLK D 1D 2D 3Q 3Q 2Q 1Q 2Q 3Q 1Q 1Q 2Q 3&6-3分析题图6-3所示的同步时序电路,画出状态图。
题图6-3解:按照题意,写出各触发器的状态方程入下:1112213232131n n n nn J K T J K Q Q T J Q Q K Q ========1,,, 133********n n n n n n n nQ J Q K Q Q Q Q Q Q +=+=+ 1222132n n n n nQ T Q Q Q Q +=⊕=⊕ 1111111n n n n Q T Q Q Q +=⊕=⊕=答案表6-3答案图6-36-4 在题图6-4所示的电路中,已知寄存器的初始状态Q 1Q 2Q 3=111。
5-1 分析图所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。
CLKZ图 题 5-1图解:从给定的电路图写出驱动方程为:00121021()n n nn n D Q Q Q D Q D Q ⎧=⎪⎪=⎨⎪=⎪⎩将驱动方程代入D 触发器的特征方程D Qn =+1,得到状态方程为:10012110121()n n n n n n n n Q Q Q Q Q Q Q Q +++⎧=⎪⎪=⎨⎪=⎪⎩由电路图可知,输出方程为2nZ Q =根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。
题解5-1(a )状态转换图1Q 2/Q ZQ题解5-1(b )时序图综上分析可知,该电路是一个四进制计数器。
5-2 分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入变量。
YA图 题 5-2图解:首先从电路图写出驱动方程为:()0110101()n n n n nD AQ D A Q Q A Q Q ⎧=⎪⎨==+⎪⎩将上式代入触发器的特征方程后得到状态方程()101110101()n n n n n n nQ AQ Q A Q Q A Q Q ++⎧=⎪⎨==+⎪⎩电路的输出方程为:01n nY AQ Q =根据状态方程和输出方程,画出的状态转换图如图题解5-2所示YA题解5-2 状态转换图综上分析可知该电路的逻辑功能为:当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位;当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。
5-3 已知同步时序电路如图(a)所示,其输入波形如图 (b)所示。
试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。
X(a) 电路图1234CLK5678X(b)输入波形 图 题 5-3图解:电路的驱动方程、状态方程和输出方程分别为:00101100011011011, ,n n n n n n n n n nJ X K X J XQ K XQ X Q XQ XQ XQ Q XQ XQ XQ Y XQ ++⎧==⎪⎨==⎪⎩⎧=+=⎪⎨⎪=+=+⎩= 根据状态方程和输出方程,可分别做出1110,n n Q Q ++和Y 的卡诺图,如表5-1所示。
4 62习 题1.解:QQRS3.解: CP =0时,R D =S D =0,Q n+1=Q n ; CP =1时,S R R =D ,S D =S ;1D D n n n n Q S R Q S RSQ S RQ +=+=+=+不管S 、R 输入何种组合,锁存器均不会出现非正常态。
5.解:(1)系统的数据输入建立时间t SUsys =或门的传输延迟+异或门的传输延迟+锁存器的建立时间-与门的传输延迟=t pdOR +t pdXOR + t SU - t pdAND =18ns+22ns+20ns -16 ns =44ns 。
(2)4 63当C =1时, J =X X K = X Q K Q J Q n n n =+=+1 为D 触发器9. 解:当EN =0 ,Q n+1=Q n ;当EN =1,Q n+1=D ,则D EN Q EN Q n n ⋅+⋅=+11,令D EN Q EN D n ⋅+⋅=1即可。
10.解:根据电路波形,它是一个单发脉冲发生器,A 可以为随机信号,每一个A 信号的下降沿后;Q 1端输出一个脉宽周期的脉冲。
12.解:(1)(2)4 6415. 解:X =0时,计至9时置0000:03Q Q LD =,D 3D 2D 1D 0=0000X =1时,计至4时置1011:23Q Q LD =,D 3D 2D 1D 0=10112303Q Q X Q Q X LD +=,D 2=0,D 3=D 1=D 0=X16.解:当片1计数到1001时,置数信号LD 为低电平,这时,再来一个CP 脉冲,下一个状态就进入0000。
应该等到片0和片1的状态同时为1001时,片1的下一个状态才能进入0000。
改进后电路为:对改进后电路的仿真结果:17.解:4 6518.解:19. 解:从图所示电路图可知,S 1S 0=01,根据表4.8-3所示的74LS194功能表,电路处于右移功能。
右移数据输入端的逻辑表达式为:32IR Q Q D =。
第六章 时序逻辑电路【题 6.3】 分析图P6.3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.3【解】驱动方程:11323131233J =K =Q J =K =Q J =Q Q ;K =Q ⎧⎪⎨⎪⎩ 输出方程:3YQ =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+11313131n 12121221n+13321Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +⎧=+=⎪=+=⊕⎨⎪=⎩ 电路能自启动。
状态转换图如图A6.3【题 6.5】 分析图P6.5时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入逻辑变量。
图A6.3Y图P6.5【解】驱动方程: 1221212()D AQ D AQ Q A Q Q ⎧=⎪⎨==+⎪⎩输出方程: 21Y AQ Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+112n+1212()Q AQ QA Q Q ⎧=⎪⎨=+⎪⎩ 电路的状态转换图如图A6.51图A6.5【题 6.6】 分析图P6.6时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。
说明电路实现的功能。
A 为输入变量。
AY图P6.6【解】驱动方程: 112211J K J K A Q ==⎧⎨==⊕⎩输出方程: 1212Y AQ Q AQ Q =+将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+111n+1212QQ Q A Q Q ⎧=⎪⎨=⊕⊕⎪⎩ 电路状态转换图如图A6.6。
A =0时作二进制加法计数,A =1时作二进制减法计数。
01图A6.6【题 6.7】 分析图P6.7时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.7【解】驱动方程: 001023102032013012301;;;J K J Q Q Q K Q J Q Q K Q Q J Q Q Q K Q==⎧⎪=∙=⎪⎨==⎪⎪==⎩ 输出方程: 0123Y Q Q Q Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:*00*1012301*2023012*3012303()Q ()Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q⎧=⎪=++⎪⎨=++⎪⎪=+⎩ 设初态Q 1Q 3Q 2Q 1 Q 0=0000,由状态方程可得:状态转换图如图A6.7。
5-1分析图所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程, 画出电路的状态转换图和时序图。
解:从给定的电路图写出驱动方程为:D o (Q 0Q i n)e Q 2D i Q 01D 2 Q i nQ 01 1(Q 0Q n)eQ ;Q i n 1Q 0Q 21Q ;由电路图可知,输出方程为Z Q ;CLK将驱动方程代入D 触发器的特征方程Q n 1D ,得到状态方程为:5-1(a )所示,时序图如图题解Z图题5-1图根据状态方程和输出方程,画出的状态转换图如图题解题解5-1(a )状态转换图综上分析可知,该电路是一个四进制计数器。
5-2分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入变量。
解:首先从电路图写出驱动方程为:D o A& D i A Qg :A (Q : Q i n)将上式代入触发器的特征方程后得到状态方程Q 0 1AQ :Q :1 AQ 0Q :A (Q nQ :)电路的输出方程为:CLKQ i12345——-A1 11 t----------- 1------------ 1|| 1 » 1 1 1----------- 1 ---------- 1 --------------►CLK0 Q 2/Z 仝题解5-1(b )时序图0 Q o 胃AY图题5-2图丫AQoQ;根据状态方程和输出方程,画出的状态转换图如图题解5-2 所示综上分析可知该电路的逻辑功能为:当输入为0时,无论电路初态为何,次态均为状态" 00”,即均复位;当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。
5-3已知同步时序电路如图(a )所示,其输入波形如图 (b )所示。
试写出电路的驱动方 程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。
CLK 1 2345678(b )输入波形 图题5-3图解:电路的驱动方程、状态方程和输出方程分别为:J 。
第十三章时序逻辑电路习题及答案一、填空题1、数字逻辑电路常分为组合逻辑电路和两种类型。
2、时序逻辑电路是指任何时刻电路的稳定输出信号不仅与当时的输入信号有关,而且与有关。
3、时序逻辑电路由两大部分组成。
4、时序逻辑电路按状态转换来分,可分为两大类。
5、时序逻辑电路按输出的依从关系来分,可分为两种类型。
6、同步时序电路有两种分析方法,一种是另一种是。
7、同步时序电路的设计过程,实为同步时序电路分析过程的过程。
8、计数器种类繁多,若按计数脉冲的输入方式不同,可分两大类。
9、按计数器进制不同,可将计数器分为。
10、按计数器增减情况不同,可将计数器分。
11、二进制计数器是逢二进一的,如果把n个触发器按一定的方式链接起来,可枸成。
12、一个十进制加法计数器需要由 J-K触发器组成。
13、三个二进制计数器累计脉冲个数为;四个二进制计数器累计脉冲个数为。
14、寄存器可暂存各种数据和信息,从功能分类,通常将寄存器分为。
15、数码输入寄存器的方式有;从寄存器输出数码的方式有。
16、异步时序逻辑电路可分为和。
17、移位寄存器中,数码逐位输入的方式称为。
18、计数器可以从三个方面进行分类:按__ _ _方式,按_________________方式,按______________方式。
19、三位二进制加法计数器最多能累计__个脉冲。
若要记录12个脉冲需要___个触发器。
20、一个四位二进制异步加法计数器,若输入的频率为6400H Z,在3200个计数脉冲到来后,并行输出的频率分别为______H Z,_____ H Z,____ H Z,_____ H Z。
一个四位二进制加法计数器起始状态为1001,当最低位接收到4个脉冲时,各触发器的输出状态是:Q0为__;Q1为__;Q2为__;Q3为__。
21、时序逻辑电路的特点是:任意时刻的输出不仅取决于______________,而且与电路的______有关。
22、寄存器一般都是借助有________功能的触发器组合起来构成的,一个触发器存储____二进制信号,寄存N位二进制数码,就需要__个触发器。
第四章 时序逻辑电路本章介绍各种触发器的结构组成、工作原理、逻辑功能以及各种特性。
触发器是由基本门电路组成的具有反馈连接、且输出状态不仅和输入状态有关,而且和输出原状态有关、具有记忆性的电路。
本章还介绍时序逻辑电路的基本概念、组成结构,各种时序电路的分析和设计方法。
本章的学习将为深入学习具有特定功能的中规模时序电路奠定良好的基础。
第一节 基本知识、重点与难点一、基本知识(一)触发器的基本概念 1. 触发器特点触发器与组合逻辑电路不同,触发器的输出不仅与输入信号有关,而且还与触发器原来的状态有关。
触发器具有记忆功能,是构成时序电路的基本单元电路。
触发器具有两个稳定的状态0和1。
在不同的输入信号作用下,触发器可以置成0,也可以置成1。
当输入信号消失后,触发器能保持其状态不变。
2. 触发器控制信号触发器的外部控制信号分为三类:(1)置位信号、复位信号:置位信号和复位信号有高有效或低有效、同步或异步之分。
置位信号D S 和复位信号D R 是低有效的异步信号,当信号有效时,触发器置1或清零,D S 和D R 不能同时有效。
(2)时钟脉冲信号:时钟脉冲信号为触发器的控制端,决定触发器的状态何时转换。
(3)外部激励信号:外部激励信号在CP 脉冲作用下控制触发器的状态转换。
3. 触发器类型触发器有不同的分类方法,按触发方式分类,有:电位触发方式、主从触发方式和边沿触发方式。
按逻辑功能分类,有:RS 触发器、D 触发器、JK 触发器和T 触发器等。
4. 触发器逻辑功能描述方法触发器的逻辑功能是指触发器的次态与现态以及输入信号之间的逻辑关系。
描述触发器的逻辑功能常用方法有:(1)状态转换表与激励表 (2)特征方程 (3)状态转换图 (4)时序图(二)触发器的基本类型 1. 基本RS 触发器基本RS 触发器没有同步触发脉冲,输入信号直接控制输出端的状态。
只要输入变化,输出立即变化。
基本RS 触发器的特征方程为:⎪⎩⎪⎨⎧=++=+1D D D D 1S R Q R S Q nn2. 同步RS 触发器同步RS 触发器在时钟脉冲CP 有效时,如CP =1期间,触发器的输出随输入信号的变化而改变。
第六章 时序逻辑电路【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.3【解】驱动方程:11323131233J =K =Q J =K =Q J =Q Q ;K =Q ⎧⎪⎨⎪⎩ 输出方程:3YQ =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+11313131n 12121221n+13321Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +⎧=+=⎪=+=⊕⎨⎪=⎩e 电路能自启动。
状态转换图如图【题 】分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入逻辑变量。
图A6.3Y图P6.5【解】驱动方程: 1221212()D AQ D AQ Q A Q Q ⎧=⎪⎨==+⎪⎩输出方程: 21Y AQ Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+112n+1212()Q AQQ A Q Q ⎧=⎪⎨=+⎪⎩ 电路的状态转换图如图1图A6.5【题 】 分析图时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。
说明电路实现的功能。
A 为输入变量。
AY图P6.6【解】驱动方程: 112211J K J K A Q ==⎧⎨==⊕⎩输出方程: 1212Y AQ Q AQ Q =+将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+111n+1212Q Q Q A Q Q ⎧=⎪⎨=⊕⊕⎪⎩ 电路状态转换图如图。
A =0时作二进制加法计数,A =1时作二进制减法计数。
01图A6.6【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.7【解】驱动方程: 001023102032013012301;;;J K J Q Q Q K Q J Q Q K Q Q J Q Q Q K Q==⎧⎪=•=⎪⎨==⎪⎪==⎩ 输出方程: 0123Y Q Q Q Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:*00*1012301*2023012*3012303()Q ()Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q⎧=⎪=++⎪⎨=++⎪⎪=+⎩ 设初态Q 1Q 3Q 2Q 1 Q 0=0000,由状态方程可得:状态转换图如图。
电路能自启动图A6.7【题】试画出用4片74LS194组成16位双向移位寄存器的逻辑图。
74LS194的功能表见表。
【解】见图【题 】在图电路中,若两个移位寄存器中的原是数据分别为A 3A 2A 1A 0=1001, B 3B 2B 1B 0=0011,试问经过4个CLK 信号作用以后两个寄存器中数据如何这个电路完成什么功能图P6.10【解】经过4个时钟信号后,两个寄存器里的数据分别为A 3A 2A 1A 0=1100,B 3B 2B 1B 0=0000。
这是一个4位串行加法器电路。
CL 的初始值设为0。
【题 】在图计数器电路,说明这是多少进制的计数器。
十进制计数器74160的功能表见表。
CP11Y 图P6.11【解】图电路为七进制计数器。
【题 】在图计数器电路,画出电路的状态转换图,说明这是多少进制的计数器。
十六进制计数器74LS161的功能表所示CP11进位输出图P6.12【解】电路的状态转换图如图。
这是一个十进制计数器。
图A6.12【题 】试用4位同步二进制计数器74LS161接成十二进制计数器,标出输入、输出端。
可以附加必要的门电路。
74LS161的功能表见表【解】见图Y 进位输出图 A5.10【题 】试分析图的计数器在M =1和M =0时各为几进制。
74160的功能表见表。
进位输出图 A6.13>CLK【解】M =1时为六进制计数器,M =0时为八进制计数器。
【题 】图电路时可变进制计数器。
试分析当控制变量A 为1和0时电路各为几进制计数器。
74LS161的功能表见表。
CP1图 P6.15【解】A =1时为十二进制计数器,A =0时为十进制计数器。
【题 】设计一个可控进制的计数器,当输入控制变量M =0时工作在五进制,M =时工作在十五进制。
请标出计数输入端和进位输出端。
【解】见图。
CP1图 P6.16【题 】分析图给出的计数器电路,画出电路的状态转换图,说明这是几进制计数器。
74LS290的电路见图。
进位输出图 P6.17【解】这是一个七进制计数器。
电路的状态转换图如图所示。
其中3210Q Q Q Q 的0110、0111、1110、1111四个状态为过渡状态。
图A6.17【题】试分析图计数器电路的分频比(即Y与CLK的频率之比)。
74LS161的功能表见表。
Y图 P6.18【解】第(1)级74LS161接成了七进制计数器,第(2)级74LS161接成了九进制计数器,两级串接7 9=63进制计数器。
故Y的频率与CLK的频率之比为1:63。
【题】图电路是由两片同步十进制计数器74160组成的计数器,试分析这是多少进制的计数器,两片之间是几进制。
74160的功能表见表。
Y图 P6.19【解】第(1)片74160接成十进制计数器,第(2)片74160接成了三进制计数器。
第(1)片到第(2)片之间为十进制,两片串接组成三十进制计数器。
【题 】分析图给出的电路,说明这是多少进制的计数器,两片之间是多少进制。
74LS161的功能表见表。
CLK Y【解】在出现D L =0信号以前,两片74LS161均按十六进制计数。
即第(1)片到第(2)片为十六进制。
当第(1)片计为2,第(2)片计为5时产生D L =0信号,总的进制为5 16+2+1=83 故为八十三进制计数器。
【题 】用同步十进制计数器芯片74160设计一个三百六十五进制的计数器。
要求各位间为十进制关系。
允许附加必要的门电路。
74160的功能表见表。
【解】见图输出图A6.22个位十位百位【题 】设计一个数字钟电路,要求能用七段数码管显示从0时0分0秒到23时59分59秒之间的任一时刻。
【解】电路接法可如图所示。
计数器由六片74160组成。
第(1)、(2)两片接成六十进制的“秒计数器”,第(1)片为十进制,第(2)片为六进制。
第(3)、(4)片为接成六十进制的“分计数器”,接法与“秒计数器”相同。
第(5)、第(6)片用整体复位法接成二十四进制计数器,作为“时计数器”。
显示译码器由六片7448组成,每片7448用于驱动一只共阴极的数码管BS201A。
【题】图所示电路是用二——十进制优先编码器74LS147和同步十进制计数器74160组成的可控分频器,试说明当输入控制信号A、B、C、D、E、F、G、H、I分别为低电平时由Y端输出的脉冲频率各为多少。
已知CP端输入脉冲的频率为10KHz。
74LS147的功能表如表所示,74160的功能表见表。
Y图 P6.24【解】由图可见,计数器74160工作在可预置数状态,每当计数器的进位输出C=1时(即3210Q Q Q Q=1001时),在下一个CP上升沿到达时置入编码器74LS147的输出状态Y3Y2Y1Y.图A6.24再从图给出的74160的状态转换图可知,当A=0时74LS147的输出为3210Y Y Y Y=1110,74160的数据输入端D3D2D1D=0001,则状态转换顺序将如图中所示,即成为九进制计数器。
输出脉冲Y的频率为CLK频率的1/9。
依次类推便可得到下表:【题 】试用同步十进制可逆计数器74LS190和二——十进制优先编码器74LS147设计一个工作在减法计数器状态的可控分频器。
要求在控制信号A 、B 、C 、D 、E 、F 、G 、H 分别为1试分频比对应为1/2、1/3、1/4、1/5、1/6、1/7、1/8、1/9。
74LS190的逻辑图见图。
它的功能表如表。
可以附加 必要的门电路。
【解】可用CP 0作为LD 信号。
因为在CP 上升沿使3210Q Q Q Q =0000以后,在这个CP 的低电平期间CP 0将给出一个负脉冲。
但由于74LS190的LD =0信号是异步置数信号,所以0000状态在计数过程中是作为暂态出现的。
如果为提高置数的可靠性,并产生足够宽度的进位输出脉冲,可以增设由G 1、G 2组成的触发器,由Q 端给出与CLK 脉冲的低电平等宽的LD =0信号,并可由Q 端给出进位输出脉冲。
由图(a )中74LS190减法计数时的状态转换图可知,若LD =0时置入3210Q Q Q Q =0100,则得到四进制减法计数器 ,输出进位信号与CP 频率之比为1/4。
又由74LS147的功能表(表)可知,为使74LS147的输出反相后为0100,4I 需接入低电平信号,故4I 应接输入信号C 。
依次类推即可得到下表:(a )图 A6.25【题 】图时一个移位寄存器型计数器,试画出它的状态转换图,说明这是几进制计数器,能否自启动。
CLK 输入Y 图P6.26【解】图A6.26状态转换图如图,电路能自启动。
这是一个五进制计数器。
【题 】试利用同步十六进制计数器74LS161和4线—16线译码器74LS154设计节拍脉冲发生器,要求从12个输出端顺序、循环地输出等宽的负脉冲。
74LS154的逻辑框图及说明见【题】。
74LS161地功能表见表。
【解】用置数法将74LS161接成十二进制计数器,并把它地32,1,0,Q Q Q Q 对应地接至74LS154的A 3、A 2、A 1、A 0,在74LS154地输出0Y ~11Y 端就得到了12个等宽地顺序脉冲0P ~11P 。
电路接法见图。
n+111232323n+1221n+133223Q D Q Q Q Q Q Q Q D Q Q D Q Y Q Q ⎧==++⎪==⎨⎪==⎩=1197531输出脉冲图 A6.28【题 】设计一个序列信号发生器电路,使之在一系列CLK 信号作用下能周期性地输出“00”的序列信号。
【解】可以用十进制计数器和8选1数据选择器组成这个序列信号发生器电路。
若将十进制计数器74160的输出状态32,1,0,Q Q Q Q 作为8选1数据选择器的输入,则可得到数据选择器的输出Z 与输入32,1,0,Q Q Q Q 之间关系的真值表。
题的真值表1图6.29若取用8选1数据选择器74LS251(见图),则它的输出逻辑式可写为02101210221032104210521062107210()()()()()()()()Y D A A A D A A A D A A A D A A A D A A A D A A A D A A A D A A A =++++++++由真值表写出Z 的逻辑式,并化成与上式对应的形式则得到321032103210210321032102103210()()()0()()()0()()Z Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q =+++•+++•+令2211000132457336,,,,,0A Q A Q A Q D D Q D D Q Q Q D D ===========,则数据选择器的输出Y 即所求之Z 。