特殊的平行四边形
- 格式:docx
- 大小:415.86 KB
- 文档页数:18
【本讲教育信息】一. 教学内容:几种特殊的平行四边形:矩形、菱形、正方形[目标]1. 理解矩形、菱形的定义与性质。
2. 掌握矩形、菱形的判定方法。
二. 重点、难点:1. 矩形、菱形性质的综合应用。
特别是菱形性质和直角三角形的知识的综合应用。
2. 矩形、菱形的判定方法的综合应用。
三. 知识要点:1. 矩形(1)矩形的概念有一个角是直角的平行四边形叫矩形。
(2)矩形的特殊性质①矩形的对角线相等②矩形四个角都是直角(3)矩形性质的应用①矩形的一条对角线将矩形分成2个全等的直角三角形;②矩形的2条对角线将矩形分成4个等腰三角形;③有关矩形的问题往往可以化为直角三角形或等腰三角形的问题来解决;④矩形的面积计算公式:(4)矩形的判定条件①有三个角是直角的四边形是矩形②对角线相等的平行四边形是矩形注意:1)在判定四边形是矩形的条件中,平行四边形的概念是最基本的条件,其他的判定条件都是以它为基础的。
2)四边形只要有3个角是直角,那么根据多边形内角和性质,第四个角也一定是直角。
(在判定四边形是矩形的条件中,给出“有3个角是直角”的条件,是因为数学结论的表述中一般不给出多余条件。
)3)将两个判定条件比较,后者的条件中,除了“有3个角是直角”的条件外,只要求是“四边形”,而前者的条件却包括“平行四边形”和“两条对角线相等”两个方面。
4)矩形的判定与性质的区别2. 菱形(1)菱形的概念有一组邻边相等的平行四边形叫菱形。
(2)菱形的特殊性质①菱形的四条边都相等②菱形的对角线相互垂直,且每一条对角线平分一组对角(3)菱形性质的应用由于菱形的对角线互相垂直平分,菱形的2条对角线就将菱形分成了四个全等的直角三角形,结合图形向学生介绍菱形的一个面积计算公式。
的一半思考归纳:计算菱形的面积有哪些方法?(4)菱形的判定条件①四边都相等的四边形是菱形;②对角线互相垂直的平行四边形是菱形(5)四边形、平行四边形、菱形之间的关系如图:【典型例题】例1. 等边三角形、矩形、菱形和圆中,既是轴对称图形又是中心对称图形的是()A. 等边三角形和圆B. 等边三角形、矩形、菱形C. 菱形、矩形和圆D. 等边三角形、菱形、矩形和圆分析:因为等边三角形是轴对称图形而不是中心对称图形,明确了这一点,就很容易排除A、B、D,只选C了解:菱形、矩形、圆这三种图形,都是轴对称图形,且又都是中心对称图形,故选C。
第一章特殊的平行四边形考点回顾:1、矩形的性质和判定性质:(1)矩形具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形既是轴对称图形,也是中心对称图形.判定:(2)有一个是直角的平行四边形叫矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2、菱形的性质与判定性质:(1)菱形具有平行四边形的所有性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,且每一条对角线平分一组对角;(4)菱形是轴对称图形,也是中心对称图形.判定:(1)一组邻边相等的平行四边形叫菱形;(2)对角线互相垂直平分的四边形是菱形;(3)四边相等的四边形是菱形.3、正方形有一组邻边相等的矩形是正方形,或有一个角为直角的菱形是正方形.考点精讲精练:例1、如图,在△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB和DE是否相等?并证明你的结论.证明:(1)∵AE、AD分别平分∠BAF,∠BAC,,∴AD⊥AE.(2)答:AB=DE.∵AB=AC,AD平分∠BAC,∴AD⊥BC.∠BDA=90°.又∵∠BEA、∠DAE都为直角,∴四边形ADBE为矩形.∴AB=DE.变式练习1、如图,将□ABCD的边DC延长到点E,使CE=DC,连AE,交BC于F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连AC,BE,求证:四边形ABEC为矩形.证明:(1)∵四边形ABCD为平行四边形,∴AB CD.又∵CE=CD,∴AB EC,∴四边形ABEC为平行四边形,∴ AF=EF,BF=CF,又∠AFB=∠EFC,∴△ABF≌△ECF.(2)在□ABCD中,∠ABC=∠D.∵∠AFC=2∠D=2∠ABC=∠ABC+∠BAF,∴∠ABF=∠BAF,∴FA=FB,∵FA=FE,FB=FC,∴FA=FB=FE=FC.∴BC=EA,∴四边形ABEC为矩形.例2、在菱形ABCD中,对角线AC与BD交于点O,AB=5,AC=6,过D点作DE∥AC,交BC的延长线于点E,如图所示.(1)求△BDE的周长;(2)点P为线段BC上的点,连PO并延长交AD于点Q,求证:BP=DQ.解:(1)在菱形ABCD中,AC⊥BD,且OB=OD.∵AB=5,AC=6,∴OA=3..∴BD=8.∵AD∥BC,∴AD∥CE,∴四边形ACED为平行四边形.∴DE=AC=6.BE=2BC=2AB=10.∴△BDE的周长为8+6+10=24.(2)证明:在菱形ABCD中,DA∥BC,∴∠ODQ=∠OBP,∠OQD=∠OPB.又OD=OB,∴△BPO≌△DQO.∴BP=DQ.变式练习2、如图,DE为□ABCD的∠ADC的平分线,EF∥AD交DC于F.(1)求证:四边形AEFD为菱形;(2)若∠A=60°,AD=5,求菱形AEFD的面积.证明:(1)∵DF∥AE,AD∥EF,∴四边形AEFD为平行四边形.∴∠FDE=∠AED.∵DE为∠ADC的平分线,∴∠ADE=∠FDE,∴∠ADE=∠AED,∴□ABCD为菱形.(2)∠A=60°,AD=AE,∴△ADE为等边三角形.例3、如图,在△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明结论;(3)在(2)的条件下,△ABC满足什么条件时,四边形AECF为正方形?证明你的结论.解:(1)∵EF∥BC,∴∠OEC=∠ECB,∵CE平分∠ACB,∴∠OCE=∠BCE,∴∠OEC=∠OCE,∴OE=OC,同理OF=OC,∴OE=OF.(2)当点O为AC的中点时,四边形AECF为矩形.∵OA=OC=OE=OF,∴四边形AECF为矩形.(3)当∠ACB=90°时,为正方形.∵当∠ACB=90°时,∵MN∥BC,∴∠AOE=90°,∴AC⊥EF.∴矩形AECF的对角线互相垂直,∴四边形AECF为正方形.变式练习3、已知,如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连AC交EF于点O,延长OC至点M,使OM=OA,连EM,FM,判断四边形AEMF是什么特殊四边形?证明你的结论.证明:(1)∵ AB=AD,∠B=∠D=90°,AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DE.(2)四边形AEMF为菱形,∵四边形ABCD为正方形,∴∠BCA=∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF.即CE=CF,∴OE=OF.∵OM=OA,∴四边形AEMF为平行四边形.∵AE=AF,∴□AEMF为菱形.备考模拟一、填空题1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________.2、如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF 的面积为__________cm2.3、如图,四边形ABCD为矩形,点E在线段CB的延长线上,连DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为__________.4、如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以为__________.5、如图,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC =60°,则四边形ABCD的面积等于__________cm2.6、①如图,在四边形ABCD中,E、F、G、H分别为AB、BC、CD、AD边上的中点,则四边形EFGH 为__________.②若ABCD为平行四边形,则EFGH为__________.③若ABCD为矩形,则EFGH为__________.④若ABCD为菱形,则EFGH为__________.答案:1、135°2、3、4、15°;或165°5、6、①平行四边形;②平行四边形;③菱形;④矩形二、选择题7、如图,四边形ABCD是菱形,△AEF为正三角形,点E、F分别在边BC,CD上,且AB=AE,则∠B=().A.60°B.80°C.100°D.120°8、如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折叠为EF,若∠EFC′=125°,则∠ABE的度数为().A.15°B.20°C.25°D.30°9、如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别为边AB,BC的中点,点P在AC 上运动,在运动过程中,存在PE+PF的最小值,则这个最小值为().A.3 B.4 C.5 D.610、如图,菱形ABCD的周长为20cm,DE⊥AB于E,,则下列结论中正确的个数有().①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④.A.1个B.2个C.3个D.4个11、如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长为().A.1.6 B.2.5 C.3 D.3.47-11 BBCCD三、综合题12、如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并证明理由.(2)若AB=6,BC=8,求S四边形OCED.解:(1)∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.又∵矩形ABCD中,OC=OD,∴四边形OCED为菱形.(2)连OE.则四边形BCEO为平行四边形,∴OE=BC=8..13、如图,边长为4的正方形ABCD中,点P在AB上从A向B运动,连DP交AC于点Q.(1)试证明:无论P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积为正方形ABCD面积的?解:(1)∵AD=AB,∠DAQ=∠BAQ,AQ=AQ,∴△ADQ≌△ABQ.(2)△ADQ的面积恰好为正方形ABCD面积的时,过点Q作QE⊥AD于E,QF⊥AB 于F,则QE=QF,.由△DEQ∽△DAP得,解得AP=2.∴当AP=2时,△ADQ的面积是正方形ABCD面积的.14、如图,在Rt△ABC中,∠B=90°,,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点随之停止运动,设点D、E运动的时间为t秒,过点D作DF⊥BC于点F,连DE、EF.(1)求证:AE=DF;(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,说明理由.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∴AC=2AB=10.∴AD=AC-DC=10-2t.若使□AEFD为菱形,则需AE=AD=10-2t,即. 即当时,四边形AEFD为菱形.。
特殊平行四边形有哪些图形
特殊的平行四边形如下:
1、菱形:在同一平面内,有一组邻边相等的平行四边形是菱形;四边都相等的四边形是菱形。
菱形的对角线互相垂直平分且平分每一组对角。
菱形是轴对称图形,对称轴有2条,即两条对角线所在的直线。
菱形是中心对称图形。
2、正方形:四条边都相等、四个角都是直角的四边形是正方形。
正方形的两组对边分别平行,四条边都相等;四个角都是90度;对角线互相垂直平分且相等,每条对角线都平分一组对角。
3、长方形:有一个角是直角的平行四边形叫做长方形;也定义为:四个角都是直角的平行四边形叫做长方形。
其中,正方形也是特殊的长方形和菱形;长方形和正方形都属于矩形。
1。
几种特殊的平行四边形
关于矩形,我们要从平行四边形的内角的变化上认识其特殊性——一个内角是直角的平行四边形。
进一步研究其特有的性质——对角线相等、内角都为直角、是轴对称图形。
这里还要特别注意的是平行四边形的特征,矩形也都具有。
当然,识别矩形的方法也要从其特殊平行四边形的特殊性上去研究。
关于菱形,我们是通过折叠剪纸的趣味活动引入,当然也可以从平行四边形的边的变化上引入。
同矩形一样,同样注重对其特殊性进行研究,其特殊性表现在:四边都相等、对角线互相垂直且平分每一对对角、是轴对称图形。
正方形是矩形和菱形的混合体,既具有平行四边形的一般性质,又具有矩形和菱形的独特性质。
它本是大家早就熟悉的几何图形,因此在研究前面矩形和菱形的经验的基础上,对正方形特征性质的研究同学们也不难得出。
这里值得注意的是,要重视研究平行四边形、矩形、菱形和正方形各种图形之间的联系,并结合实际操作加深理解。
对于特征的理解都要通过边、角、对角线三方面进行分析:
以上内容都能够通过图形自己观察出来,只要在研究时注重研究和记忆,就不至于混淆。
特殊的平行四边形在生活中的应用特殊的平行四边形,在生活中有着广泛的应用。
平行四边形是指四条边两两平行的四边形,其中包括方形、长方形、菱形和正方形。
它们在我们的日常生活中发挥着重要的作用,不仅美化了我们的环境,还在各个领域中提供了指导和参考。
首先,平行四边形的应用在建筑和设计领域中非常常见。
长方形和方形的形状常被用作建筑物的基本设计,例如房屋和办公楼。
它们稳定的结构形状和较大的内部空间使其成为建筑设计中的理想选择。
而菱形则经常被运用在装饰和建筑立面的设计上,给建筑物增加了独特的美感和艺术性。
其次,在制图和工程领域中,平行四边形的应用也非常广泛。
平行四边形的属性使得它能够方便地进行测量和计算。
利用平行四边形的对角线相等和对边平行的性质,工程师和建筑设计师可以准确地测量和计算距离、面积和体积等参数。
这对于工程建设、道路规划和地图绘制等都具有重要的指导意义。
此外,平行四边形的应用还延伸到数学教育领域。
在数学教学中,平行四边形是学生学习平面几何的基础概念之一。
通过对平行四边形的研究和理解,学生不但能掌握几何形状的性质,还可以培养逻辑思维和解决问题的能力。
因此,在课堂中引入生活中实际的平行四边形例子,可以提高学生的学习兴趣和应用能力。
最后,平行四边形在家居装饰和家具设计中也有着重要的应用。
方形和长方形的形状是家具设计中常见的选择,例如桌子、书架和沙发等。
这些具有平行四边形形状的家具不仅能够为我们提供实用的功能,还能够与其他家居装饰相搭配,营造和谐的室内环境。
总的来说,特殊的平行四边形在生活中有着广泛的应用。
从建筑和设计到制图和工程,从数学教育到家居装饰,平行四边形都发挥着重要的作用。
通过理解和应用平行四边形的属性,我们可以提高效率、美化环境、培养学生的能力,并为我们的生活带来更多的便利和乐趣。
让我们一起在平行四边形的世界中探索、学习和创造!。
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
仅供个人学习参考特殊的平行四边形知识点归纳附:平行四边形的定义:两组对边分别平行的四边形是平行四边形. 2.平行四边形的性质 (1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.(3)对角线:平行四边形的对角线互相平分.(4)对称性:平行四边形是中心对称图形,对角线的交点为对称中心. 3.平行四边形的判定方法(1)定义识别:两组对边分别平行的四边形是平行四边形. (2)用平行四边形的判定定理识别:判定定理①:两组对边分别相等的四边形是平行四边形. 判定定理②:对角线互相平分的四边形是平行四边形. 判定定理③:一组对边平行且相等的四边形是平行四边形. 4.三角形中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线.每个三角形都有三条中位线. (2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 5.直角三角形特殊性质(1)斜边上的中线等于斜边的一半。
(2)300所对的直角边等于斜边的一半。
(3)勾股定理矩形菱形正方形定义有一角是直角的平行四边形叫做矩形 有一组邻边相等的平行四边形叫做菱形 有一组邻边相等......并且有一个角是.....直角..的平行四边形.....叫做正方形 性 质边对边平行且相等 对边平行,四边相等对边平行,四边相等 角 四个角都是直角 对角相等四个角都是直角对角线互相平分且相等 互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有一个角是直角的平行四边形;·有三个角是直角的四边形;·两条对角线相等的平行四边形;.·对角线相等且互相平分的四边形是矩形·有一组邻边相等的平行四边形;·四边相等的四边形;·两条对角线互相垂直的平行四边形;。
·对角线互相垂直平分的是四边形·有一组邻边相等的矩形; ·对角线互相垂直的矩形; ·有一个角是直角的菱形; ·对角线相等的菱形。
证明三——特殊平行四边形知识要点1.矩形一、性质矩形除具有平行四边形的所有性质外,还具有矩形的四个角都是直角,对角线相等二、判定(1)矩形的定义:有一个角是直角的平行四边形是矩形;(2)矩形的判定定理1:有三个角是直角的四边形是矩形;(3)矩形的判定定理2:对角线相等的平行四边形是矩形.三、推论:直角三角形斜边上的中线等于斜边的一半;如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形2.菱形一、性质:菱形除具有平行四边形的所有性质之外,还具有,菱形的四边相等,对角线互相垂直,并且每条对角线平分一组对角二、判定(1)菱形的定义:一组邻边相等的平行四边形是菱形;(2)菱形的判定定理1:四边都相等的四边形是菱形;(3)菱形的判定定理2:对角线互相垂直的平行四边形是菱形.3.正方形一、性质:正方形除具有平行四边形所有性质外,还具有,正方形的四个角都是直角,两条对角线相等,并且互相垂直平分,每条对角线平分一组对角二、判定(1)定义:有一组邻边相等且有一个角是直角的平行四边形是正方形;(2)判定定理1:一组邻边相等的矩形是正方形;(3)判定定理2:一个角是直角的菱形是正方形.(一)菱形、矩形、正方形的有关概念:(二)菱形、矩形、正方形的性质(三)菱形、矩形、正方形的判别:题型归类一、选择题1.下列命题正确的是( )A 、有两个角是直角的四边形是矩形B 、两条对角线相等的四边形是矩形C 、两条对角线垂直且相等的四边形是矩形D 、四个角都是直角的四边形是矩形 2.过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ) A 、不等边三角形 B 、等腰三角形C 、等边三角形D 、等腰直角三角形3.矩形ABCD 的对角线AC 、BD 相交于点O ,则边与对角线组成的直角三角形的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 4.如图4-4-1,已知正方形ABCD 的边长为cm 35,E 为DC 边上一点,∠EBC=30°,则BE 的长为( )∥ = A 、cm 5B 、cm 52C 、5cmD 、10cm5.如图4-4-2,等边三角形ABE 与正方形ABCD 有一条公共边,则∠AED 等于( ) A 、10° B 、12.5° C 、15° D 、20° 6.若矩形各角平分线能围成一个四边形,则这个四边形是( ) A 、平行四边形 B 、矩形 C 、菱形 D 、正方形 7.E 为矩形ABCD 中AB 边上的中点,CE ⊥DE ,那么∠CEB 等于( ) A 、30° B 、45° C 、60° D 、75° 8.下列命题中错误的是( ) A 、正方形既是矩形又是菱形 B 、有一个内角是直角的菱形是正方形C 、有一组邻边相等的矩形是正方形D 、两条对角线想到垂直且相等的四边形是正方形 9.正方形具有而矩形不一定具有性质是( ) A 、对角线互相垂直 B 、对角线相等C 、对角线互相平分D 、对角线互相平分且相等10.如图4-4-3,E 是正方形ABCD 内一点,且△EAB 是等边三角形,则∠ADE 等于( ) A 、70° B 、72.5° C 、75° D 、77.5° 11.用长为30cm 的一根绳子,围成一个矩形,其面积最大值为( )A 、225cm 2B 、112.5cm 2C 、56.25cm 2D 、100cm 2 12.在四边形ABCD 中,O 是对角线的交点,能判定这个边形是正方形的是( )A 、AC=BD ,∠A=∠B ,∠C=∠D B 、∠ABD=∠CBD ,AB CD ,∠A=∠BC 、AO=CO ,BO=DO ,∠A=∠BD 、AO=CO ,BO=DO ,AB=BC13.如图4-4-4,设M 、N 是正方形ABCD 的边AB 、AD 的中点,MD 与NC 相交于P ,若△PCD 的面积是S ,则四边形AMPN 的面积是( ) A 、S 32 B 、S C 、S 34 D 、非上述答案14.如图4-4-4(上题图),若CE=MN ,∠MCE=35°,那么∠ANM 的度数是( ) A 、45° B 、55° C 、65° D 、35°15.如图4-4-5,正方形ABCD 的边长为3,以CD 为一边向CD 两旁作等边△PCD 和等边△QCD ,那么PQ 的长为( ) A 、233 B 、332C 、33D 、3616.一个正方形和一个等腰三角形周长相等,等腰三角形两边长为13cm 和6cm ,这个正方形的面积是( ) A 、64cm 2B 、16625cm 2C 、32cm 2D 、25cm 2图4-4-1 图4-4-2图4-4-3B17.在正方形ABCD 中,E 为BC 上一点,EF ⊥AC ,EG ⊥BD ,垂足为F 、G ,如果AC=10cm ,那么EF+EG 等于( ) A 、10cm B 、7.5cm C 、5cm D 、2.5cm 18.用两个全等的直角三角形拼下面图形:(1)平行四边形(2)矩形(3)菱形(4)正方形(5)等腰三角形(6)等边三角形,可以拼成的图案是( ) A 、(1)(4)(5) B 、(2)(5)(6) C 、(1)(2)(3) D 、(1)(2)(5) 19.下列判别错误的是( )A 、对角线互相垂直且平分的四边形是菱形B 、有一条对角线平分对角的四边形是菱形C 、对角线互相垂直的平行四边形是菱形D 、邻边相等的平行四边形是菱形20.在菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,且AE=4cm ,则菱形ABCD 的边长为( ) A 、4cm B 、5cm C 、6cm D 、7cm 21.在菱形ABCD 中,AE ⊥BC ,AF ⊥CD ,且BE=EC ,CF=FD ,则∠AEF 等于( )A 、120°B 、45°C 、60°D 、150° 22.已知菱形的周长是40cm ,一条对角线的长是12cm ,那么这个菱形的面积是( ) A 、190cm 2 B 、96cm 2 C 、48cm 2 D 、40cm 2 23.菱形的周长等于它的高的8倍,则它的相邻两个角的度数是( ) A 、20°和160° B 、60°和120° C 、45°和135° D 、30°和150° 24.菱形中,两条对角线相交于一点,则这个图形中,面积相等的三角形有( ) A 、8对 B 、12对 C 、15对 D 、16对 25.菱形ABCD 中,若∠ABC=120°,则BD :AC 的值是( ) A2BC 、1:2D26.如图4-3-1,等边△AEF 与菱形ABCD 有一个公共顶点A ,且边长相等;△AEF 的顶点E 、F 分别在菱形的边BC 、CD 上,则BAD 等于( ) A 、80° B 、90° C 、100° D 、120°二、填空题1.已知矩形的周长为72cm ,一边中点与对边的两个端点连线的夹角是直角。
特殊平行四边形【知识框架】(一)菱形1、定义有一组邻边相等的平行四边形叫做菱形2、性质1.具有平行四边形的一切性质2.菱形的四条边相等3.菱形的对角线互相垂直,并且每一条对角线平分一组对角4.菱形是轴对称图形5. S菱形=底边长×高=对角线乘积的一半3、判定1.有一组邻边相等的平行四边形是菱形2.四边都相等的四边形是菱形3.对角线互相垂直的平行四边形是菱形【练习】练习1(性质)1、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为___________2、如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于________3、如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于4、如图,在菱形ABCD中,点E、F分别是BD、CD的中点,EF=6cm,则AB= cm.5、如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为cm2.6、如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为_________7、如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC是,连接BM、DN,若四边形MBND是菱形,则=8、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为___________9、已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .10、如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围11、如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);练习2(判定)1、顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形2、如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥AC C.∠B=60°D.AC是∠EAF的平分线3、如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形4、如图,用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.5、如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE 绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.6、如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.7、如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.8、如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.9、如图,在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,求证:四边形EFGH是菱形。
10、如图:在四边形ABCD中,E为边AB上的一点,△ADE和△BCE都是等边三角形,P、Q、M、N分别是AB、BC、CD、DA边上的中点,求证:四边形PQMN是菱形。
11、如图,在等边三角形ABC中,BC=6cm,射线AG//BC,,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s),当t= s时,由A、F、C、E四个点围成的四边形是菱形.练习3(周长面积)1、如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形的周长是2、如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是3、在如图的方格纸中有一个菱形ABCD(A,B,C,D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为___________4、如图,在菱形ABCD中,对角线AC,BD分别等于8和6,将BD沿CB的方向平移,使D与A重合,B与CB延长线上的点E重合,则四边形AEBD的面积等于____________(二)矩形1、定义有一个角是直角的平行四边形叫做矩形。
2、性质1.具有平行四边形的一切性质2.矩形的四个角都是直角3.矩形的对角线相等4.矩形是轴对称图形3、判定1.有一个角是直角的平行四边形是矩形2.有三个角是直角的四边形是矩形3.对角线相等的平行四边形是矩形【练习】练习1(性质)1、如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为2、如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF= .3、如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .4、如图,Rt △ABC 中,∠C=90°,AC=BC=6,E 是斜边AB 上任意一点,作EF ⊥AC 于F ,EG ⊥BC 于G ,则矩形CFEG 的周长是 .5、如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE ⊥AC 于E ,∠EDC :∠EDA=1:2,且AC=10,则DE 的长度是 .6、如图,在矩形ABCD 中, AB=16,BC=8,将矩形沿AC 折叠,使点D 落在点E 处,且CE 与AB 交于点F ,那么AF= 。
7、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是8、如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE、ABD CE FBF的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.9、如图, 在矩形ABCD中, AD=12, AB=7, DF平分∠ADC, AF⊥EF, 求EF长;10、如图, 在矩形ABCD中, AP=DC, PH=PC, 求证: PB平分∠CBH.11、已知:如图,矩形ABCD中,AB=2BC ,E在AB延长线上,∠BCE=60° ,则∠ADE= _______12、如图,凸八边形ABCDEFGH的八个内角都相等,已知相邻六条边得长依次为AB=7,BC=4,CD=2,DE=5,EF=6,FG=2,求该八边形ABCDEFGH的周长13、如图,矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF ⊥BD于点F,则PE+PF的值为________14、如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.练习2(判定)1、四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.B.C.D.2、若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形3、如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.4、如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.5、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.ABCDAB CD=AD BC=AB BC=AC BD=6、已知:如图, □ABCD 各角的平分线分别相交于点E ,F ,G ,•H ,求证:•四边形EFGH 是矩形.7、已知:如图,四边形ABCD 的对角线AC 、BD 交于点O ,BE ⊥AC 于E ,DF ⊥AC 于F ,点O 既是AC 的中点,又是EF 的中点.(1)求证:△BOE ≌△DOF ;(2)若OA=BD ,则四边形ABCD 是什么特殊四边形?说明理由.(三)正方形1、定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、性质1.具有平行四边形、矩形、菱形的一切性质2.正方形的四个角都是直角,四条边都相等3.正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角4.正方形是轴对称图形,有4条对称轴5.正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形6.正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
127. 设正方形边长为a ,对角线长为bS 正方形= 3、判定1.先证它是矩形,再证有一组邻边相等。
2.先证它是菱形,再证有一个角是直角。
【练习】练习1(性质)1、如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,CE 、DF 交于点O .下列结论:①∠DOC=90°,②OC=OE ,③S △ODC =S四边形BEOF 中,正确的有2、如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A ′B ′C ′D ′,图中阴影部分的面积为3、如图,已知EF 为正方形ABCD 的对折线,将∠A 沿DK 折叠,使它的顶点A落在EF 上的G 点处,则∠DKG=4、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2=222b a5、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.6、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3 C.4D.57、如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.8、如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.9、如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.10、如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.11、正方形ABFG和正方形BCDE的位置如图所示,二者边长分别为5和3,求△GEC的面积12、正方形ABCF和正方形CDEG的位置如图所示,二者边长分别为5和3,求△BFE的面积13、如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE。