高一数学棱柱直棱柱和正棱柱
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
棱柱分类及分类的依据一、基于底面的形状的分类:1. 正棱柱:底面是一个正多边形,且底面的边与棱柱的侧面垂直。
2. 正多棱柱:底面是一个正多边形,但底面的边与棱柱的侧面不垂直。
3. 不规则棱柱:底面是一个不规则的多边形。
二、基于侧面的形状的分类:1. 直棱柱:侧面是由底面上的点和底面外的点直接相连而成的线段。
2. 斜棱柱:侧面是由底面上的点和底面外的点通过折线连接而成的。
三、基于棱柱的高度的分类:1. 高棱柱:棱柱的高度较大。
2. 矮棱柱:棱柱的高度较小。
以上是根据棱柱的不同特点进行的分类,每种分类都有其独特的特点和应用场景。
正棱柱是最常见的一种棱柱,它具有对称性,可以在建筑、几何学等领域得到广泛应用。
正多棱柱相对于正棱柱而言,其底面的边与侧面的夹角不是90度,因此具有一些特殊的性质和应用。
不规则棱柱则更加灵活多样,可以根据具体需求进行设计和制作。
直棱柱是最简单的一种棱柱,其侧面是由底面上的点和底面外的点直接相连而成的线段,形状规整,适用于一些简单的结构和装饰。
而斜棱柱则更加复杂,可以在一些特殊的场景中发挥作用,比如设计斜坡、楼梯等。
根据棱柱的高度进行分类主要是为了区分不同尺寸的棱柱。
高棱柱适用于一些需要较大空间的场景,如大型建筑物的支撑结构、储物柜等。
而矮棱柱则更加灵活轻便,适用于一些空间有限的场景,如家居装饰、小型建筑物的支撑结构等。
除了以上的分类依据,我们还可以根据底面的边数、侧面的棱数等进行更加详细的分类。
不同的分类依据可以根据实际需求进行选择和应用,以满足不同场景的要求。
棱柱作为一种常见的立体图形,具有丰富的分类和应用。
通过对棱柱的分类及分类依据的探讨,我们可以更好地理解和应用棱柱,为实际问题的解决提供更多的思路和方法。
希望本文能够帮助读者对棱柱的分类有一个清晰的认识。
1.1。
1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.如长方体形的盒子外表面是长方体.(×)2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8想一想1。
如何判断一个几何体是否为棱柱?提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.下面四个几何体中,是棱台的是( )答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1。
高一数学上学期知识点整理【导语】高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。
记住:是你主动地适应环境,而不是环境适应你。
由于你走向社会参加工作也得适应社会。
以下内容是作者为你整理的《高一数学上学期知识点整理》,期望你不负时光,努力向前,加油!1.高一数学上学期知识点整理求定义域的几种情形①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。
⑤由于零的零次幂没成心义,所以底数和指数不能同时为零。
⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都成心义的实数集合;⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题。
2.高一数学上学期知识点整理1.多面体的结构特点(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是类似多边形.2.旋转体的结构特点(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括重视图、侧视图、俯视图.三视图的长度特点:“长对正,宽相等,高平齐”,即重视图和侧视图一样高,重视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界限,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取相互垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为本来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.3.高一数学上学期知识点整理集合的运算1、交集的定义:一样地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.记作:A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一样地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。
8.3.1棱柱、棱锥、棱台的表面积和体积导学案【学习目标】1.会求棱柱、棱锥、棱台的表面积2.会求棱柱、棱锥、棱台的体积【自主学习】知识点1 棱柱、棱锥、棱台的表面积 1.棱柱的表面积棱柱的表面积:S 表=S 侧+2S 底.①其中底面周长为C ,高为h 的直棱柱的侧面积:S 侧=Ch ;①长、宽、高分别为a ,b ,c 的长方体的表面积:S 表=2(ab +ac +bc); ①棱长为a 的正方体的表面积:S 表=6a 2. 2.棱锥的表面积棱锥的表面积:S 表=S 侧+S 底;底面周长为C ,斜高(侧面三角形底边上的高)为h ′的正棱锥的侧面积:S 侧=12Ch ′.3.棱台的表面积棱台的表面积:S 表=S 侧+S 上底+S 下底.多面体的表面积就是围成多面体各个面的面积之和. 知识点2 棱柱、棱锥、棱台的体积 1.棱柱的体积(1)棱柱的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)棱柱的底面积S ,高为h ,其体积V =Sh .2.棱锥的体积(1)棱锥的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离. (2)棱锥的底面积为S ,高为h ,其体积V =13Sh .3.棱台的体积(1)棱台的高是指两个底面之间的距离.(2)棱台的上、下底面面积分别是S ′、S ,高为h ,其体积V 3【合作探究】探究一多面体的表面积【例1】已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下底面的中心)的上、下底面边长分别为2 cm和4 cm,侧棱长是 6 cm,则该三棱台的表面积为________.【答案】(53+95) cm2[分析]利用侧面是等腰梯形求出棱台的侧面积,再求出其表面积.[解析]正三棱台的表面积即上下两个正三角形的面积与三个侧面的面积和,其中三个侧面均为等腰梯形,易求出斜高为 5 cm,故三棱台的表面积为3×12×(2+4)×5+12×2+3+12×4×23=53+9 5.归纳总结:在掌握直棱柱、正棱锥、正棱台侧面积公式的基础上,对于一些较简单的组合体,能够将其分解成柱、锥、台体,再进一步分解为平面图形正多边形、三角形、梯形等,以求得其表面积,要注意对各几何体相重叠部分的面积的处理【练习1】如图所示,有一滚筒是正六棱柱形(底面是正六边形,每个侧面都是矩形),两端是封闭的,筒高1.6 m,底面外接圆的半径是0.46 m,问:制造这个滚筒需要5.6 m2铁板(精确到0.1 m2).解析:因为此正六棱柱底面外接圆的半径为0.46 m,所以底面正六边形的边长是0.46 m.所以S侧=Ch=6×0.46×1.6=4.416(m2).所以S 表=S 侧+2S 底=4.416+2×34×0.462×6≈5.6(m 2). 故制造这个滚筒约需要5.6 m 2铁板.探究二 多面体的体积【例2】如图所示,在多面体ABCDE F 中,已知底面ABCD 是边长为3的正方形,E F①AB ,E F =32,E F 与面ABCD 的距离为2,则该多面体的体积为( )A.92B .5C .6D.152【答案】 D[解析] 如图,连接EB ,EC ,AC ,则V E ABCD =13×32×2=6.①AB =2E F ,E F①AB ,①S①EAB=2S①BE F.①V FEBC=V CE F B=12V CABE=12V EABC=12×12V EABCD=32.①V=V EABCD+V FEBC=6+32=152.归纳总结:求几何体体积的常用方法1公式法:直接代入公式求解.2等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.3补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.4分割法:将几何体分割成易求解的几部分,分别求体积.【练习2】三棱台ABCA1B1C1中,AB:A1B1=1:2,则三棱锥A1ABC,BA1B1C,CA1B1C1的体积之比为()A.111B.112C.124D.144【答案】C解析:如图,设棱台的高为h , S ①ABC =S ,则S ①A 1B 1C 1=4S . ①VA 1ABC =13S ①ABC ·h =13Sh ,VC A 1B 1C 1=13S ①A 1B 1C 1·h =43Sh .又V 三棱台ABC A 1B 1C 1=13h (S +4S +2S )=73Sh ,①VB A 1B 1C =V 三棱台ABC A 1B 1C 1-VA 1ABC -VC A 1B 1C 1 =73Sh -Sh 3-4Sh 3=23Sh . ①体积比为124, ①应选C.课后作业A 组 基础题一、选择题1.如图,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C AA ′B ′B 的体积是( )A .13B .12C .23D .34【答案】C [①V C A ′B ′C ′=13V ABC A ′B ′C ′=13,①V C AA ′B ′B =1-13=23.]2.正方体的表面积为96,则正方体的体积为( )A .486B .64C .16D .96【答案】B3.棱锥的一个平行于底面的截面把棱锥的高分成1∶2(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于( )A .1∶9B .1∶8C .1∶4D .1∶3【答案】B [两个锥体的侧面积之比为1①9,小锥体与台体的侧面积之比为1①8,故选B .]4.若正方体八个顶点中有四个恰好是正四面体的顶点,则正方体的表面积与正四面体的表面积之比是( )A . 3B . 2C .23D .32【答案】A [如图所示,正方体的A ′、C ′、D 、B 的四个顶点可构成一个正四面体,设正方体边长为a ,则正四面体边长为2a . ①正方体表面积S 1=6a 2, 正四面体表面积为S 2=4×34×(2a )2=23a 2, ①S 1S 2=6a 223a 2= 3.] 5.四棱台的两底面分别是边长为x 和y 的正方形,各侧棱长都相等,高为z ,且侧面积等于两底面积之和,则下列关系式中正确的是( )A .1x =1y +1zB .1y =1x +1zC .1z =1x +1yD .1z =1x +y【答案】C [由条件知,各侧面是全等的等腰梯形,设其高为h ′,则根据条件得,⎩⎪⎨⎪⎧4·x +y 2·h ′=x 2+y 2,z 2+⎝⎛⎭⎫y -x 22=h ′2,消去h ′得,4z 2(x +y )2+(y -x )2(y +x )2=(x 2+y 2)2. ①4z 2(x +y )2=4x 2y 2, ①z (x +y )=xy , ①1z =1x +1y.] 二、填空题6.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________.【答案】6 [设长方体从一点出发的三条棱长分别为a ,b ,c ,则⎩⎨⎧ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.]7.已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.【答案】3212 [S 表=4×34×12=3, V 体=13×34×12×12-⎝⎛⎭⎫33 2=212.]8.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,则点A 到平面A 1BD 的距离d =________.【答案】33a [在三棱锥A 1ABD 中,AA 1是三棱锥A 1ABD 的高,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,①V 三棱锥A 1ABD =V 三棱锥A A 1BD , ①13×12a 2×a =13×12×2a ×32×2a ×d , ①d =33a . ①点A 到平面A 1BD 的距离为33a .]三、解答题9.已知四面体ABCD 中,AB =CD =13,BC =AD =25,BD =AC =5,求四面体ABCD 的体积.[解] 以四面体的各棱为对角线还原为长方体,如图. 设长方体的长、宽、高分别为x ,y ,z ,则⎩⎪⎨⎪⎧x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,①⎩⎪⎨⎪⎧x =3,y =2,z =4.①V D ABE =13DE ·S ①ABE =16V 长方体,同理,V C ABF =V D ACG =V D BCH =16V 长方体,①V 四面体ABCD =V 长方体-4×16V 长方体=13V 长方体.而V 长方体=2×3×4=24,①V 四面体ABCD =8.10.如图,已知正三棱锥S ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积.[解] 如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ①AB ,与AB 交于点E ,连接SE ,则SE ①AB ,SE =h ′.①S 侧=2S 底, ①12·3a ·h ′=34a 2×2. ①a =3h ′.①SO ①OE ,①SO 2+OE 2=SE 2.①32+⎝⎛⎭⎫36×3h ′2=h ′2. ①h ′=23,①a =3h ′=6.①S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ①S 表=S 侧+S 底=183+93=27 3.11.建造一个容积为16 m 3,深为2 m ,宽为2 m 的长方体无盖水池,如果池底的造价为120元/m 2,池壁的造价为80元/m 2,求水池的总造价.解:设长方体的长、宽、高分别为a m ,b m ,h m ,水池的总造价为y 元.①V =ab h =16,h =2,b =2,①a =4.则有S 底=4×2=8 (m 2),S 壁=2×(2+4)×2=24 (m 2),y =S 底×120+S 壁×80=120×8+80×24=2 880(元).B 组 能力提升一、选择题1.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( )A .3πB .43C .32πD .1 【答案】B [如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为2,故底面积为(2)2=2;四棱锥的高为1,故四棱锥的体积为13×2×1=23.则几何体的体积为2×23=43.] 2.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为( )A .423B . 2C .223D .23【答案】D [由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为2,三条侧棱两两垂直,所以此三棱锥的体积为13×12×2×2×2=23.] 二、填空题3.已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.【答案】90 138 [该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.] 三、解答题4.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 上任意一点到平面ABCD 的距离均为3,求该多面体的体积.[解] 如图,连接EB ,EC .四棱锥E ABCD 的体积V 四棱锥E ABCD =13×42×3=16. ①AB =2EF ,EF ①AB ,①S ①EAB =2S ①BEF .①V 三棱锥F EBC =V 三棱锥C EFB =12V 三棱锥C ABE =12V 三棱锥E ABC =12×12V 四棱锥E ABCD =4. ①多面体的体积V =V 四棱锥E ABCD +V 三棱锥F EBC =16+4=20.5.一个正三棱锥P ABC 的底面边长为a ,高为h .一个正三棱柱A 1B 1C 1A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0分别在底面△ABC 上,何时此三棱柱的侧面积取到最大值?[解] 设三棱锥的底面中心为O ,连接PO (图略),则PO 为三棱锥的高,设A 1,B 1,C 1所在的底面与PO 交于O 1点,则A 1B 1AB =PO 1PO ,令A 1B 1=x ,而PO =h ,则PO 1=h ax , 于是OO 1=h -PO 1=h -h ax =h ⎝⎛⎭⎫1-x a . 所以所求三棱柱的侧面积为S =3x ·h ⎝⎛⎭⎫1-x a =3h a (a -x )x =3h a ⎣⎢⎡⎦⎥⎤a 24-⎝⎛⎭⎫x -a 22.当x =a 2时,S 有最大值为34ah ,此时O 1为PO 的中点.。
棱柱高中知识点总结
1. 棱柱的定义
棱柱是一种多边形组成的几何体,它的两个底面平行且相等,而且被这些底面的边缘所连接,这些边缘叫做“侧面”。
如果底面是正多边形,那么这个棱柱就是“正棱柱”;如果底面是任意多边形,那么这个棱柱就是“斜棱柱”。
2. 棱柱的特征
棱柱有很多特征,其中最主要的包括:
- 底面的形状:一般来说,棱柱的底面都是多边形,可以是任意的多边形;
- 侧面的形状:侧面是连接两个底面的多边形;
- 顶点:棱柱有4个顶点;
- 棱:棱柱有6条棱;
- 高:棱柱的高是连接两个底面的顶点的垂直距离。
3. 棱柱的表面积和体积的计算
棱柱的表面积可分为底面积和侧面积:
- 底面积:底面积的计算取决于底面的形状,可以是正方形、正三角形、正多边形等;
- 侧面积:侧面积是所有侧面的面积之和;
- 总表面积:总表面积等于底面积加上侧面积。
棱柱的体积等于底面积乘以高,即V = 底面积 * 高。
4. 棱柱的分类
- 正棱柱:当底面是正多边形时,这个棱柱就是正棱柱;
- 斜棱柱:当底面是任意多边形时,这个棱柱就是斜棱柱;
- 直棱柱:当棱柱的侧面在底面上的投影和底面相等时,这个棱柱就是直棱柱。
总结:以上就是关于棱柱的一些知识点的介绍,通过学习和掌握这些知识点,可以帮助学生更好地理解和运用相关的数学知识。
希望以上内容能为你的学习提供一些帮助。
课题 棱柱及其性质学习目标 了解多面体、凸多面体的概念;掌握棱柱、直棱柱、正棱柱的概念及其性质,了解棱柱的表示及其分类;能初步利用棱柱的概念及其性质解决一些简单的问题. 学习重点、难点棱柱的概念及其性质学习过程一、 知识点分析: 1.多面体(1)多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线. (2)凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体.(3)凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等.说明:我们学习的多面体都是凸多面体.2.棱柱引人:从一些常见的物体(凸多面体),例如三棱镜,方砖等,它们呈棱柱的形状(如图).(1)棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱。
两个互相平行的面叫棱柱的底面 (简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱; 两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).(2)棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直于底面的棱柱叫直棱柱, 底面的是正多边形的直棱柱叫正棱柱。
设集合{}A =棱柱,{}B =斜棱柱,{}C =直棱柱,{}D =正棱柱,则,B C A D C =⊂.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱…… 3.棱柱的性质(1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形; (2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形(图(1));(3)过棱柱不相邻的两条侧棱的截面都是平行四边形(图(2)). 练习:判断下列命题是否正确:(1)有两个侧面是矩形的棱柱是直棱柱; (2)有一个侧面垂直于底面的棱柱是直棱柱; (3)有一条侧棱垂直于底面两边的棱柱是直棱柱; (4)有两个相邻的侧面是矩形的棱柱是直棱柱; (5)底面是正方形的棱柱是正棱柱; (6)棱柱最多有两个面是矩形;(7)底面是菱形且一个顶点处的三条棱两两互相垂直的棱柱是正棱柱; (8)每个侧面都是全等的矩形的四棱柱是正四棱柱。
高一数学上学期知识点笔记(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学上学期知识点笔记本店铺为各位同学整理了《高一数学上学期知识点笔记》,希望对你的学习有所帮助!1.高一数学上学期知识点笔记篇一1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
棱柱、直棱柱和正棱柱
[适用章节]
数学②中1-1-2的2棱柱
[使用目的]
使学生通过实例认识直棱柱、正棱柱和一般棱柱的区别,掌握棱柱的性质。
[操作说明]
1.课件的初始界面如图2106
图2106
从按钮本身注明的文字可以知道按钮的功能。
用它们可以得到底面为一般五边形或正六边形的棱柱,再选择侧棱是否垂直于底面就可以得到一般棱柱、直棱柱或正棱柱的实例了。
“闪动高线”、“1”、“2”、“关闭”几个按钮可以使棱柱的高线在不同的位置闪动、定格闪动或关闭闪动。
按钮“让图形转动”或“慢加”、“慢减”可以让图形连续或分步转动。