东南大学高等代数06考研真题
- 格式:doc
- 大小:522.00 KB
- 文档页数:2
2006考研数学一真题及答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-.(2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = .(5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T=C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x の幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A . (2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.参考答案 一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又2212211220(8)(,)(cos ,sin )[C](A)(,)(B)(,)x x xf x y d f r r rdr dx f x y dydx f x y dyπθθθ--⎰⎰⎰⎰⎰⎰40设为连续函数,则等于222211220(C)(,)(D)(,)y y ydy f x y dxdy f x y dx --⎰⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选 (11)设1,2,…,s 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若1,2,…,s 线性相关,则A 1,A 2,…,A s 线性相关. (B) 若1,2,…,s 线性相关,则A 1,A 2,…,A s 线性无关. (C) 若1,2,…,s 线性无关,则A 1,A 2,…,A s 线性相关. (D) 若1,2,…,s 线性无关,则A 1,A 2,…,A s 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若1,2,…,s 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 11+c 22+…+c s s =0,用A 左乘等式两边,得c 1A 1+c 2A 2+…+c s A s =0,于是A 1,A 2,…,A s 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1.1,2,…,s 线性无关⇔ r(1,2,…,s )=s. 2. r(AB )≤ r(B ). 矩阵(A 1,A 2,…,A s )=A (1,2,…,s),因此 r(A 1,A 2,…,A s )≤ r(1,2,…,s). 由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdyx y xydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t ttt tttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,ax 1+x 2+3x 3+bx 4=1有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解. 解:① 设1,2,3是方程组の3个线性无关の解,则2-1,3-1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A の行向量是两两线性无关の,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1 (A |)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0の基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组の通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量1=(-1,2,-1)T ,2=(0,-1,1)T 都是齐次线性方程组AX =0の解.① 求A の特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即0=(1,1,1)T 是A の特征向量,特征值为3.又1,2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于1,2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c0, c ≠0. 属于0の特征向量:c 11+c 22, c 1,c 2不都为0. ② 将0单位化,得0=(33,33,33)T . 对1,2作施密特正交化,の1=(0,-22,22)T ,2=(-36,66,66)T . 作Q =(0,1,2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式 ⎰⎰=+=≤≤-=-y yy dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤-=-y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y 这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体の简单随机样本,记N 为样本值n x x x ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时, )1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以n N =最大θ.。
2006年全国硕士研究生入学考试数学一真题一、填空题(1)0ln(1)lim1cos x x x x→+=−. (2)微分方程(1)y x y x−'=的通解是 .(3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++−=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫= ⎪−⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =.(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,).xf x y dy ⎰⎰(B)(,).f x y dy ⎰⎰(C)(,).yf x y dx ⎰⎰(C)(,).f x y dx ⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=−∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP −= (B )1.C PAP −=(C ).T C P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ−<>−<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.16 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== . 求: (Ⅰ)证明lim n x x →∞存在,并求之 .(Ⅱ)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. 17 将函数()22xf x x x=+−展开成x 的幂级数. 18 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=. (Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 19 设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有0),(),(=−⎰dy y x xf dx y x yf L.20 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=−⎧⎪++−=−⎨⎪++−=⎩有个线性无关的解 Ⅰ证明方程组系数矩阵A 的秩()2r A = Ⅱ求,a b 的值及方程组的通解21 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=−−=−是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.22 随机变量x 的概率密度为()()21,1021,02,,40,x x f x x y x F x y ⎧−<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩令其他为二维随机变量(X,Y)的分布函数.(Ⅰ)求Y 的概率密度()Y f y (Ⅱ)1,42F ⎛⎫−⎪⎝⎭23 设总体X 的概率密度为()()01,0112010x F X x θθθθ<<⎧⎪=−≤<<<⎨⎪⎩其中是未知参数其它,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,1n x x x 中小于的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+−= 2 .221cos 1,)1ln(x x x x −+ (0x →当时)(2)微分方程(1)y x y x−'=的通解是(0)xy cxe x −=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++−=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===−1236P Q R x y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯= 而123(1)0dydz ydzdx z dxdy ∑⨯++−=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dy f x y dy πθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C)(,)(D)(,)ydy f x y dxf x y dx ⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a aC a aD a∞=∞∞==∞∞∞+++===−+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y x y x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=−='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ−−,,1}1{1111⎭⎬⎫<⎩⎨⎧−=<−σσμμX P X P.1}1{2222⎭⎬⎫⎩⎨⎧<−=<−σσμμY P Y P 因 },1{}1{21<−><−μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<−>⎭⎬⎫⎩⎨⎧<−σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdyx y xydxdy x y r I dxdy d dr r x yr ππππθ−+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤−−+−−+⎢⎥⎢⎥−⎢⎥⎢⎥−⎣⎦⎣⎦−=====2(17)()2xf x x x x =+−将函数展开成的幂极数 ()(2)(1)21x A Bf x x x x x ==+−+−+解: 2(1)(2)2,32,3A xB x xx A A ++−====令 11,31,3x B B =−=−=−令)](1[131)21(131)1(131)2(132)(x x x x x f −−⨯−−⨯=+⨯−−⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=−−=+−<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==−=−+⎰⎰则ln ln ,()cp u c f u p u'=−+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y −=证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=−⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t −=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=− 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=− 再令 (,),(,)P yf x y Q xf x y ==−所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=−−∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=− 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1 (A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0(22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<−=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数.(Ⅰ)求Y 的概率密度;(Ⅱ))4,21(−F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式 ⎰⎰=+=≤≤−=−yy y dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤−=−y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(−F )212()22,21()4,21()4,21(2−≤≤−=≤≤−−≤=≤−≤=≤−≤=X P X X P X X P Y X P 4121211==⎰−−dx . (23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤−<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<−=++−其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时, )1ln()(ln )(ln θθθ−−+=N n N L ,01)(ln =−−−=θθθθN n N d L d ,所以nN =最大θ.。
2006年全国硕士研究生入学统一考试数学二试题一、填空题:1~6小题,每小题4分,共24分.把答案填在题中横线上. (1)曲线xx xx ycos 25sin 4-+=的水平渐近线方程为______.【答案】51=y【考点】水平渐近线 【难易度】★★ 【详解】解析:,51cos 25sin 41lim cos 25sin 4lim lim =-+=-+=∞→∞→∞→xx x xx x x x y x x x 所以水平渐近线方程为51=y . (2)设函数⎪⎩⎪⎨⎧==/=⎰,,0,d sin 1)(023x a x t t x x f x在x =0处连续,则a =______.【答案】13【考点】函数连续的概念 【难易度】★★ 【详解】解析:按连续性定义,313sin lim d sin lim)(lim )0(220320=====→→→⎰x x x t t x f f a x xx x . (3)广义积分⎰+∞+022)1(d x xx =______.【答案】12【考点】无穷限的反常积分 【难易度】★★ 【详解】 解析:211121)1(d 21)1(d 02022222=+-=+=++∞∞+∞+⎰⎰x x x x x x(4)微分方程xx y y )1(-='的通解是______. 【答案】xy Cxe -=,C 为∀常数 【考点】变量可分离的微分方程【难易度】★★ 【详解】解析:这是可变量分离的一阶方程,分离变量得x xy y d )11(d -=. 积分得 1ln ln y x x C =-+,即1C x y ex e -=.因此,通解为xy Cxe -=,C 为∀常数. (5)设函数()y y x =由方程1yy xe =-确定,则0|d d =x xy=______. 【答案】e -【考点】隐函数的导数 【难易度】★★ 【详解】解析:在原方程中令0(0)1x y =⇒=.将方程两边对x 求导,并令0x =得y y y e xe y ''=--,(0)(0)y y e e '=-=-.(6)设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足BA =B +2E ,则B =______.【答案】2【考点】抽象型行列式的计算 【难易度】★★★ 【详解】解析:由BA =B +2E 得()2B A E E -=,两边取行列式,有4B A E ⋅-=.因为11211A E -==-,所以2B =. 二、选择题:7~14小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数y =f (x )具有二阶导数,且x x f x f ∆>">',0)(,0)(为自变量x 在点x 0处的增量,∆y 与d y 分别为f (x )在点x 0处对应的增量与微分,若∆x >0,则( ) (A )0<d y <∆y . (B )0<∆y <d y . (C )∆y <d y <0. (D )d y <∆y <0. 【答案】(A )【考点】函数单调性的判别;函数图形的凹凸性 【难易度】★★★ 【详解】解析:方法1:因为()0,f x '>则()f x 严格单调增加()0,f x ''> 则()f x 是凹的又0x >V ,故0dy y <<V .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--V V V0()()f x f x x ξ''=-V V0()()f x x ηξ''=-V 其中000,x x x x ξηξ<<+<<V由于()0f x ''>,从而0y dy ->V 又由于0()0dy f x x '=>V ,故选(A )(8)设()f x 是奇函数,除x =0外处处连续,x =0是其第一类间断点,则t t f xd )(0⎰是( )(A )连续的奇函数. (B )连续的偶函数.(C )在x =0间断的奇函数. (D )在x =0间断的偶函数.【答案】(B )【考点】积分上限的函数及其导数 【难易度】★★★ 【详解】解析:方法1(排除法): 设 ()f x =1,00,01,0x x x >⎧⎪=⎨⎪-<⎩此()f x 满足题设条件,它是一个奇函数,除0x =外处处连续,0x =是其第一类间断点.0()()0xxx F x f t dt xx >⎧==⎨-<⎩⎰当当并且0(0)()0F f t dt ==⎰即 0()()000xx x F x f t dt x x x >⎧⎪==>⎨⎪-<⎩⎰当当当 ()F x 是一个连续的偶函数,所以不选(A )、(C )、(D ),只能选(B ).方法2(论证法):由题设条件,()f x 除0x =外,处处连续,在0x =处为第一类间断点,且()f x 为奇函数,从而知,(0)0f =,且00lim ()lim ()0x x f x A f x A A +-→→-≠存在记为,存在, 作函数 (),0)0,0(),0f x A x x x f x A x ϕ->⎧⎪==⎨⎪-<⎩当(当当)x ϕ(为连续的奇函数,0()xt dt ϕ⎰为可导的偶函数.另一方面,00(),0()0,0(),0x x xf t dt Ax x t dt x f t dt Ax x ϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当所以,00(),0()0,0(),0x xxt dt Ax x f t dt x t dt Ax x ϕϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当 即()()xxf t dt t dt A x ϕ=+⎰⎰,所以0()xf t dt ⎰为连续的偶函数,故选(B ).(9)设函数()g x 可微,1()()g x h x e +=,(1)1h '=,(1)2g '=,则(1)g 等于( )(A )ln3-1. (B )-ln3-1.(C )-ln2-1.(D )ln2-1.【答案】(C )【考点】复合函数的求导法则 【难易度】★★ 【详解】 解析:由1()()g x h x e +=两边对x 求导,得1()()()g x h x g x e+''=,再以1x =代入,并由已知数值得1(1)12g e+=,于是1(1)ln1ln 212g =-=--.故选(C ). (10)函数212x x xy C e C e xe -=++满足的一个微分方程是( )(A ).e 32xx y y y =-'-" (B ).e 32xy y y =-'-"(C ).e 32xx y y y =-'+" (D ).e 32xy y y =-'+"【答案】(D ) 【考点】线性微分方程解的结构定理;自由项为指数函数的二阶常系数非齐次线性微分方程 【难易度】★★★ 【详解】解析:该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=对应的齐次微分方程为 -20y y y '''+= 所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解xy xe *=代入方程左边,计算得()()-23xy y y e ***'''+=,故选(D ).(11)设f (x ,y )为连续函数,则r r r r f d )sin ,cos (d 14π0θθθ⎰⎰等于( )(A )⋅⎰⎰-y y x f x x xd ),(d 21220(B )⋅⎰⎰-y y x f x x d ),(d 210220(C ).d ),(d 22012x y x f y y y⎰⎰- (D ).d ),(d 210220x y x f y y ⎰⎰-【答案】(C )【考点】交换累次积分的次序与坐标系的转换 【难易度】★★ 【详解】 解析:y x y x f r r r r f Dd d ),(d )sin ,cos (d 14π0⎰⎰⎰⎰=θθθ.D 的极坐标表示是:0≤r ≤1,4π0≤≤θ.见右图.现转换为先x 后y 的积分顺序. 原式x y x f y y yd ),(d 21220⎰⎰-=.因此选(C ).(12)设(,)f x y 与(,)x y ϕ均为可微函数,且0),(=/'y x y ϕ.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【答案】(D )【考点】多元函数极值存在的必要条件;拉格朗日乘数法 【难易度】★★★ 【详解】解析:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y f x y x y f x y x y x y λλϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩F =F =F =000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'Q 代入(1)得00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选D.(13)设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关. (D )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. 【答案】(A )【考点】向量组线性相关的判别法 【难易度】★★ 【详解】解析:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关. 方法2:因为:1.12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <. 所以有:矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此可判断答案应为A .(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011P ,则( ) (A )1C P AP -=. (B )1C PAP -=.(C )T C P AP =.(D )TC PAP =.【答案】(B )【考点】矩阵的初等变换;逆矩阵的计算 【难易度】★★ 【详解】解析:将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=PA将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫ ⎪= ⎪ ⎪⎝⎭记 BQ因PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选(B ).三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)试确定常数A ,B ,C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.【考点】高阶无穷小;泰勒公式;洛必达法则 【难易度】★★★ 【详解】解析:方法一:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得11021026B A C B B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩由此可解得13A =, 23B =-,16C =方法二:用洛必达法则.由23(1)1()x e Bx Cx Ax o x ++=++,(0x →)⇒ )(记J0)1(e )1(lim 320=+-++-→x Ax Cx Bx x x ⇒ 203])1[(e 2limx Ax A Cx B x x +-++-→ (要求分子极限为0,即1+B -A =0,否则J =∞)⇒ xAx A C J x x 6)12(e 2lim0--+=-→ (要求分子极限为0,即2A +2C -1=0,否则J =∞),⇒ 06316)31(e lim0=-=+-=-→AAx A J x x ,即1-3A =0. 解 ⎪⎩⎪⎨⎧=-=-+=-+,031,0122,01A C A A B 得61,32,31=-==C B A . (16)(本题满分10分)求.d e e sin arc x xx⎰【考点】不定积分的分部积分法;不定积分的第二类换元法 【难易度】★ 【详解】解析:x x xx x x x xx x x 2e1d e ee sin arc e de e sin arc d e e sin arc -+-=-=---⎰⎰⎰ 1)e (de e sin arc e 2---=---⎰x x xx其中,22sec tan sec sec ln sec tan ln ()1tan ()1x x x x x t te t dt tdt t t C e e C te -----===++=+-+-⎰⎰⎰因此,x x xd ee sin arc ⎰.|1e e |ln e sin arc e 2C x x x x +-+--=--- (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥,计算二重积分⎰⎰⋅+++-=Dy x y x xyI d d 1122【考点】二重积分的计算;利用极坐标计算二重积分 【难易度】★★★ 【详解】解析:D 为右半单位圆,它关于x 轴对称,于是0d d 122=++⎰⎰y x y x xyD, 从而 ⎰⎰⎰⎰++=++=122221d d 2d d 11D Dy x yx y x yxI . 又 {}10D D y =⋂≥,如图,作极坐标变换,cos x r θ=,sin y r θ=, 则 10,2π0:1≤≤≤≤r D θ.因此 2ln 2π)1ln(2πd 11d 21221022π0=+=+=⎰⎰r r r r I θ.(18)(本题满分12分)设数列{}n x 满足10x π<<,1sin n n x x +=(1,2,n =L ). (Ⅰ)证明n n x ∞→lim 存在,并求该极限;(Ⅱ)计算.)(lim 211n x nn n x x +∞→【考点】函数极限与数列极限的关系;单调有界准则【难易度】★★★★ 【详解】解析:(Ⅰ)由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=≤ 说明数列{}n x 单调减少且0n x >.由单调有界准则知lim n n x →∞存在.记为A递推公式两边取极限得 sin ,0A A A =∴=(Ⅱ)原式21sin lim(),n x n n nx x →∞=为∞"1"型 由于离散型不能直接用洛比达法则先考虑22011sin lim ln()0sin lim()t ttt t t t e t→→=用洛比达法则2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====g g(19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. 【考点】函数单调性的判别 【难易度】★★★ 【详解】证明:令()sin 2cos f x x x x x π=++ 只需证明0x π<<时,()f x 单调增加(严格)()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+ ()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴ 单调减少(严格)又()cos 0f ππππ'=+=,故0()0()x f x f x π'<< >时则单调增加(严格)()()b a f b f a >>由则,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且)(22y x f z +=满足等式.02222=∂∂+∂∂yzx z (Ⅰ)验证;0)()(='+"uu f u f (Ⅱ)若1)1(,0)1(='=f f ,求函数()f u 的表达式. 【考点】多元复合函数的求导法;变量可分离的微分方程 【难易度】★★★ 【详解】解析:(I)z zf fx y∂∂''==∂∂()22222z xf fx x y x y ∂'''=+∂++()()22322222x yf fx y x y '''=+++()() 22232 22222z y xf fy x y x y∂'''=+∂++同理222200()()0z zfx yf uf uu∂∂''+==∂∂'''∴+=代入得成立(II)令(),f u p'=于是上述方程成为dp pdu u=-,则dp ducp u=-+⎰⎰ln ln,()cp u c f u pu'=-+∴==22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+===由得,于是22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+==∴=由,(21)(本题满分12分)已知曲线L的方程为)0(4,122≥⎪⎩⎪⎨⎧-=+=tttytx,(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.【考点】导数的几何意义;由参数方程所确定的函数的导数;平面图形的面积【难易度】★★★【详解】解析:(Ⅰ)4222,42,12dx dy dy tt tdt dt dx t t-==-==-222312110(0)2dydd y dxtdxdx dt t t tdt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<>⎪⎝⎭处∴曲线L (在0t >处)是凸.(Ⅱ)切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则 2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得 200000020,(1)(2)001t t t t t t +-=-+=>∴=Q点为(2,3),切线方程为1y x =+(Ⅲ)设L 的方程()x g y =, 则 ()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===-+=得可知(309(1)S y y d y ⎡⎤=----⎣⎦⎰33(102)4y dy y =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)(本题满分9分)已知非齐次线性方程组⎪⎩⎪⎨⎧=+++-=-++-=+++13,1534,1432143214321bx x x ax x x x x x x x x有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求a ,b 的值及方程组的通解.【考点】非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系;非齐次线性方程组的通解 【难易度】★★★ 【详解】解析:(Ⅰ)设123,,ααα是方程组的3个线性无关的解,则2131,αααα--是0Ax =的两个线性无关的解.于是0Ax =的基础解系中解的个数不少于2,即4()2r A -≥,从而()2r A ≤.又因为A 的行向量是两两线性无关的,所以()2r A ≥. 两个不等式说明()2r A =.(Ⅱ)对方程组的增广矩阵作初等行变换:[]A b = 1111|11111|14351|10115|3,13|1004245|42a b a a b a --⎡⎤⎡⎤⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥-+--⎣⎦⎣⎦由()2r A =,得出 2,a = 3b =-.代入后继续作初等行变换:1024|20115|3.0000|0-⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦得同解方程组 1342342-24-3-5x x x x x x =+⎧⎨=+⎩求出一个特解(2,3,0,0)T-和0Ax =的基础解系(2,1,1,0)T-,(4,5,0,1)T-.得到方程组的通解: 12(2,3,0,0)(2,1,1,0)(4,5,0,1)T T Tc c -+-+-,12,c c 任意.(23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)Tα=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.【考点】矩阵的特征值的计算;矩阵的特征向量的计算;施密特正交化;相似对角矩阵 【难易度】★★★ 【详解】解析:(Ⅰ) 由A 的每行元素之和为3,有(1,1,1)(3,3,3)T TA =故,0(1,1,1)Tα=是A 的特征向量,特征值为3.又12,αα都是0AX =的解说明它们也都是A 的特征向量,特征值为0.由于12,αα线性无关, 特征值0的重数大于1. 于是A 的特征值为3,0,0.属于3的特征向量:0c α, c 0≠.属于0的特征向量: 1122c c αα+,12,c c 不都为0. (Ⅱ)将0α单位化,得0333(, , )333T η=. 对12,αα作施密特正交化,得122(0, , )22T η=-,2666( )366Tη=--. 作123(,,)Q ηηη=,则Q 是正交矩阵,并且-13 0 00 0 00 0 0T Q AQ Q AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭。
2006年全国硕士研究生入学考试数学一真题一、填空题(1) lim Xln(1 x)X 01 COSX -----------------(2 )微分方程y y(1 x)的通解是__________________ .X(3)设是锥面z x2—y2( 0 z 1)的下侧,贝U xdydz 2ydzdx 3(z 1)dxdy(4)点(2,1, 0)到平面3x 4y 5z 0的距离z =(5 )设矩阵A E为2阶单位矩阵,矩阵B满足BA B 2E ,贝U B(6)设随机变量X与Y相互独立,且均服从区间[0, 3]上的均匀分布,则P max{X,Y} 1 = ______________、选择题(7)设函数y f(x)具有二阶导数,且f (x) 0, f (x) 0 ,x为自变量x在x0处的增量, y与dy(A) 0 dx y. (B) 0 y dy(C)y dy 0. (D)dy y 0104d 0f(rcos,rsin )rdr等于(A) 02dx x f (X, y)dy.(B) 0勺x°1x2f(x,y)dy.(C) 0「y1y2f(x,y)dx. (C) ^dy J 7 f(x, y)dx. 【】(9)若级数a n收敛,则级数n 1(A) a n收敛.n 1(C) a n a n 1收敛. (B) ( 1)n a n收敛.n 1(D) 3n 3n 1收敛. 【】分别为f(x)在点X。
处对应的增量与微分,若x 0,则(8)设f(x, y)为连续函数,则(10)设f (x, y)与(x, y)均为可微函数,且y (x, y) 0 •已知(x 0, y 0)是f (x, y)在约束条件(x, y) 0 下的一个极值点,下列选项正确的是 0,则 f y (x 0, y 0) 0 0,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 0(A) 若a !, a 2,L , a,线性相关,则 (B) 若a !, a ?丄,a,线性相关,则 (C) 若印,玄2丄,a,线性无关,则(A ) P(A B) P(A). (B )P(A B)P(B). (C ) P(A B) P(A).(D )P(A B)P(B). 【】14 )设随机变量X 服从正态分布N( 1, 212) , Y 服从正态分布N( 2, 2),且P{| X1| 1} P{| Y 2| 1},(A ) 1 2.(B ) 1 2.( C )12.(D )1 2.【 】(12 )设A 为3 阶矩阵,将A 的第 2 行加到第 1 行得B ,再将B 的第 1 列的 -1 倍加到第 2 列得C ,记1 10P0 1 0 ,则0 01(A ) CP 1AP.(B ) C PAP 1.(C )C P T AP . (D )C PAP T .【】13)设 A, B 为随机事件,且p(B) 0, p(A|B)1, 则必有(D) 若a !, a ?丄,a,线性无关,则】(A) 若 f x (x 。
2006年全国硕士研究生入学考试数学(一)一、填空题(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =16 .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 A 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 B 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰。
2006 年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】2.【详解】由等价无穷小替换,0x →时,21ln(1),1cos 2x x x x +-,2002ln(1)limlim 11cos 2x x x x x x x →→+=-=2(2)【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dxy x =-⎰⎰⎰⇒ln ln y x x c =-+⇒ln ln yx x cee-+=⇒xy Cxe-=(3)【答案】2π【详解】补一个曲面221:1x y z ⎧+≤∑⎨=⎩1,取上侧,则1∑+∑组成的封闭立体Ω满足高斯公式,1()P Q R dv Pdydz Qdzdx Rdxdy I x y z Ω∑+∑∂∂∂++=++=∂∂∂⎰⎰⎰⎰⎰ 设,2,3(1)P x Q y R z ===-,则1236P Q Rx y z∂∂∂++=++=∂∂∂∴I =6dxdydz Ω⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)注:以下几种解法针对于不同的方法求圆锥体体积V 方法1:I 623ππ=⨯=(高中方法,圆锥的体积公式,这种方法最简便)而123(1)0xdydz ydzdx z dxdy ∑++-=⎰⎰( 在1∑上:1,0z dz ==)方法2:先二重积分,后定积分.因为1V Sdz =⎰,r =222r x y =+,22r z =,22S r z ππ==,所以1122001133V z dz z πππ===⎰.从而6623I V ππ==⨯=方法3:利用球面坐标.1z =在球坐标下为:1cos ρθ=,1224cos 0006sin I d d d ππϕθϕρϕρ=⎰⎰⎰243002sin cos d d ππϕθϕϕ=⎰⎰2430cos (2)cos d d ππϕθϕ=-⎰⎰422001(2)()cos 2d ππθϕ-=--⎰202d πθπ==⎰方法4:利用柱面坐标.21106rI d dr rdz πθ=⎰⎰⎰216(1)d r rdrπθ=-⎰⎰122300116()23d r r πθ=-⎰202d πθπ==⎰(4)【详解】代入点000(,,)P x y z 到平面0Ax By Cz D +++=的距离公式d ===(5)【答案】2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=,两边取行列式,得()244B A E E E -===其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦,222E 4E ==因此,2422E B A E===-.(6)【答案】19【详解】根据独立性原理:若事件1,,n A A 独立,则{}{}{}{}1212n n P A A A P A P A P A =事件{}{}{}{}max{,}11,111X Y X Y X Y ≤=≤≤=≤≤ ,而随机变量X 与Y 均服从区间[0,3]上的均匀分布,有{}1011133P X dx ≤==⎰和{}1011133P Y dy ≤==⎰.又随机变量X 与Y 相互独立,所以,{}{}{}{}max(,)11,111P x y P x Y P x P Y ≤=≤≤=≤⋅≤1133=⨯19=二、选择题.(7)【答案】A 【详解】方法1:图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''>则()f x 是凹函数,又0x > ,画2()f x x =的图形结合图形分析,就可以明显得出结论:0dy y << .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+-- (前两项用拉氏定理)0()()f x f x xξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'' ,其中000,x x x x ξηξ<<+<< 由于()0f x ''>,从而0y dy -> .又由于0()0dy f x x '=> ,故选[]A 方法3:用拉格朗日余项一阶泰勒公式.泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+ ,其中(1)00()()(1)!n nn fx R x x n +=-+.此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆>又由0()0dy f x x '=∆>,选()A .O x 0x 0+Δx xyy=f (x )Δydy(8)【答案】()C 【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤,04πθ≤≤.题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意y x =与221x y +=在第一象限的交点是2222,)),于是2:02D y y x ≤≤≤≤所以,原式0(,)ydy f x y dx =.因此选()C (9)【答案】D 【详解】方法1:数列收敛的性质:收敛数列的四则运算后形成的新数列依然收敛因为1nn a ∞=∑收敛,所以11n n a ∞+=∑也收敛,所以11()n n n a a ∞+=+∑收敛,从而112n n n a a ∞+=+∑也收敛.选D.方法2:记n n a =,则1n n a ∞=∑收敛.但11n n n a ∞∞===∑(p 级数,12p =级数发散);111n n n n a a ∞∞+===∑∑p 级数,1p =级数发散)均发散。
一. 填空题(本题共10小题,每小题4分,满分40分,标明题号,不写过程,直接将答案写在答题纸上)1.若⎪⎪⎪⎭⎫ ⎝⎛=143412321A ,)(λf 是A 的特征多项式,则)(λf 除以1-λ所得的余式=r 。
2.多项式x x x x xx g 43214321432432)(=中3x 的系数是 。
3.若二次型Ax x x f T =)(经过正交变换Py x =后化为22221n y y y +++ ,那么矩阵=A 。
4.已知B A ,是同阶实对称矩阵,则BA AB -的特征值λ的实部=)Re(λ 。
5.若)(V L 表示n 维线性空间V 上全体线性变换所构成的线性空间,则)(V L 的维数是 。
6.三元二次方程022********=+++x x x x x 的一切解=⎪⎪⎪⎭⎫ ⎝⎛321x x x 。
7.若⎪⎪⎪⎭⎫ ⎝⎛----=031251233A ,则A 的最小多项式=)(λm 。
8.命题“欧氏空间nR 上保持内积不变的变换是一个线性变换”是 。
9.若c b a ,,是互不相同的实数,则方程组⎪⎩⎪⎨⎧=++=++=++332213322133221c x c cx x b x b bx x a x a ax x 中的=1x 。
10.已知T 是线性空间2R 上的一个线性变换,并且⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛2121T ,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1232T ,那么=⎪⎪⎭⎫ ⎝⎛54T 。
二.解答题(本题共8小题,满分110分,标明题号,要求写出必要的解题步骤,解答写在答题纸上)11.(10分)设)(),(x g x f 都是数域P 上的多项式。
如果)()(),()(x f x g x g x f ,证明存在非零常数c 使得)()(x cg x f =。
12.(10分)讨论常数b a ,为何值时,方程组⎩⎨⎧=-=+004221x x x ax 与⎩⎨⎧=+-=+-00432321bx x x x x x 有非零公共解,并将它们全部求出。
一.(20%)若矩阵A 的伴随矩阵*111011001A ⎛⎫⎪= ⎪ ⎪⎝⎭,B 满足*123A BA A B E -=+,求B 。
二.(15%)设矩阵308316205A ⎛⎫⎪= ⎪ ⎪--⎝⎭,求100502A A -。
三.(20%)记n sC⨯是n s ⨯复矩阵全体在通常运算下构成的复数域上的线性空间。
假设22A C⨯∈。
1. 证明:22{|}W X CAX O ⨯=∈=是22⨯C的子空间;2. 若1122A -⎛⎫=⎪-⎝⎭,求第1小题中子空间W 的一组基及其维数; 3. 设n nM C ⨯∈的秩为r ,n sC ⨯的子空间{|}n sU X CM X O ⨯=∈=。
求U 的维数。
四.(15%)假设A 是s n ⨯实矩阵,在通常的内积下,A 的每个行向量的长度为a ,任意两个不同的行向量的内积为b ,其中,a b 是两个固定的实数。
1. 求矩阵TAA 的行列式;2. 若20a b >≥,证明:TAA 的特征值均大于零。
五. (20%)已知实矩阵224,230b A B a ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭。
1. 若矩阵方程A X B =有解,但BY A =无解,问:参数,a b 应满足什么条件? 2. 若,A B 相似,问:参数,a b 应满足什么条件? 3. 若,A B 合同,问:参数,a b 应满足什么条件? 六. (20%)设f 是有限维Euclid 空间V 上的正交变换。
1. 证明:f 的特征值只能是1或-1;2. 证明:f 的属于不同特征值的特征向量相互正交;3. 如果1和-1都是f 的特征值,并且1V 和1-V 分别表示f 的属于特征值1和-1的特征子空间。
若I f=2(I 表示V 上的恒等变换),证明:11V V ⊥-=。
七.(10%)设A 是n 阶实对称矩阵,0λ是A 的最大特征值。
证明: 0m axnTT x Rx Ax x xθλ≠∈=,nR 表示实n 维列向量全体之集。
考研真题(线性代数)2006数(一)(5)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(11)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关;(12) 设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )(T T PAP C D APP C C ==)()(20 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。
21 设3阶实对称矩阵A 的各行元素之和均为3,向量()T1211--=α,()T 1102-=α是线性方程组的两个解,(1)求A 的特征值;(2) 求正交矩阵Λ=ΛAQ Q Q T 使得和对角矩阵。
(6)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(13)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关; (14)设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )( T T PAP C D AP P C C ==)()(22 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。