当前位置:文档之家› 因式分解 方法归纳

因式分解 方法归纳

因式分解 方法归纳
因式分解 方法归纳

式分解最全方法归纳

水散人整理于2015.09

一、因式分解的概念与原则

1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。

2、原则:

(1)分解必须要彻底(即分解之后的因式均不能再做分解);

(2)结果最后只留下小括号;

(3)结果的多项式是首项为正,为负时提出负号;

()结果个因式的多项式为最简整式,还可以化简的要化简;

()如有单项式和多项式相乘,应把单项式提到多项式前;

()相同因式的乘积写成幂的形式;

()如无特殊要求,一般在有理数范围内分解。如另有要求,在要求的范围内分解。

3、因式分解的一般步骤

(1)如果多项式的各项有公因式,那么先提公因式;

(2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

(3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解;

(4)检查各因式是否进行到每一个因式的多项式都不能再分解。

也可以用一句话来概括:“看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

二、因式分解的方法

1、提取公因式

公因式:一个多项式的多项都含有的相同的因式叫做这个多项式的公因式。公因式可以是单项式,也可以是多项式。

确定公因式的方法:公因数的常数应取各项系数的最大公约数,多项式第一项为负的,要提出负号;字母取各项的相同字母,而且各字母的指数取次数最低的。

提取公因式:公因式作为一个因式,原式除以公因式的商作为另一个因式。

意事项:

(1)先确定公因式,一次把公因式全部提净;

()提完公因式后,商的项数与原式相同,与公因式相同的项,其商为1不可丢掉;

()提取的公因式带负号时,多项式的各项要变号。

例1、分解因式: –9a c+3

解:原式=-3c+1)

2、分解因式:–12+4

解:原式=–4–y)

结(口诀):找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

2、公式法

分解因式与整式乘法是互逆的恒等变换,如果把乘法公式反过来,那么就可以用来把某些多项式分解成因式。

平方2b2b)b

平方b)22b22a b+b+c)22b2+2a b+2c+2ca

方3b3b)2b2b

方和3b3b)2b2b)

项立方和3b333a bc b+)2b22b–bc)

方b)3a b2+3a2b b3b)3a b2-3a2b-b3

次方和–b–b)[–1)+a–2)+…+b–2)+b–1)

次方差+b+b)[–1)-a–2)+…-b–2)+b–1)为奇数)

部分公式的推导:

+a+a)+b)+b)+b)+b))

b b-b+b b)b b)b)b b)b)

b)b b)b)b+b)

b b+b-b b)b b)b)b b)b)

b)b b)b)b+b)

、分解因式:-6

解一:原式=))+8))

+2)+4))+2+4)

解二:-6)–)–4)+8+16–4)

+2)–2)[+4)–)

+2)–2)+2+4)–2+4)

意:分解时既用平方差公式又用立方差公式,一般先用平方差公式,可简化步骤。

、分组分解法

多项式含有多个单项式时,从整体看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从局部看,能够提取公因式或利用公式的,进行适当的分组,使得分组后能够提取公因式或利用公式。

、分解因式: a+bm bn

解:原式=)bm+bn)b b

、分解因式:+b–c–2

解:原式=–2+b)–c–b)–c–b+c)–b–c)

、十字相乘法

(1)形如+b+c的二次三项式,如果有,q=c,且q+n则可把该式分解为+b+c=+p)+q)。

意:凡是能十字相乘法分解的二次三项式ax2+bx+c,都要求判别式Δ=b24ac,能在有理数范围内分解的,还必须是一个完全平方数。

、分解因式:–11x+10

解:原式1)+[1×-5)+3-2)+–2)–5)

-2)-5)

、分解因式:–x–15

解:原式+[–5)+3+3–5)

+3)-5)

、已知为正整数,+3+k能够在整数范围内分解因式,求。

解:–49–8,9,且为正整数

1

9、(州)要是二次三项式+p在整数范围内能进行因式分解,那么整

数的取值可以有()。

、个、个、个、无数个

解:(–5)–4–4,即

只要能分解为和为的两个数,这样的数有无数组,故选

()二次项系数为1时,是相对上面标准二次三项式的简化。

++q)+p q=+p)+q)

10、分解因式:x+6

解:原式+[–2)+–3)+–2)–3)–2)–3)

11、分解因式:–3

解:原式+[+–7)+5–7)+5)–7)

()对齐次多项式+b+cy,将一个字母当做常数处理,把原多项式看成关于另一个字母的二次三项式,就可以利用十字相乘法进行分解。

12、分解因式:15+7-4

解:原式+4))

13、分解因式:–6+8

解:原式))

()对次多项式形如+b+c或+b+cy的,参照上面方法进行,分解后的多项式由于次数较高,如果有能继续分解的要继续分解,直至分解彻底。

14、分解因式:–5+3

解:原式–1)–3)+1)–1)–3)

15、分解因式:12–19m–18

解:原式–9n)+2)+3)–3)+2)

、拆项法(包含添项法)

把多项式的某一项拆开成其和与原项相等的两项或多项,一个不存在的项也可以拆成其和为的两项或多项(也称添项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。

意:拆项(或添项)必须是在与原多项式相等的原则下进行的恒等变换,否则此处一步错,后面步步错。

16、分解因式:–3+4

解一:原式+1–3+3+1)–x+1)–3+1)–1)

+1)–x+1–3+3)+1)–4+4)+1)–2)

解二:原式–3–4)+4+4-3)+4+1)

+1)–4)+4+1)+1)–4+4)+1)–2)

17、分解因式:c+c)+ca c)+b)

解:原式c c-a+a+b)+ca c)+b)

c c)+ca c)+b c+b)+b)

c c)+a)+b+b)c)c+b)c)+b)

18、分解因式:9+x+x

解:原式9–1+x–1+x–1

–1)+x+1)+–1)+1)+–1)

–1)+x+1+x+1+1)-1)+x+1)+2+3)

、配方法

有些多项式可以使用拆项法将其配成一个完平方式,然后剩余部分再利用平方差公式,就能将其因式分解。

(1)为了方便运算,二次项系数不为1时,先提出二次项系数,使其变为1。

()对形如+b+c的二次三项式,作变换:+b+c=+b+()+c()。

()对齐次多项式+b+cy,将一个字母当做常数处理,把原多项式看成关于另一个字母的二次三项式,就可以利用配方法进行分解。

()对次多项式形如+b+c或+b+cy的,参照上面方法进行。

19、分解因式:+3

解:原式+3+)0–)+)13)+8)-5)

、分解因式:–210

解:原式–41y)–4+41y)–4+4)

[))+3))

结:能够用配方法分解的多项式,均可用十字相乘法分解。但配方法作为一种重要的数学方法,除因式分解外还有很多重要应用,必须熟练掌握。

、换元法

把多项式中某些部分看成一个整体,用新字母代替,叫做换元。换元后进行因式分解,后再转换回来。

(1)对多项式中杂部分换元,简化计算,避免出错。

1、分解因式:15151)15

解:设15,

原式––1)–K+1)–K)15+1)-215)

()形如cd+e的多项式,先经过适当分组,两展开,再换元以求简便。

1、分解因式:+1)+2)+3)+6)+x

解:原式+7+6)+5+6)+x

+5+6,则+7+6+2

原式+2)+x+2+M+M)+6+6)

、要使多项式1)+3))-8)+m为一个完平方式,则等于)、12、、98、196

解:原式1))+3))+m+4))+m

+4,则

原式)+m+m)196选择

()按字母的降幂排列,每一项的次数依次减1,且系数成轴的等距离多项式,提中间项的字母和它的次数,保留系数,然后再用换元法。

、分解因式:–x–6–x+2

解:原式–x–6–1+)[+1)–+1)–6

+1,则+1–2

原式[–2)–A–6–A–10)–5)+2)

+–5)+1+2)+–5)+1+2)

–5+2)+2+1)+1)–1)–2)

、分解因式:–4+x+4+1

解:原式–4+1++1)[+1)–4–1)+1

–1,则+1+2

原式+2–4+1)–4+3)–1)–3)

–1–1)–1–3)–x–1)–3–1)

结:对结构比较复杂的多项式,能使复杂的问题简单化、明朗化,在减少多项式项数、降低多项式结构复杂程度等方面有独到作用。

、主法

选定一个字母为主,然后把各项按这个字母降幂排列,再进行因式分解。

、分解因式:+c)+b c+a)+c+b)+2c

解:原式+c)++c+2c)+b c+b c+c)++c)+b c+c)

+c)[++c)+b c+b)+c)+c)

、分解因式:c)+b c)+c)

解:原式–c)––c)+b c–b c–c)––c)+c)+b c–c)

c)[+c)+b c)c)c)

结:选定主元,可使多元多项式清晰明了,避免分解时无从下手。

9、待定系数法

首先判断出分解后因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

、分解因式:+x–6+x+13–6

解:原式的前项可以分解为+3)-2)

+x–6+x–13–6+3+a)-2+b)

+3+a)-2+b)+x–6++b)+-2)–a

与原式对相同项的系数,得:1

13解得

原式+3–2)-2+3)

、多项式–y+m+5–6能分解因式,求的值,并分解此多项式。解:设–y+m+5–6+y+a)–y+b)

+y+a)–y+b)–y++b)+–a)+a

与原式对系数得:+

–6

解得

–2

1

–1

1

当1时,原式–y+x+5–6+y-2)–y+3)

当–1时,原式–y–x+5–6+y-3)–y+2)

9、如果+a+b+8有两个因式+1和+2能分解因式,求+b的值。解:设+a+b+8+1)+2)+y)

则+a+b+8++3)++2)+2

应项的系数得:+3

+2解得:14b=1

结:必须先判断出分解后因式的形式,该形式一旦确定,后面就比较简单了。

10、双十字相乘法

形如+b+cy+d+ey+f的二元二次六项式,将分解成乘积作为一列,c

分解成q乘积作为第二列,分解成乘积作为第三列,果q+n,+qj e,+n,即第1,列、第列和第1,列都满足十字相乘规则。则原式(+p+j)(+qy+k)。

q+n

+qj e

+n

先用十字相乘法分解、c,得到一个十字相乘图有两列),满足q+n;再把常数项分解成两个因式填在第三列上,要求同时满足+n和+qj e。

(1)对上形如+b+cy+d+ey+f的二元二次六项式,缺少的项认为系数为,可直接采用双十字相乘法分解。

、分解因式:+3

解一:双十字相乘法

原式-11y-3)+2-3)

解二:先用主法,选定为主,再经过两次使用十字相乘法分解

原式–+5)––3+3)

–+5)–11y–1)–3)

-11y-3)+2-3)

、分解因式:+5+x+9y

解一:双十字相乘法

原式+21)+4)

解二:先用主法,选定为主,再经过两次使用十字相乘法分解

原式++1)––9y+4)

++1)–)1)

+21)+4)

()对一次五项式,采用换元法,设一个新未知数等于原未知数的平方,原次项转化为次项,次项转化为两个1次项的乘积,次项适当拆分为原未知数的次项和新设未知数的1次项,这样就转换为二元二次六项式,再直接采用双十字相乘法分解。

、分解因式:+13+2+11x+2

解:设,则,,代入原式

原式+13+15+5+11x+2

+3+1)+5+2)

+3+1)+5+2)

+1)+1)+5+2)

结:双十字相乘法本质上就是两次使用十字相乘法,如果掌握不好容易出错,也可以通过主元法的思路,经过两次十字相乘法来分解。

11、因式定理法(包含求根法)

余数定理:多项式)+b除,所得的余数为)。

因式定理:如果),那么多项式)必定含有因式。反过来,如果)含有因式,那么,)。为余式定理的推之一。

(1)试错法求根法):最高次项系数为1时,找出常数项的各个因子分别代入,找出所有满足)的因子,也就是说这些因子都是方程)的根。如果所有根为

1

,且根的数量等于)的最高次数,即表明方程)没有重,则分解结果

为)-x

1

)-x)-x)。

()长除法:找出常数项的各个因数,如果某一因数足),那么就是多项式)因式之一。把)除以,使用长除法,得到一个商的多项式。对这个商继续进行上边的步骤,直至不能分解,或通过长除法降低次数后使用其它方法分解。

()结合使用待定系数法:找出常数项的各个因数,如果某一因数足),那么就是多项式)因式之一。不用长除法把)除以,而是把作为一个因式,用待定系数法求出其余的因式。

、分解因式:–x–4+4

解一:的因数为1、、

)–x–4+4

当1时,1)1–1–4+4

当–1时,–1)–1–1+4+4

当时,)–4–8+4

当–2时,–2)–8–4+8+4

当时,)–16-16+4

当–4时,–4)–6–16+16+4–6

∴原式–1)+2)–2)

解二:的因数为1、、

当1时,–x–4+4

–1是一个因子,用长除法提出这个因式

原式–1)–4)–1)+2)–2)

1、若–k好能被+3整除,除以+1余数为0,求、的值,并多项式因式分解。

解:记)–k,则

) 1)代入得

9

1

解得

1

)–81=+9)-9)+9)+3)-3)

、若+m–5+n好能被+3整除,除以+1余数为,求、的值,并多项式因式分解。

解:记)+m–5+n,则

) 1)代入得

9

解得

+8–5–6+3)+b+c)++b)++c)+3c

各项系数得解得1

+8–5–6+3)–x)+2)+3)1)

12、特殊值法

把一些特殊值代入未知数求值,再通过把该分解因数,最后分解成因式。步骤如下:(1)将或10代入未知数,求出数值,并结果数值分解质因数。

()如果质因数的数量等于原式最高次数,进行下一步;如果质因数的数量过原式最高次数,还要把有的质因数适当合并,最后因数的数量必须等于原式最高次数。

()将这些因数写成或10的和与差的形式,将或10原成未知数,初步写出各个因式。

()把各因式的常数项的积与原式常数项对算,数值相等,这些因式的乘积就是原式的分解结果。否则回到第()步。

、分解因式:+9x+2+15

解:令,则+9x+2+15+3+4+1510

10分解质因数,即10

意到多项式中最高项的系数为1,+1,+3,+5,

通过常数项验算:1 15

+9x+2+15+1)+3)+5)

、因式分解:–10+3–5+2

解:令10,则原式10–1010+310–510+2

把分解质因数,9

意到多项式中最高项的系数为1,10–4,10–3,10–2,9=10–1

再用回代10即得:(–4)–3)–2)–1)

通过常数项验算:(–4)–3)–2)–1)

原式–4)–3)–2)–1)

结:(1)目前掌握的特殊值法分解因式,只适用于最高次项系数为1的多项式;()其他介绍特殊值法分解因式的,都没有对比常数项验算,在给求值结果分解质因数数量超过原式最高次数需要合并一些因数时,很容易出错,必须这一步骤!

《因式分解-提公因式法》知识点归纳

《因式分解-提公因式法》知识点归纳★★ 知识体系梳理 ◆ 因式分解------把一个多项式变成几个整式的积的形式;(化和为积) 注意: 、因式分解对象是多项式; 2、因式分解必须进行到每一个多项式因式不能再分解为止; 3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性; ◆ 分解因式的作用 分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。 ◆ 分解因式的一些原则 (1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。 (2)分解彻底的原则.即分解因式必须进行到每一个

多项式因式都再不能分解为止。 (3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。 ◆ 因式分解的首要方法—提公因式法 、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的 因式提出以分解因式的方法,叫做提公因式法。 3、使用提取公因式法应注意几点: (1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。 (2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。 ◆ 提公因式法分解因式的关键: 、确定最高公因式;(各项系数的最大公约数与相同因

初中数学因式分解的常用方法(精华例题详解)

初中阶段因式分解的常用方法(例题详解) 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 1.因式分解的对象是多项式; 2.因式分解的结果一定是整式乘积的形式; 3.分解因式,必须进行到每一个因式都不能再分解为止; 4.公式中的字母可以表示单项式,也可以表示多项式; 5.结果如有相同因式,应写成幂的形式; 6.题目中没有指定数的范围,一般指在有理数范围内分解; 7.因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法. 因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法. 如多项式am+bm+cm=m(a+b+c), 其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用 a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2, a3±b3=(a±b)(a2ab+b2) 写出结果. 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:am+an+bm+bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑 两组之间的联系。 解:原式=(am+an)+(bm+bn) =a(m+n)+b(m+n)每组之间还有公因式! =(m+n)(a+b) 思考:此题还可以怎样分组? 此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。 例2、分解因式:2ax-10ay+5by-bx 解法一:第一、二项为一组;解法二:第一、四项为一组; 第三、四项为一组。第二、三项为一组。 解:原式=(2ax-10ay)+(5by-bx)原式=(2ax-bx)+(-10ay+5by) =2a(x-5y)-b(x-5y)=x(2a-b)-5y(2a-b) =(x-5y)(2a-b)=(2a-b)(x-5y) 练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1

因式分解最牛最全的方法

因式分解 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1) (a+b)(a-b) = a 2-b 2 a 2-b 2=(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3 a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式: (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca); 例.已知a b c ,,是ABC ?的三边,且222 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222 ()()()0a b b c c a a b c ?-+-+-=?== 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 分析:从“整体”看,这个多项式

的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=) am+ + + an bm ) ( (bn =) a+ m + n + (n ) ( m b 每组之间还有公因式! =) m+ + n (b )( a 例2、分解因式:bx -5 + 2 10 ax- by ay 解法一:第一、二项为一组;解法二:第一、四项为一组; 第三、四项为一组。第二、三项为一组。 解:原式=) ax- + ay -原式 10 ) 5( 2(bx by =)5 ax+ - + bx - ( ay ) 10 2(by =)5 x y - b - a- ( ( ) 5 2y x

因式分解的几种方法

因式分解的几种方法 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。 因式分解的几种方法 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x3-2x2-x x3-2x2-x=x(x2-2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2+4ab+4b2 解:a2+4ab+4b2=(a+2b)2 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m2+5n-mn-5m 解:m2+5n-mn-5m=m2-5m-mn+5n

= (m2-5m)+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且 ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2-19x-6 分析:1×7=7,2×(-3)=-6 1×2+7×(-3)=-19 解:7x2-19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x2+6x-40 解x2+6x-40=x2+6x+(9) -(9 ) -40 =(x+ 3)2-(7 )2 =[(x+3)+7]*[(x+3) – 7] =(x+10)(x-4) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)

因式分解常用的六种方法详解

因式分解常用的六种方法详解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

因式分解地常用方法(方法最全最详细)

因式分解的常用方法 第一部分:方法介绍 因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。 注意:将一个多项式进行因式分解应分解到不能再分解为止。 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2 =(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2 ; (3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2 ); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2 ). 下面再补充两个常用的公式: (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2 ; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2 -ab-bc-ca); 例.已知a b c ,,是ABC ?的三边,且222 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?==

初中因式分解的常用方法

初中因式分解的常见方法 因式分解的概念与原则 1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。 2、原则: (1)分解必须要彻底(即分解之后的因式均不能再做分解); (2)结果最后只留下小括号; (3)结果的多项式是首项为正,为负时提出负号; (4)结果个因式的多项式为最简整式,还可以化简的要化简; (5)如有单项式和多项式相乘,应把单项式提到多项式前; (6)相同因式的乘积写成幂的形式; (7)如无特殊要求,一般在有理数范围内分解。如另有要求,在要求的范围内分解。 因式分解的一般步骤 (1)如果多项式的各项有公因式,那么先提公因式; (2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; (3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解; (4)检查各因式是否进行到每一个因式的多项式都不能再分解。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。” 因式分解的常用方法 因式分解与整式乘法是互逆的运算,是学好代数的基础之一,希望同学给以足够的重视。因式分解的每一步都必须是恒等变形,必须进行到每一个多项式因式都不能再分解为止。常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。下面通过例题一一介绍。 一.提取公因式法 (一)公因式是单项式的因式分解 1.分解因式 确定公因式的方法 ①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式); ③指数:取相同字母(或多项式)的最低次幂. 注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项. 解:原式=一4m2n(m2一4m+7). (二)公因式是多项式的因式分解 2.因式分解

《因式分解》全章复习与巩固(知识讲解及例题演练)

《因式分解》全章复习与巩固 【学习目标】 1. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算; 2.掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法; 3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解. 【知识网络】 【要点梳理】 要点一、因式分解 把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是 除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律. 要点三、公式法 1.平方差公式 两个数的平方差等于这两个数的和与这两个数的差的积,即: 2.完全平方公式 两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边 是两个数(整式)的和与这两个数(整式)的差的积. (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减) 这两数之积的2倍. 右边是两数的和(或差)的平方. (3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 要点四、十字相乘法和分组分解法 十字相乘法 利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =?? +=? ,则()()2x bx c x p x q ++=++ 分组分解法 对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式. 要点五、因式分解的一般步骤 因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.

几种常见的因式分解方法

几种常见的因式分解方法 1. 提取公因式法 2. 分组分解法 3. 应用公式法,常用的公式有: (1)222)(2b a b ab a ±=+± (2)))((22b a b a b a -+=- (3)))((2233b ab a b a b a +±=± (4)33223)(33b a b ab b a a ±=±+± (5)2222)(222c b a ac bc ab c b a ++=+++++ (6)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++ 公式(5)证明如下: ac bc ab c b a 222222+++++ 222)22()2(c bc ac b ab a +++++= 22)(2)(c c b a b a ++++= 2)(c b a ++= 公式(6)证明如下: abc c b a 3333-++ abc ab b a c b ab b a a 333332233223---++++= )333(])[(2233abc ab b a c b a ++-++= )(3])())[((22c b a ab c c b a b a c b a ++-++-+++= ]3)())[((22ab c c b a b a c b a -++-+++= ))((222ca bc ab c b a c b a ---++++= 在特殊情况下,当c b a ++=0时,就有abc c b a 3333-++=0,

于是, (7)abc c b a 3333=++ 这就是说,如果三个整式的和为零,那么这三个整式的立方和等于这三个整式乘积的三倍. 4.十字相乘法 (1)有二次三项式q px x ++2,如果常数q 能分解成两个因数a 、b 的积,并使a +b =p ,则有 ))(()(22b x a x ab x b a x q px x ++=+++=++ (2)有二次三项式c bx ax ++2,如果二次项系数a 分解成两个因数a 1和a 2,常数项c 分解成两个因数b 1和b 2,并且使b b a b a =+2211,则有 c bx ax ++2211221221)(b b x b a b a x a a +++= ))((2211b x a b x a ++= (3)二元二次多项式f ey dx cy bxy ax +++++22的因式分解. 设f ey dx cy bxy ax F +++++=22 ))((222111c y b x a c y b x a ++++= 则])][()[(222111c y b x a c y b x a F ++++= 211122212211)()())([(c c y b x a c y b x a c y b x a y b x a +++++++= 可以看出,a 1、a 2、b 1、b 2是由22cy bxy ax ++确定的,这样可对22cy bxy ax ++先进行因式分解,再把f 分解成因数c 1和c 2.如果 ey dx y b x a c y b x a c +=+++)()(112221 则F 就可分解成两个一次因式111c y b x a ++和222c y b x a ++的积.这种分解方法可视为双十字相乘法. 对一个较复杂的多项式进行因式分解时,经常要综合运用以上方法,有时需要拆项和增减项,但在拆项和增减项时,要注意和原来的多项式保持相等.

因式分解的9种方法

因式分解的多种方法——--知识延伸,向竞赛过度 1. 提取公因式:这种方法比较常规、简单,必须掌握.常用的公式:完全平方公式、平方差公式 例一:0322 =-x x 解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程. 总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x —a )因式,这对我们后面的学习有帮助。 2. 公式法 常用的公式:完全平方公式、平方差公式。注意:使用公式法前,部分题目先提取公因式。 例二:42-x 分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a —b) 2解:原式=(x+2)(x —2) 3. 十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果 例三: 把3722+-x x 分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(—3). 用画十字交叉线方法表示下列四种情况: 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x —3)(2x —1). 总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b,即a1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

初中常用因式分解公式

初中常用因式分解公式 2013.6.6 一.因式分解概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。 二.因式分解方法: 1、提公因法 如果一个多项式的各项都含有相同因式,那么就可以把这个相 同因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x2-2x 解:x2-2x =x(x -2) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 +4ab+4b 解:a2 +4ab+4b =(a+2b)(a+2b)完全平方公式 最常用的公式: (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 注意该方法的核心是分组后能提取公因式! 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2 -19x-6 分析: 1 -3 7 2 交差相乘再相加2-21=-19 解:7x2 -19x-6=(7x+2)(x-3) 5、配凑法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解。

浅谈因式分解的几种方法

因式分解常用的几种方法 十字相乘法。 双十字相乘法运用很巧妙,可以将一个很复杂的数据简单地呈现,我们一起来学习一下吧!! 双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中 x^2+5xy+6y^2=(x+2y)(x+3y);

②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。下面,就来看看因式分解的题目了,你们想必也会乐在其中。 1.△ABC的三边a、b、c有如下关系式: -c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形。 3证明:对于任何数x,y,下式的值都不会为33

因式分解的多种方法(初中版)

因式分解的方法(初中版) 因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。下面列举了九种方法,希望对大家的学习能有所帮助。 1】提取公因式 这种方法比较常规、简单,必须掌握。 常用的公式有:完全平方公式、平方差公式等 例一:2 2x -3x=0 解:x(2x-3)=0 1x =0,2x =3/2 这是一类利用因式分解的方程。 总结:要发现一个规律就是:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。 2】公式法 将式子利用公式来分解,也是比较简单的方法。 常用的公式有:完全平方公式、平方差公式等 注意:使用公式法前,建议先提取公因式。 例二:2x -4分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2) 3】十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c 分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果 例三: 把2 2x -7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x-3)(2x-1). 总结:对于二次三项式2 ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下: 1a 1c ╳ 2a 2c 1221c a c a

因式分解最全方法归纳

因式分解最全方法归纳 一、因式分解的概念与原则 1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。 2、原则: (1)分解必须要彻底(即分解之后的因式均不能再做分解); (2)结果最后只留下小括号; (3)结果的多项式是首项为正,为负时提出负号; (4)结果个因式的多项式为最简整式,还可以化简的要化简; (5)如有单项式和多项式相乘,应把单项式提到多项式前; (6)相同因式的乘积写成幂的形式; (7)如无特殊要求,一般在有理数范围内分解。如另有要求,在要求的范围内分解。 3、因式分解的一般步骤 (1)如果多项式的各项有公因式,那么先提公因式;

(2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; (3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解; (4)检查各因式是否进行到每一个因式的多项式都不能再分解。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。” 二、因式分解的方法 1、提取公因式 公因式:一个多项式的多项都含有的相同的因式叫做这个多项式的公因式。公因式可以是单项式,也可以是多项式。 确定公因式的方法:公因数的常数应取各项系数的最大公约数,多项式第一项为负的,要提出负号;字母取各项的相同字母,而且各字母的指数取次数最低的。 提取公因式:公因式作为一个因式,原式除以公因式的商作为另一个因式。 注意事项: (1)先确定公因式,一次把公因式全部提净;

(2)提完公因式后,商的项数与原式相同,与公因式相同的项,其商为1 不可丢掉; (3)提取的公因式带负号时,多项式的各项要变号。 例1、分解因式:6a 2 b–9abc+3ab 解:原式=3ab (2a-3c+1 ) 例2、分解因式:–12x 3 y 2 +4x 2 y 3 解:原式=–4x 2 y 2 ( 3x–y) 总结(口诀):找准公因式,一次要提净;全家都搬走,留1 把家守;提负要变号,变形看奇偶。 2、公式法 分解因式与整式乘法是互逆的恒等变换,如果把乘法公式反过来,那么就可以用来把某些多项式分解成因式。 平方差a2 –b 2 = (a+b ) (a– b ) 完全平方(a±b )2 =a 2 +b 2 ±2ab (a+b+c ) 2 =a 2 +b 2 +2ab+2bc+2ca 立方差a3 –b 3 = (a– b ) (a 2 +b 2 +ab ) 立方和a3 +b 3 = (a+b ) (a 2 +b 2 – ab )

因式分解的16种方法

因式分解の16種方法 因式分解沒有普遍の方法,初中數學教材中主要介紹了提公因式法、公式法。而在競賽上,又有拆項和添減項法,分組分解法和十字相乘法,待定係數法,雙十字相乘法,對稱多項式輪換對稱多項式法,餘數定理法,求根公式法,換元法,長除法,除法等。 注意三原則 1 分解要徹底 2 最後結果只有小括弧 3 最後結果中多項式首項係數為正(例如:()1332--=+-x x x x ) 分解因式技巧 1.分解因式與整式乘法是互為逆變形。 2.分解因式技巧掌握: ①等式左邊必須是多項式;②分解因式の結果必須是以乘積の形式表示; ③每個因式必須是整式,且每個因式の次數都必須低於原來多項式の次數; ④分解因式必須分解到每個多項式因式都不能再分解為止。 注:分解因式前先要找到公因式,在確定公因式前,應從係數和因式兩個方面考慮。 基本方法 ⑴提公因式法 各項都含有の公共の因式叫做這個多項式各項の公因式。 如果一個多項式の各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積の形式,這種分解因式の方法叫做提公因式法。 具體方法:當各項係數都是整數時,公因式の係數應取各項係數の最大公約數;字母取各項の相同の字母,而且各字母の指數取次數最低の;取相同の多項式,多項式の次數取最低の。 如果多項式の第一項是負の,一般要提出“-”號,使括弧內の第一項の係數成為正數。提出“-”號時,多項式の各項都要變號。 提公因式法基本步驟: (1)找出公因式; (2)提公因式並確定另一個因式: ①第一步找公因式可按照確定公因式の方法先確定係數在確定字母; ②第二步提公因式並確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得の商即是提公因式後剩下の 一個因式,也可用公因式分別除去原多項式の每一項,求の剩下の另一個因式; ③提完公因式後,另一因式の項數與原多項式の項數相同。 口訣:找准公因式,一次要提淨;全家都搬走,留1把家守;提負要變號,變形看奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把22a +21變成2(2a +4 1)不叫提公因式 ⑵公式法 如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。 平方差公式:2a 2b -=(a+b)(a-b); 完全平方公式:2a ±2ab +2b =()2 b a ±

因式分解常用方法总结

因式分解常用方法总结 【知识回顾】 分式方程的解法及注意(增根问题) 例1、已知关于x 的分式方程a x a =++1 12无解,试求a 的值(提示:先把x 求出来,即用a 来表示x ) 【新知识讲解】 一、分解因式与整式乘法的关系. 因式分解的特点:它与整式乘法在整式变形过程中的相反关系. 例: 由(a +b )(a -b )=a 2-b 2可知,左边是整式乘法,右边是一个多项式; 由a 2-b 2=(a +b )(a -b )来看,左边是一个多项式,右边是整式的乘积形式,所以这 两个过 程正好相反. 二、分解因式常用的方法. 1、找公因式的一般步骤. (1)若各项系数是整系数,取系数的最大公约数; (2)取相同的字母,字母的指数取较低的; (3)取相同的多项式,多项式的指数取较低的. (4)所有这些因式的乘积即为公因式. 例2:993-99能被100整除吗?还能被那些数整除? 2、公式法: (1)平方差:a 2—b 2=(a +b )(a —b ) 例3:1)25-16x 2; 2)9a 2-4 1b 2. 3)9(m +n )2-(m -n )2 4)2x 3 -8x . (2)完全平方和:(a +b )2=a 2+2ab +b 2 (3)完全平方差:(a —b )2=a 2—2ab +b 2

三、十字相乘法分解因式:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。 例4、在多项式232++x x 分解时,也可以借助画十字交叉线来分解。2x 分解为x x ?,常数项2分解12?,把它们用交叉线来表示: 所以)2)(1(232++=++x x x x 同样:q px x ++2=))(()(2b x a x ab x b a x ++=+++可以用交叉线来表示: 其中ab q =,b a p += 例5:用十字相乘法分解因式: (1)1272+-x x (2)1242--x x (3)1282++x x (4)12112--x x 四、用分组分解法分解因式 (1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利 用分式法分解, 但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。例如: 22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 (2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 (3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 例6 把下列各式分解因式 (1)bc ac ab a -+-2 (2)bx by ay ax -+-5102 (3)n mn m m 552+-- (4)bx ay by ax 3443+++ x x +2 +1 x x +a +b

因式分解的四种方法(北师版)(含答案)

学生做题前请先回答以下问题 问题1:因式分解的定义是什么?里面有几个关键词,分别是什么? 问题2:因式分解有几种方法,分别是什么? 问题3:提公因式法需要注意哪些要点? 问题4:当利用公式法分解因式时:两项通常考虑_________,三项通常考虑___________;并且需要注意两点:①___________;②____________. 问题5:当多项式的项数比较多时常考虑__________法. 问题6:因式分解的口诀是什么?分别是什么意思? 问题7:是因式分解吗?为什么? 因式分解的四种方法(北师版) 一、单选题(共20道,每道5分) 1.下列选项中,从左到右的变形是分解因式的是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:分解因式的定义 2.将分解因式时,应提取的公因式是( ) A.a2 B.a

C.ax D.ay 答案:B 解题思路: 试题难度:三颗星知识点:分解因式——提公因式法 3.把分解因式,结果正确的是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:分解因式——提公因式法 4.把分解因式,结果正确的是( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:分解因式——提公因式法 5.下列选项中,能用完全平方公式分解因式的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:分解因式——公式法 6.下列选项中,能用公式法分解因式的是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:分解因式——公式法 7.把分解因式,结果正确的是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:分解因式——公式法 8.把分解因式,结果正确的是( ) A. B. C. D. 答案:C 解题思路:

高中数学因式分解方法大全(十二种)

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x -2x -x x -2x –x =x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b 解:a +4ab+4b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3)

5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、求根法

相关主题
文本预览
相关文档 最新文档