高三数学理一轮复习专题突破训练圆锥曲线Word版含解析
- 格式:doc
- 大小:2.94 MB
- 文档页数:30
Word File山东高考数学一轮总复习教学案设计参考-解答题专项突破(五)圆锥曲线综合问题含答案解析撰写人:XXX解答题专项突破( 五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、范围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型 1 圆锥曲线中的定点问题典例 1 (2020·广州二模)已知抛物线 y 2 =4x 的焦点 F 与椭圆 C:x2a 2 +y 2b 2 =1(a>b>0)的一个焦点重合,且点 F 关于直线 y =x 的对称点在椭圆上. (1)求椭圆 C 的标准方程; (2)过点 Q0,- 13 且斜率为 k 的动直线 l 交椭圆于 A,B 两点,在 y 轴上是否存在定点 M,使以 AB 为直径的圆恒过这个点?若存在,求出 M 点的坐标,若不存在,说明理由.解题思路 (1)求出抛物线的焦点 F 关于直线 y=x 的对称点,结合已知条件及a,b,c 的关系,求解椭圆的标准方程. (2)假设存在定点 M,使以 AB 为直径的圆恒过这个点,求出 AB 垂直于两坐标轴时以 AB 为直径的圆的方程,联立方程组解得定点坐标,然后利用向量数量积证明一般结论.规范解答 (1)由抛物线 y 2 =4x,得其焦点为 F(1,0),从而得点 F 关于直线 y =x 的对称点为(0,1),故 b=1,c=1,因此 a= 2,∴椭圆 C 的标准方程为 x22 +y2 =1. (2)假设存在定点 M,使以 AB 为直径的圆恒过这个点.当 AB⊥x 轴时,以 AB 为直径的圆的方程为 x 2 +y 2 =1. ① 当AB⊥y 轴时,以 AB 为直径的圆的方程为 x 2 +y+ 132 =169. ② 联立①②,得 x=0,y=1,∴定点M(0,1).证明:设直线 l:y=kx- 13 ,代入x 22 +y2 =1,有(2k 2 +1)x 2 - 43 kx-169=0. 设 A(x 1 ,y 1 ),B(x 2 ,y 2 ), x 1 +x 2 =4k32k 2 +1,x 1 x 2 =-1692k 2 +1 . 则MA→=(x 1 ,y 1 -1),MB→=(x 2 ,y 2 -1);MA→·MB→=x 1 x 2 +kx 1 - 43 kx 2 -43 =(1+k 2 )x 1 x 2 - 43 k(x 1 +x 2 )+169 =(1+k 2 )·-1692k 2 +1-43 k·4k32k 2 +1+169=0,所以在 y 轴上存在定点 M(0,1),使以 AB 为直径的圆恒过这个定点.典例2 (2020·北京高考)已知椭圆 C:x2a 2 +y 2b 2 =1 的右焦点为(1,0),且经过点 A(0,1). (1)求椭圆 C 的方程; (2)设 O 为原点,直线 l:y=kx+t(t≠±1)与椭圆 C 交于两个不同点 P,Q,直线 AP 与 x 轴交于点 M,直线 AQ 与 x 轴交于点 N.若|OM|·|ON|=2,求证:直线 l经过定点.解题思路 (1)由已知条件直接求 b,c.再依据 a 2 =b 2 +c 2 求 a,写出椭圆 C 的方程. (2)设 P(x 1 ,y 1 ),Q(x 2 ,y 2 ),写出直线 AP 的方程,求 x M .利用 y 1 =kx 1 +t 和|OM|=|x M |,把|OM|用 k,t,x 1 表示,同理表示|ON|,直线 l 与椭圆 C 的方程联立,推出 x 1 +x 2 ,x 1 x 2 .利用|OM|·|ON|=2,求 t,从而得到定点.规范解答 (1)由题意,得 b 2 =1,c=1,所以 a 2 =b 2 +c 2 =2. 所以椭圆 C 的方程为 x22 +y2 =1. (2)证明:设 P(x 1 ,y 1 ),Q(x 2 ,y 2 ),则直线 AP 的方程为 y= y1 -1x 1x+1. 令 y=0,得点 M 的横坐标 x M =-x 1y 1 -1 . 又 y 1 =kx 1 +t,从而|OM|=|x M |=x 1kx 1 +t-1. 同理,|ON|=x 2kx 2 +t-1. 由 y=kx+t,x 22 +y2 =1,得(1+2k 2 )x 2 +4ktx+2t 2 -2=0,则 x 1 +x 2 =-4kt1+2k 2 ,x 1 x 2 =2t 2 -21+2k 2 . 所以|OM|·|ON|=x 1kx1 +t-1·x 2kx2 +t-1 =x 1 x 2k2 x 1 x 2 +k t-1x 1 +x 2 +t-1 2 =2t 2 -21+2k 2k 2 ·2t 2 -21+2k 2 +k t -1· -4kt1+2k 2+t-1 2 =2 1+t1-t. 又|OM|·|ON|=2,所以 2 1+t1-t=2. 解得 t=0,所以直线 l 经过定点(0,0).热点题型 2 圆锥曲线中的定值问题典例 1 (2020·全国卷Ⅰ)已知点 A,B 关于坐标原点 O 对称,|AB|=4,⊙M过点 A,B 且与直线 x+2=0 相切. (1)若 A 在直线 x+y=0 上,求⊙M 的半径; (2)是否存在定点 P,使得当 A 运动时,|MA|-|MP|为定值?并说明理由.解题思路 (1)由点 A,B 关于坐标原点 O 对称和点 A 在直线 x+y=0 上知,点 A,B 都在直线 x+y=0 上,于是得点 M 在线段 AB 的垂直平分线,即 y=x 上,设圆心 M 为(a,a).根据⊙M 与直线 x=-2 相切和MO→⊥AO→,求 a 从而得到⊙M的半径. (2)联系第(1)问求圆心 M 坐标的方法.找等量关系,求出 M 的轨迹方程,进而利用相应曲线的性质求|MA|,|MP|,判断|MA|-|MP|是否为定值.规范解答 (1)因为⊙M 过点 A,B,所以圆心 M 在 AB 的垂直平分线上.由已知 A 在直线 x+y=0 上,且 A,B 关于坐标原点 O 对称,所以 M 在直线 y=x 上,故可设圆心 M 为(a,a).因为⊙M 与直线 x+2=0 相切,所以⊙M 的半径为 r=|a+2|. 由已知得|AO|=2.又MO→⊥AO→,故可得 2a 2 +4=(a+2) 2 ,解得 a=0 或 a=4. 故⊙M 的半径 r=2 或 r=6. (2)存在定点 P(1,0),使得|MA|-|MP|为定值.理由如下:设圆心 M 为(x,y),由已知,得⊙M 的半径为 r=|x+2|,|AO|=2. 由于MO→⊥AO→,故可得 x 2 +y 2 +4=(x+2) 2 ,化简得 M 的轨迹方程为 y 2 =4x. 因为曲线 C:y 2 =4x 是以点 P(1,0)为焦点,以直线 x=-1 为准线的抛物线,所以|MP|=x+1. 因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点 P(1,0).典例 2 (2020·青岛三模)已知 O 为坐标原点,点 F 1 ,F 2 为椭圆 M:x 2a 2 +y 2b 2 =1(a>b>0)的左、右焦点,G 为椭圆 M 上的一个动点,△GF 1 F 2 的最大面积为 3,椭圆 M 的离心率为 12 . (1)求椭圆 M 的标准方程; (2)过抛物线 N:x 2 = 4 33y 上的一点 P 与抛物线 N 相切的直线 l 与椭圆 M 相交于 A,B 两点,设 AB 的中点为 C,直线 OP 与直线 OC 的斜率分别是 k 1 ,k 2 ,证明:k 1 k 2 为定值.解题思路 (1)根据题意,列方程组,结合 a,b,c 的关系即可求得 a 和 b 的值,进而求得椭圆方程. (2)通过求导求得直线 AB 的方程,代入椭圆方程,利用根与系数的关系及中点坐标公式,即可求得 k 1 k 2 为定值.规范解答 (1)因为△GF 1 F 2 的最大面积为 3,椭圆 M 的离心率为 12 . 所以12 ×2c×b= 3,ca =12 ,又因为 a 2 =b 2 +c 2 ,所以 a=2,b= 3,所以椭圆 M 的标准方程为 x24 +y 23 =1. (2)证明:设 Pt,3t 24,A(x 1 ,y 1 ),B(x 2 ,y 2 ),因为抛物线方程 N:y=34x 2 ,对其求导得y′=32x,则直线 AB 的方程为 y=32t(x-t)+34t 2 =3t2x-34t 2 ,将直线 AB 的方程代入椭圆方程 x24 +y 23 =1,可得 12(1+t 2 )x 2 -12t 3 x+3t 4 -48=0,因为 x 1 +x 2 =t 31+t 2 ,y 1 +y 2 =3t2(x 1 +x 2 )-3t 22=- 3t 221+t 2 ,所以点 Ct 321+t 2 ,-3t 241+t 2 ,所以 k 1 =3t4,k 2 =-32t,所以 k 1 k 2 =- 38 . 热点题型 3 圆锥曲线中的证明问题典例 1 已知抛物线 C:x 2 =2py(p>0),过焦点 F 的直线交 C 于 A,B 两点,D 是抛物线的准线 l 与 y 轴的交点. (1)若AB∥l,且△ABD 的面积为 1,求抛物线的方程;(2)设 M 为 AB 的中点,过 M 作 l 的垂线,垂足为 N.证明:直线 AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD|,|AB|.由△ABD 的面积为 1,列方程求 p,得抛物线的方程. (2)将直线 AB 的方程与抛物线 C 的方程联立,消去 y 并整理,结合根与系数的关系用 k,p 表示 M,N 的坐标.求 k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规范解答(1)∵AB∥l,∴△ABD 为等腰三角形,且FD⊥AB,又|FD|=p,|AB|=2p. ∴S △ ABD =p 2 =1. ∴p=1,故抛物线 C 的方程为 x 2 =2y. (2)证明:显然直线 AB 的斜率存在,设其方程为 y=kx+ p2 ,A x 1 , x212p,B x 2 , x222p. 由y=kx+ p2 ,x 2 =2py消去 y 整理得,x 2 -2kpx -p 2 =0. ∴x 1 +x 2 =2kp,x 1 x 2 =-p 2 . ∴M kp,k 2 p+ p2,N kp,-p2. ∴k AN =x 2 12p +p2x 1 -kp =x 2 12p +p2x 1 - x1 +x 22 =x 2 1 +p 22px 1 -x 22=x 2 1 -x 1 x 22px 1 -x 22= x1p . 又 x 2 =2py,∴y′=xp . ∴抛物线 x 2 =2py 在点 A 处的切线的斜率k′=x1p . ∴直线 AN 与抛物线相切.典例2 (2020·福州三模)已知椭圆 C:x2a 2 +y 2b 2 =1(a>b>0)的左焦点为 F(-1,0),过 F 且垂直于 x 轴的直线被椭圆截得的弦长为 3. (1)求椭圆 C 的方程; (2)已知点 M(-4,0),过 F 作直线 l 交椭圆于 A,B 两点,证明:∠FMA =∠FMB. 解题思路 (1)根据焦点坐标求 c,由点-c, b2a在椭圆上和过 F 且垂直于 x 轴的弦长为 3,列出关于 a,b 的方程,结合a 2 =b 2 +c 2 求出 a,b,得出椭圆的方程. (2)先讨论直线 l 斜率不存在的情况,再讨论直线 l 斜率存在的情况.设直线 l的斜率为 k,列出直线 l 的方程,并与椭圆方程联立,消元得到关于 x 的方程.根据根与系数的关系计算出 k AM +k BM =0,从而得出结论.规范解答 (1)由题意,知 c=1,把 x=-1 代入椭圆方程,得1a 2 +y 2b 2 =1,解得 y=±b 2a,∴ b2a= 32 ,又 a2 =b 2 +1,得 a=2,b= 3,∴椭圆的方程为 x24 +y 23 =1. (2)证明:当直线 l 斜率不存在时,由对称性知∠FMA=∠FMB;当直线 l 斜率存在时,设直线 l 的方程为 y=k(x+1),代入椭圆方程,得(3+4k 2 )x 2 +8k 2 x+4k 2 -12=0,设 A(x 1 ,y 1 ),B(x 2 ,y 2 ),则 x 1 +x 2 =-8k 23+4k 2 ,x 1 x 2 =4k 2 -123+4k 2,∴k AM +k BM =y 1x 1 +4 +y 2x 2 +4 = k x1 +1x 2 +4+k x 2 +1x 1 +4x 1 +4x 2 +4= k[2x1 x 2 +5x 1 +x 2 +8]x 1 +4x 2 +4,∵2x 1 x 2 +5(x 1 +x 2 )+8= 8k2 -243+4k 2-40k 23+4k 2 +8=0,∴k AM +k BM =0,∴∠FMA=∠FMB. 综上,∠FMA =∠FMB. 热点题型 4 圆锥曲线中的最值与范围问题典例 1 (2020·包头二模)设 F 为抛物线 C:y 2 =2px 的焦点,A 是 C 上一点,FA 的延长线交 y 轴于点 B,A 为 FB 的中点,且|FB|=3. (1)求抛物线 C 的方程; (2)过 F 作两条互相垂直的直线 l 1 ,l 2 ,直线 l 1 与 C 交于 M,N 两点,直线 l 2与 C 交于 D,E 两点,求四边形 MDNE 面积的最小值.解题思路 (1)由题意画出图形,结合已知条件列式求得 p,则抛物线 C 的方程可求. (2)由已知直线 l 1 的斜率存在且不为 0,设其方程为 y=k(x-1),与抛物线方程联立,求出|MN|,同理可求|DE|实际上,在|MN|的表达式中用- 1k 代替 k 即可,可得四边形 MDNE 的面积表达式,再利用基本不等式求最值.规范解答 (1)如图,∵A 为 FB 的中点,∴A 到 y 轴的距离为 p4 ,∴|AF|= p4 +p2 =3p4= |FB|2= 32 ,解得 p=2. ∴抛物线 C 的方程为 y 2 =4x. (2)由已知直线 l 1 的斜率存在且不为 0,设其方程为 y=k(x-1).由y=k x-1,y 2 =4x,得 k 2 x 2 -(2k 2 +4)x+k 2 =0. ∵Δ>0,设 M(x 1 ,y 1 ),N(x 2 ,y 2 ),∴x 1 +x 2 =2+4k 2 ,则|MN|=x 1 +x 2 +2=41+1k 2 ;同理设 D(x 3 ,y 3 ),E(x 4 ,y 4 ),∴x 3 +x 4 =2+4k2 ,则|DE|=x 3 +x 4 +2=4(1+k 2 ).∴四边形 MDNE 的面积 S=12 |MN|·|DE|=82+k2 +1k 2 ≥32.当且仅当 k=±1 时,四边形MDNE 的面积取得最小值 32. 典例 2 如图,椭圆 C:x2a 2 +y 2b 2 =1(a>b>0)的右顶点为 A(2,0),左、右焦点分别为 F 1 ,F 2 ,过点 A 且斜率为 12 的直线与 y 轴交于点 P,与椭圆交于另一个点 B,且点 B 在 x 轴上的射影恰好为点 F 1 . (1)求椭圆 C 的标准方程; (2)过点 P 且斜率大于 12 的直线与椭圆交于 M,N 两点(|PM|>|PN|),若S △ PAM ∶S△ PBN =λ,求实数λ 的取值范围.解题思路 (1)求点 B 的坐标→根据 k AB = 12 列方程→由题意得 a=2,a2 =b 2 +c 2 ,解方程组求 a,b,c,写出椭圆 C 的标准方程.(2)S △ PAM ∶S △ PBN =λ ――→面积公式PM →与PN→ 的关系→点 M,N 坐标之间的关系→直线MN 的方程与椭圆 C 的方程联立,消去 y 整理→用根与系数的关系得出点M,N 的坐标之间的关系式→推出λ 与 k 的关系,并根据 k> 12 求范围,找到λ 所满足的不等式,求出λ 的取值范围.规范解答 (1)因为BF 1 ⊥x 轴,所以点 B -c,- b2a,所以a=2,b 2a a+c=12 ,a 2 =b 2 +c 2⇒a=2,b= 3,c=1,所以椭圆 C 的标准方程是 x24 +y 23 =1.(2)因为S△ PAMS △ PBN =12 |PA|·|PM|·sin∠APM12 |PB|·|PN|·sin∠BPN =2·|PM|1·|PN| =λ⇒|PM||PN| =λ2 (λ>2),所以PM→=-λ2 PN→ . 由(1)可知 P(0,-1),设直线 MN:y=kx-1 k> 12,M(x 1 ,y 1 ),N(x 2 ,y 2 ),联立方程,得 y=kx-1,x 24 +y 23 =1,化简得,(4k 2 +3)x 2 -8kx-8=0. 得 x 1 +x 2 =8k4k 2 +3 ,x 1 x 2 =-84k 2 +3 .(*) 又PM→=(x 1 ,y 1 +1),PN→ =(x 2 ,y 2 +1),有 x 1 =-λ2 x 2 ,将 x 1 =-λ2 x 2代入(*)可得,2-λ2λ=16k 24k 2 +3 . 因为 k> 12 ,所以16k 24k 2 +3 =163k 2 +4∈(1,4),则 12⇒40,解得-22<k<22(k≠0),设点 M(x 1 ,y 1 ),N(x 2 ,y 2 ),则x 1 +x 2 =-8k 21+2k 2 ,x 1 x 2 = 8k2 -21+2k 2 ,∴y 1 +y 2 =k(x 1 +x 2 )+4k=k·-8k 21+2k 2 +4k=4k1+2k 2 ,取 MN 的中点 H,即 H x1 +x 22, y1 +y 22,则y 1 +y 22-1x 1 +x 22·k=-1,即2k1+2k 2 -1-4k 21+2k 2·k =-1,化简得 2k 2 +2k+1=0,无实数解,故舍去.②当 k=0 时,M,N 为椭圆 C 的左、右顶点,显然满足|BM|=|BN|,此时直线 l 的方程为 y=0. 综上可知,存在直线 l 满足题意,此时直线 l 的方程为 y=0.山东高考数学一轮总复习教学案设计参考-直接证明与间接证明含答案解析高考化学二轮主观题必刷题专题21,实验排序题(含答案解析)中考化学《第五单元,化学方程式》巩固复习题精编(含详细答案解析)中考化学《第十一单元,盐,化肥》巩固复习题精编(含详细答案解析)中考化学《第一单元,走进化学世界》巩固复习题精编(含详细答案解析)Best work give best you最好的资料给最好的你。
高考理科数学一轮复习大题篇----圆锥曲线综合【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |F A |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.【解】 (1)设F (c,0),由1|OF |+1|OA |=3e |F A |, 即1c +1a =3c a a -c,可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4.所以椭圆的方程为x 24+y 23=1. (2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧ x 24+y 23=1,y =k x -2消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3. 由题意得x B =8k 2-64k 2+3,从而y B =-12k 4k 2+3. 由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k . 因此直线MH 的方程为y =-1k x +9-4k 212k . 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -2,y =-1k x +9-4k 212k , 消去y ,解得x M =20k 2+912k 2+1. 在△MAO 中,由∠MOA ≤∠MAO ,得|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M , 化简,得x M ≥1,即20k 2+912k 2+1≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)证明 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=)3220044y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),且椭圆上的点到一个焦点的最短距离为33b . (1)求椭圆C 的离心率;(2)若点M ⎝⎛⎭⎫3,32在椭圆C 上,不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值. 【解】 (1)由题意,得a -c =33b ,则(a -c )2=13b 2, 结合b 2=a 2-c 2,得(a -c )2=13(a 2-c 2), 即2c 2-3ac +a 2=0,亦即2e 2-3e +1=0,结合0<e <1,解得e =12. 所以椭圆C 的离心率为12. (2)由(1)得a =2c ,则b 2=3c 2.将M ⎝⎛⎭⎫3,32代入椭圆方程x 24c 2+y 23c 2=1,解得c =1. 所以椭圆方程为x 24+y 23=1. 易得直线OM 的方程为y =12x . 当直线l 的斜率不存在时,线段AB 的中点不在直线y =12x 上,故直线l 的斜率存在. 设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y 得(3+4k 2)x 2+8kmx +4m 2-12=0, 由题意得Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2. 因为y 1+y 2=k (x 1+x 2)+2m =6m 3+4k 2, 所以线段AB 的中点N 的坐标为⎝⎛⎭⎫-4km 3+4k 2,3m 3+4k 2, 因为点N 在直线y =12x 上, 所以-4km 3+4k 2=2×3m 3+4k 2, 解得k =-32. 所以Δ=48(12-m 2)>0,解得-23<m <23,且m ≠0,|AB |=1+⎝⎛⎭⎫-322|x 2-x 1| =132·x 1+x 22-4x 1x 2 =132·m 2-4m 2-123=39612-m 2. 又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13 =3612-m 2m 2≤36·12-m 2+m 22= 3. 当且仅当12-m 2=m 2,即m =±6时等号成立,符合-23<m <23,且m ≠0.所以△OAB 面积的最大值为 3.【训练】已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【解】 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎨⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b mx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 将AB 的中点M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则t 2∈⎝⎛⎭⎫0,32. 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12 -2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立,此时满足t 2∈⎝⎛⎭⎫0,32. 故△AOB 面积的最大值为22. 题型三 定点问题【解题指导】 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎨⎧ 1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1. (2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1, 得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0, 解得k =-m +12. 当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2), 所以l 过定点(2,-1).【训练】 已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形.(1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .①若直线l 过原点且与坐标轴不重合,E 是直线3x +3y -2=0上一点,且△EMN 是以E 为直角顶点的等腰直角三角形,求k 的值;②若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM ,点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点.(1)解 由题意可得2c =22,即c =2,设Q ⎝⎛⎭⎫n ,43,因为四边形ABPQ 为平行四边形, |PQ |=2n ,|AB |=a -n ,所以2n =a -n ,n =a 3, 则⎝⎛⎭⎫a 32a 2+169b 2=1,解得b 2=2,a 2=b 2+c 2=4, 可得椭圆C 的方程为x 24+y 22=1. (2)①解 直线y =kx (k ≠0)代入椭圆方程,可得(1+2k 2)x 2=4,解得x =±21+2k 2, 可设M ⎝ ⎛⎭⎪⎫21+2k 2,2k 1+2k 2, 由E 是3x +3y -2=0上一点,可设E ⎝⎛⎭⎫m ,23-m ⎝⎛⎭⎫m ≠0,且m ≠23, E 到直线kx -y =0的距离为d =⎪⎪⎪⎪km +m -231+k 2,因为△EMN 是以E 为直角顶点的等腰直角三角形,所以OE ⊥MN ,|OM |=d ,即有23-m m =-1k,(*) 4+4k 21+2k 2=⎪⎪⎪⎪km +m -231+k 2,(**)由(*)得m =2k 3k -1(k ≠1),代入(**)式, 化简整理可得7k 2-18k +8=0,解得k =2或47. ②证明 由M (-2,0),可得直线MN 的方程为y =k (x +2)(k ≠0),代入椭圆方程可得(1+2k 2)x 2+8k 2x +8k 2-4=0,可得-2+x N =-8k 21+2k 2,解得x N =2-4k 21+2k 2, y N =k (x N +2)=4k 1+2k 2,即N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2, 设G (t,0)(t ≠-2),由题意可得D (2,4k ),A (2,0),以DN 为直径的圆恒过直线AN 和DG 的交点,可得AN ⊥DG ,即有AN →·DG →=0,即为⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2·(t -2,-4k )=0,解得t =0. 故点G 是定点,即为原点(0,0).题型四 定值问题【解题指导】 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例】已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. (1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0. 依题意知Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明 设A (x 1,y 1),B (x 2,y 2),由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2. 直线P A 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2. 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N .所以1λ+1μ=11-y M +11-y N=x 1-1k -1x 1+x 2-1k -1x 2 =1k -1·2x 1x 2-x 1+x2x 1x 2 =1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值. 【训练】已知点M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433. (1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.(1)解 在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163. 由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|·cos 60°=(|MF 1|+|MF 2|)2-2|MF 1||MF 2|(1+cos 60°),解得|MF 1|+|MF 2|=4 2.从而2a =|MF 1|+|MF 2|=42,即a =2 2.由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1. (2)证明 当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k x +1,得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k k -21+2k 2,x 1x 2=2k 2-8k 1+2k 2. 从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+k -4x 1+x 2x 1x 2 =2k -(k -4)·4k k -22k 2-8k=4. 当直线l 的斜率不存在时,可得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142,得k 1+k 2=4. 综上,k 1+k 2为定值.题型五 证明问题【解题指导】 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.【例】设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →= 2 NM →得x 0=x ,y 0=22y . 因为M (x 0,y 0)在C 上,所以x 22+y 22=1. 因此点P 的轨迹方程为x 2+y 2=2.(2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1,得-3m -m 2+tn -n 2=1.又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【训练】已知椭圆T :x 2a 2+y 2b 2=1(a >b >0)的一个顶点A (0,1),离心率e =63,圆C :x 2+y 2=4,从圆C 上任意一点P 向椭圆T 引两条切线PM ,PN .(1)求椭圆T 的方程;(2)求证:PM ⊥PN .(1)解 由题意可知b =1,c a =63,即2a 2=3c 2, 又a 2=b 2+c 2,联立解得a 2=3,b 2=1.∴椭圆方程为x 23+y 2=1. (2)证明 方法一 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN .②当P 点横坐标不为±3时,设P (x 0,y 0),则x 20+y 20=4,设k PM =k ,PM 的方程为y -y 0=k (x -x 0),联立方程组⎩⎪⎨⎪⎧y -y 0=k x -x 0,x 23+y 2=1, 消去y 得(1+3k 2)x 2+6k (y 0-kx 0)x +3k 2x 20-6kx 0y 0+3y 20-3=0,依题意Δ=36k 2(y 0-kx 0)2-4(1+3k 2)(3k 2x 20-6kx 0y 0+3y 20-3)=0,化简得(3-x 20)k 2+2x 0y 0k +1-y 20=0, 又k PM ,k PN 为方程的两根,所以k PM ·k PN =1-y 203-x 20=1-4-x 203-x 20=x 20-33-x 20=-1. 所以PM ⊥PN .综上知PM ⊥PN .方法二 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN . ②当P 点横坐标不为±3时,设P (2cos θ,2sin θ),切线方程为y -2sin θ=k (x -2cos θ),⎩⎪⎨⎪⎧ y -2sin θ=k x -2cos θ,x 23+y 2=1, 联立得(1+3k 2)x 2+12k (sin θ-k cos θ)x +12(sin θ-k cos θ)2-3=0,令Δ=0,即Δ=144k 2(sin θ-k cos θ)2-4(1+3k 2)[12(sin θ-k cos θ)2-3]=0,化简得(3-4cos 2θ)k 2+4sin 2θ·k +1-4sin 2θ=0,k PM ·k PN =1-4sin 2θ3-4cos 2θ=4-4sin 2θ-33-4cos 2θ=-1. 所以PM ⊥PN .综上知PM ⊥PN .题型六 探索性问题【解题指导】 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.【例】在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点, (1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【解】 (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a , C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a , C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0和ax +y +a =0.(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +b a . 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以点P (0,-a )符合题意.【训练】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点Q ⎝⎛⎭⎫1,-22,且离心率e =22,直线l 与E 相交于M ,N 两点,l 与x 轴、y 轴分别相交于C ,D 两点,O 为坐标原点.(1)求椭圆E 的方程;(2)判断是否存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →?若存在,求出直线l 的方程;若不存在,请说明理由.【解】 (1)由题意得⎩⎨⎧c a =22,1a 2+12b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=2,b 2=1. 所以椭圆E 的方程为x 22+y 2=1. (2)存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →.理由如下:方法一 由题意,直线l 的斜率存在,设直线l 的方程为y =kx +m (km ≠0),M (x 1,y 1),N (x 2,y 2),则C ⎝⎛⎭⎫-m k ,0,D (0,m ). 由方程组⎩⎪⎨⎪⎧ y =kx +m ,x 22+y 2=1, 得(1+2k 2)x 2+4kmx +2m 2-2=0,所以Δ=16k 2-8m 2+8>0.(*)由根与系数的关系,得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2. 因为2OC →=OM →+OD →,2OD →=ON →+OC →,所以MC →=CD →=DN →,所以C ,D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合.所以x 1+x 2=-4km 1+2k2=0-m k ,解得k =±22. 由C ,D 是线段MN 的两个三等分点,得|MN |=3|CD |.所以1+k 2|x 1-x 2|=3⎝⎛⎭⎫m k 2+m 2, 即|x 1-x 2|=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-21+2k 2=3⎪⎪⎪⎪m k , 解得m =±55.验证知(*)成立.所以存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →,此时直线l 的方程为y =22x ±55或y =-22x ±55. 方法二 设M (x 1,y 1),N (x 2,y 2),C (m,0),D (0,n ),由2OC →=OM →+OD →,2OD →=ON →+OC →,得⎩⎪⎨⎪⎧ 2m ,0=x 1,y 1+0,n ,20,n =x 2,y 2+m ,0,解得M (2m ,-n ),N (-m,2n ).又M ,N 两点在椭圆上,所以⎩⎨⎧4m 22+n 2=1,m 22+4n 2=1,即⎩⎪⎨⎪⎧ 2m 2+n 2=1,m 2+8n 2=2, 解得⎩⎨⎧m =±105,n =±55, 故所求直线l 的方程为52x -10y +25=0或52x -10y -25=0或52x +10y +25=0或52x +10y -25=0.专题突破训练1. 已知P ⎝⎛⎭⎫23,263是椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线E :y 2=2px (p >0)的一个公共点,且椭圆与抛物线具有一个相同的焦点F .(1)求椭圆C 及抛物线E 的方程;(2)设过F 且互相垂直的两动直线l 1,l 2,l 1与椭圆C 交于A ,B 两点,l 2与抛物线E 交于C ,D 两点,求四边形ACBD 面积的最小值. 解 (1)∵P ⎝⎛⎭⎫23,263是抛物线E :y 2=2px (p >0)上一点, ∴p =2,即抛物线E 的方程为y 2=4x ,F (1,0),∴a 2-b 2=1.又∵P ⎝⎛⎭⎫23,263在椭圆C :x 2a 2+y 2b 2=1上, ∴49a 2+83b 2=1,结合a 2-b 2=1知b 2=3(舍负),a 2=4, ∴椭圆C 的方程为x 24+y 23=1, 抛物线E 的方程为y 2=4x .(2)由题意可知直线l 1斜率存在,设直线l 1的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).①当k =0时,|AB |=4,直线l 2的方程为x =1,|CD |=4,故S 四边形ACBD =12·|AB |·|CD |=8. ②当k ≠0时,直线l 2的方程为y =-1k(x -1), 由⎩⎪⎨⎪⎧y =k x -1,x 24+y 23=1 得(3+4k 2)x 2-8k 2x +4k 2-12=0.∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2. 由弦长公式知|AB |=1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2]=12k 2+14k 2+3. 同理可得|CD |=4(k 2+1).∴S 四边形ACBD =12·|AB |·|CD | =12·12k 2+14k 2+3·4(k 2+1) =24k 2+124k 2+3.令t =k 2+1,t ∈(1,+∞),则S 四边形ACBD =24t 24t -1=244t -1t 2=24-⎝⎛⎭⎫1t -22+4, 当t ∈(1,+∞)时,1t∈(0,1), -⎝⎛⎭⎫1t -22+4<3,S 四边形ACBD >243=8. 综上所述,四边形ACBD 面积的最小值为8.2.已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若当点A 的横坐标为3,且△ADF 为等边三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点D (x 0,0)⎝⎛⎭⎫x 0≥12,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP ⊥BP ,求证:点P 的坐标为(-x 0,0),并求点P 到直线AB 的距离d 的取值范围.解 (1)由题意知F ⎝⎛⎭⎫p 2,0,|F A |=3+p 2, 则D (3+p,0),FD 的中点坐标为⎝⎛⎭⎫32+3p 4,0,则32+3p 4=3,解得p =2, 故C 的方程为y 2=4x .(2)依题意可设直线AB 的方程为x =my +x 0(m ≠0),A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2),由⎩⎪⎨⎪⎧y 2=4x ,x =my +x 0, 消去x ,得y 2-4my -4x 0=0,x 0≥12.所以Δ=16m 2+16x 0>0,y 1+y 2=4m ,y 1y 2=-4x 0,设P 的坐标为(x P ,0),则PE →=(x 2-x P ,-y 2),P A →=(x 1-x P ,y 1),由题意知PE →∥P A →,所以(x 2-x P )y 1+y 2(x 1-x P )=0,即x 2y 1+y 2x 1=y 22y 1+y 21y 24=y 1y 2y 1+y 24=(y 1+y 2)x P ,显然y 1+y 2=4m ≠0,所以x P =y 1y 24=-x 0, 即证P (-x 0,0),由题意知△EPB 为等腰直角三角形,所以k AP =1,即y 1+y 2x 1-x 2=1,也即y 1+y 214y 21-y 22=1, 所以y 1-y 2=4,所以(y 1+y 2)2-4y 1y 2=16,即16m 2+16x 0=16,m 2=1-x 0,x 0<1,又因为x 0≥12,所以12≤x 0<1, d =|-x 0-x 0|1+m 2=2x 01+m 2=2x 02-x 0, 令2-x 0=t ∈⎝⎛⎦⎤1,62,x 0=2-t 2, d =22-t 2t =4t-2t , 易知f (t )=4t -2t 在⎝⎛⎦⎤1,62上是减函数, 所以d ∈⎣⎡⎭⎫63,2. 所以d 的取值范围是⎣⎡⎭⎫63,2. 3.已知椭圆C 1:x 2m +4-y 2n=1与双曲线C 2:x 2m +y 2n =1有相同的焦点,求椭圆C 1的离心率e 1的取值范围.解 ∵椭圆C 1:x 2m +4-y 2n=1, ∴a 21=m +4,b 21=-n ,c 21=m +4+n ,e 21=m +4+n m +4=1+n m +4. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +4+n =m -n ,则n =-2,∴e 21=1-2m +4. 由m >0得m +4>4,1m +4<14,-2m +4>-24, ∴1-2m +4>12, 即e 21>12,而0<e 1<1, ∴22<e 1<1. 4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,左焦点为F ,点P 为椭圆C 上任一点,若直线P A 与PB 的斜率之积为-34,且椭圆C 经过点⎝⎛⎭⎫1,32. (1)求椭圆的方程;(2)若PB ,P A 交直线x =-1于M ,N 两点,过左焦点F 作以MN 为直径的圆的切线.问切线长是否为定值,若是,求出定值;若不是,请说明理由.解 (1)设P 点坐标为(x 0,y 0),由题意知A (-a,0),B (a,0),且x 20a 2+y 20b2=1. 则k P A ·k PB =y 0x 0+a ·y 0x 0-a =y 20x 20-a2 =⎝⎛⎭⎫-b 2a 2·x 20-a 2x 20-a 2=-b 2a 2=-34, 即3a 2=4b 2.①又因为椭圆经过点⎝⎛⎭⎫1,32, 故1a 2+94b2=1.② 由①②可知,b 2=3,a 2=4,故椭圆的方程为x 24+y 23=1. (2)由(1)可知A (-2,0),B (2,0),设k P A =k (k ≠0).由k ·k PB =-34,得k PB =-34k. 所以直线PB 的方程为y =-34k(x -2),令x =-1,则y =94k,故M ⎝⎛⎭⎫-1,94k . 直线P A 的方程为y =k (x +2),令x =-1,则y =k ,故N (-1,k ).如图,因为y M y N =94k ·k =94>0,故以MN 为直径的圆在x 轴同侧.设FT 为圆的一条切线,切点为T ,连接MT ,NT ,可知△FTN ∽△FMT ,故|FT ||FM |=|FN ||FT |,则|FT |2=|FN |·|FM |=|k |·⎪⎪⎪⎪94k =94,故|FT |=32. 故过左焦点F 作以MN 为直径的圆的切线长为定值32. 5.已知抛物线C 的顶点在原点,焦点在y 轴上,且抛物线上有一点P (m,5)到焦点的距离为6.(1)求该抛物线C 的方程;(2)已知抛物线上一点M (4,t ),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点,并说明理由.解 (1)由题意设抛物线方程为x 2=2py (p >0),其准线方程为y =-p 2,P (m,5)到焦点的距离等于P 到其准线的距离, 所以5+p 2=6,即p =2. 所以抛物线方程为x 2=4y .(2)由(1)可得点M (4,4),设直线MD 的方程为y =k (x -4)+4(k ≠0),联立⎩⎪⎨⎪⎧ y =k x -4+4,x 2=4y ,得x 2-4kx +16k -16=0,由题意得,Δ>0,设D (x 1,y 1),E (x 2,y 2),则x M ·x 1=16k -16,所以x 1=16k -164=4k -4, y 1=4k -424=4(k -1)2,同理可得,x 2=-4k -4,y 2=4⎝⎛⎭⎫1k +12, 所以直线DE 的方程为y -4(k -1)2=4k -12-4⎝⎛⎭⎫1k +124k -4+4k+4(x -4k +4)=⎝⎛⎭⎫k +1k ⎝⎛⎭⎫k -1k -2k +1k(x -4k +4)=⎝⎛⎭⎫k -1k -2(x -4k +4). 化简得y =⎝⎛⎭⎫k -1k -2x +4k -4k =⎝⎛⎭⎫k -1k -2(x +4)+8. 所以直线DE 过定点(-4,8).6.已知动圆E 经过定点D (1,0),且与直线x =-1相切,设动圆圆心E 的轨迹为曲线C . (1)求曲线C 的方程;(2)设过点P (1,2)的直线l 1,l 2分别与曲线C 交于A ,B 两点,直线l 1,l 2的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.(1)解 由已知,动点E 到定点D (1,0)的距离等于E 到直线x =-1的距离,由抛物线的定义知E 点的轨迹是以D (1,0)为焦点,以x =-1为准线的抛物线,故曲线C 的方程为y 2=4x . (2)证明 由题意直线l 1,l 2的斜率存在,倾斜角互补,得斜率互为相反数,且不等于零. 设A (x 1,y 1),B (x 2,y 2),直线l 1的方程为y =k (x -1)+2,k ≠0. 直线l 2的方程为y =-k (x -1)+2,由⎩⎪⎨⎪⎧y =k x -1+2,y 2=4x得k 2x 2-(2k 2-4k +4)x +(k -2)2=0, Δ=16(k -1)2>0, 已知此方程一个根为1, ∴x 1×1=k -22k 2=k 2-4k +4k 2,即x 1=k 2-4k +4k 2,同理x 2=-k2-4-k +4-k 2=k 2+4k +4k 2,∴x 1+x 2=2k 2+8k 2,x 1-x 2=-8k k 2=-8k ,∴y 1-y 2=[k (x 1-1)+2]-[-k (x 2-1)+2] =k (x 1+x 2)-2k =k ·2k 2+8k 2-2k =8k ,∴k AB =y 1-y 2x 1-x 2=8k -8k =-1,∴直线AB 的斜率为定值-1.7.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为22,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q 两点,且|PQ |=2 2. (1)求C 的方程;(2)若直线l 是圆x 2+y 2=8上的点(2,2)处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.解 (1)由已知,设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为|PQ |=22,不妨设点P (-c ,2), 代入椭圆方程得,c 2a 2+2b 2=1,又因为e =c a =22,所以12+2b 2=1,b =c ,所以b 2=4,a 2=2b 2=8, 所以C 的方程为x 28+y 24=1.(2)依题设,得直线l 的方程为y -2=-(x -2), 即x +y -4=0,设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),x 0≠x 1且x 0≠x 2, 由切线MA 的斜率存在,设其方程为y -y 1=k (x -x 1), 联立⎩⎪⎨⎪⎧y -y 1=k x -x 1,x 28+y 24=1得(2k 2+1)x 2+4k (y 1-kx 1)x +2(y 1-kx 1)2-8=0,由相切得Δ=16k 2(y 1-kx 1)2-8(2k 2+1)[(y 1-kx 1)2-4]=0,化简得(y 1-kx 1)2=8k 2+4,即(x 21-8)k 2-2x 1y 1k +y 21-4=0,因为方程只有一解,所以k =x 1y 1x 21-8=x 1y 1-2y 21=-x 12y 1, 所以切线MA 的方程为y -y 1=-x 12y 1(x -x 1),即x 1x +2y 1y =8,同理,切线MB 的方程为x 2x +2y 2y =8, 又因为两切线都经过点M (x 0,y 0),所以⎩⎪⎨⎪⎧x 1x 0+2y 1y 0=8,x 2x 0+2y 2y 0=8,所以直线AB 的方程为x 0x +2y 0y =8, 又x 0+y 0=4,所以直线AB 的方程可化为x 0x +2(4-x 0)y =8, 即x 0(x -2y )+8y -8=0,令⎩⎪⎨⎪⎧ x -2y =0,8y -8=0得⎩⎪⎨⎪⎧x =2,y =1,所以直线AB 恒过定点(2,1).8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O为坐标原点. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb =1,即到直线bx +ay -ab =0的距离d =455,得|b-a-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性, 可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214+y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB , 所以OA →·OB →=x 1x 2+y 1y 2=0, 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0, 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0, 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足|MA |=|MB |.求证:1|OA |2+1|OB |2+2|OM |2为定值. (1)解 将⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点代入椭圆C 的方程,得⎩⎪⎨⎪⎧1a 2+94b 2=1,32a 2+3016b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)证明 由|MA |=|MB |,知M 在线段AB 的垂直平分线上,由椭圆的对称性知点A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点,则点M 是椭圆的一个长轴顶点,此时 1|OA |2+1|OB |2+2|OM |2=1b 2+1b 2+2a2=2⎝⎛⎭⎫1a 2+1b 2=76. 同理,若点A ,B 是椭圆的长轴顶点,则点M 是椭圆的一个短轴顶点,此时 1|OA |2+1|OB |2+2|OM |2=1a 2+1a 2+2b2=2⎝⎛⎭⎫1a 2+1b 2=76. ②若点A ,B ,M 不是椭圆的顶点,设直线l 的方程为y =kx (k ≠0), 则直线OM 的方程为y =-1kx ,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx ,x 24+y 23=1,解得x 21=123+4k 2,y 21=12k 23+4k 2, 所以|OA |2=|OB |2=x 21+y 21=121+k 23+4k 2,同理,|OM |2=121+k 24+3k 2.所以1|OA |2+1|OB |2+2|OM |2=2×3+4k 2121+k 2+24+3k 2121+k2=76.综上,1|OA |2+1|OB |2+2|OM |2=76为定值. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆的左、右焦点,点P为椭圆上一点,△F 1PF 2面积的最大值为 3. (1)求椭圆C 的方程;(2)过点A (4,0)作关于x 轴对称的两条不同直线l 1,l 2分别交椭圆于M (x 1,y 1)与N (x 2,y 2),且x 1≠x 2,证明直线MN 过定点,并求△AMN 的面积S 的取值范围. 解 (1)设a 2-b 2=c 2,则c a =32,设P (x ,y ),则12F PF S =c |y |,∵|y |≤b ,∴12F PF S≤bc = 3.解得⎩⎪⎨⎪⎧a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)设MN 方程为x =ny +m (n ≠0),联立⎩⎪⎨⎪⎧x =ny +m ,x 2+4y 2-4=0, 得(n 2+4)y 2+2nmy +m 2-4=0, 由题意知,Δ=16(n 2-m 2+4)>0, ∴y 1+y 2=-2nm n 2+4,y 1y 2=m 2-4n 2+4,∵关于x 轴对称的两条不同直线l 1,l 2的斜率之和为0, 即y 1x 1-4+y 2x 2-4=0, 即y 1ny 1+m -4+y 2ny 2+m -4=0,得2ny 1y 2+m (y 1+y 2)-4(y 1+y 2)=0, 即2n m 2-4n 2+4-2nm 2n 2+4+8nm n 2+4=0.解得m =1.直线MN 方程为x =ny +1, ∴直线MN 过定点B (1,0). 又|y 1-y 2|= ⎝ ⎛⎭⎪⎫-2n n 2+42-4·-3n 2+4=4n 2+3n 2+42=41n 2+4-1n 2+42,令1n 2+4=t ,∴t ∈⎝⎛⎭⎫0,14, ∴|y 1-y 2|=4-t 2+t ∈(0,3), 又S =12|AB ||y 1-y 2|=32|y 1-y 2|∈⎝⎛⎭⎫0,332.11.已知椭圆C 的中心为坐标原点,焦点在x 轴上,离心率e =32,以椭圆C 的长轴和短轴为对角线的四边形的周长为4 5. (1)求椭圆C 的标准方程;(2)若经过点P (1,0)的直线l 交椭圆C 于A ,B 两点,是否存在直线l 0:x =x 0(x 0>2),使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立,若存在,求出x 0的值;若不存在,请说明理由.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵c a =32,∴c =32a , 又∵4a 2+b 2=45,∴a 2+b 2=5,由b 2=a 2-c 2=14a 2,解得a =2,b =1,c = 3. ∴椭圆C 的标准方程为x 24+y 2=1.(2)若直线l 的斜率不存在,则直线l 0为任意直线都满足要求; 当直线l 的斜率存在时,设其方程为y =k (x -1), 设A (x 1,y 1),B (x 2,y 2)(不妨令x 1>1>x 2), 则d A =x 0-x 1,d B =x 0-x 2,|P A |=1+k 2(x 1-1),|PB |=1+k 2(1-x 2), ∵d A d B =|P A ||PB |, ∴x 0-x 1x 0-x 2=1+k 2x 1-11+k 21-x 2=x 1-11-x 2, 解得x 0=2x 1x 2-x 1+x 2x 1+x 2-2.由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -1,得(1+4k 2)x 2-8k 2x +4k 2-4=0,由题意知,Δ>0显然成立,x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2,x 0=8k 2-81+4k 2-8k 21+4k 28k 21+4k 2-2=4.综上可知存在直线l 0:x =4,使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立.12.已知顶点是坐标原点的抛物线Γ的焦点F 在y 轴正半轴上,圆心在直线y =12x 上的圆E 与x 轴相切,且E ,F 关于点M (-1,0)对称. (1)求E 和Γ的标准方程;(2)过点M 的直线l 与E 交于A ,B ,与Γ交于C ,D ,求证:|CD |>2|AB |. (1)解 设Γ的标准方程为x 2=2py (p >0), 则F ⎝⎛⎭⎫0,p 2. 已知E 在直线y =12x 上,故可设E (2a ,a ).因为E ,F 关于M (-1,0)对称,所以⎩⎪⎨⎪⎧2a +02=-1,p2+a 2=0,解得⎩⎪⎨⎪⎧a =-1,p =2.所以Γ的标准方程为x 2=4y .因为E 与x 轴相切,故半径r =|a |=1, 所以E 的标准方程为(x +2)2+(y +1)2=1. (2)证明 由题意知,直线l 的斜率存在, 设l 的斜率为k ,那么其方程为y =k (x +1)(k ≠0), 则E (-2,-1)到l 的距离d =|k -1|k 2+1, 因为l 与E 交于A ,B 两点, 所以d 2<r 2,即k -12k 2+1<1,解得k >0,所以|AB |=21-d 2=22kk 2+1.由⎩⎪⎨⎪⎧x 2=4y ,y =k x +1消去y 并整理得x 2-4kx -4k =0.Δ=16k 2+16k >0恒成立, 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4k , 那么|CD |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=4k 2+1·k 2+k .所以|CD |2|AB |2=16k 2+1k 2+k8k k 2+1=2k 2+12k 2+kk =2k k 2+12k +1k>2k k=2. 所以|CD |2>2|AB |2, 即|CD |>2|AB |.13,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴与短轴之和为6,椭圆上任一点到两焦点F 1,F 2的距离之和为4.(1)求椭圆的标准方程;(2)若直线AB :y =x +m 与椭圆交于A ,B 两点,C ,D 在椭圆上,且C ,D 两点关于直线AB 对称,问:是否存在实数m ,使|AB |=2|CD |,若存在,求出m 的值;若不存在,请说明理由.解 (1)由题意,2a =4,2a +2b =6, ∴a =2,b =1.∴椭圆的标准方程为x 24+y 2=1.(2)∵C ,D 关于直线AB 对称, 设直线CD 的方程为y =-x +t ,联立⎩⎪⎨⎪⎧y =-x +t ,x 24+y 2=1消去y ,得5x 2-8tx +4t 2-4=0, Δ=64t 2-4×5×(4t 2-4)>0,解得t 2<5,设C ,D 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=8t5,x 1x 2=4t 2-45,设CD 的中点为M (x 0,y 0), ∴⎩⎨⎧x 0=x 1+x 22=4t 5,y 0=-x 0+t =t5,∴M ⎝⎛⎭⎫4t 5,t 5,又点M 也在直线y =x +m 上, 则t 5=4t 5+m ,∴t =-5m3, ∵t 2<5,∴m 2<95.则|CD |=1+1|x 1-x 2| =2·x 1+x 22-4x 1x 2=2·45-t 25.同理|AB |=2·45-m 25.∵|AB |=2|CD |, ∴|AB |2=2|CD |2, ∴2t 2-m 2=5, ∴m 2=4541<95,∴存在实数m ,使|AB |=2|CD |,此时m 的值为±320541.14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点,O 为坐标原点. (1)求直线ON 的斜率k ON ;(2)求证:对于椭圆C 上的任意一点M ,都存在θ∈[0,2π),使得OM →=cos θOA →+sin θOB →成立. (1)解 设椭圆的焦距为2c , 因为c a =63,所以a 2-b 2a 2=23,故有a 2=3b 2.从而椭圆C 的方程可化为x 2+3y 2=3b 2.①知右焦点F 的坐标为(2b,0),据题意有AB 所在的直线方程为y =x -2b .②由①②得4x 2-62bx +3b 2=0.③设A (x 1,y 1),B (x 2,y 2),弦AB 的中点N (x 0,y 0),由③及根与系数的关系得:x 0=x 1+x 22=32b 4,y 0=x 0-2b =-24b . 所以k ON =y 0x 0=-13,即为所求. (2)证明 显然OA →与OB →可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM →,有且只有一对实数λ,μ,使得等式OM →=λOA →+μOB →成立.设M (x ,y ),由(1)中各点的坐标有(x ,y )=λ(x 1,y 1)+μ(x 2,y 2),故x =λx 1+μx 2,y =λy 1+μy 2. 又因为点M 在椭圆C 上,所以有(λx 1+μx 2)2+3(λy 1+μy 2)2=3b 2,整理可得λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2.④由③有x 1+x 2=32b 2,x 1·x 2=3b 24. 所以x 1x 2+3y 1y 2=x 1x 2+3(x 1-2b )(x 2-2b )=4x 1x 2-32b (x 1+x 2)+6b 2=3b 2-9b 2+6b 2=0.⑤又点A ,B 在椭圆C 上,故有x 21+3y 21=3b 2,x 22+3y 22=3b 2.⑥将⑤,⑥代入④可得,λ2+μ2=1.所以,对于椭圆上的每一个点M ,总存在一对实数,使等式OM →=λOA →+μOB →成立,且λ2+μ2=1.所以存在θ∈[0,2π),使得λ=cos θ,μ=sin θ.也就是:对于椭圆C 上任意一点M ,总存在θ∈[0,2π),使得等式OM →=cos θOA →+sin θOB →成立.15.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求出λ的值;若不存在,请说明理由.解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ),又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =32,a 2-b 2=c 2,解得a =22,b =2,所以椭圆E 的方程为x 28+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 28+y 22=1,y =kx +1,得(4k 2+1)x 2+8kx -4=0, 其判别式Δ=(8k )2+16(4k 2+1)>0,所以x 1+x 2=-8k 4k 2+1,x 1x 2=-44k 2+1, 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=-4λ-8k 2+-4λ-34k 2+1=-3λ+14k 2+1-λ-2. 所以当λ=-13时,-3λ+14k 2+1-λ-2=-53, 此时OA →·OB →+λP A →·PB →=-53为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λP A →·PB →=OC →·OD →-13PC →·PD → =-2+13=-53. 故存在常数λ=-13,使得OA →·OB →+λP A →·PB →为定值-53.。
解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
四川省 2017 届高三数学理一轮复习专题打破训练圆锥曲线一、选择、填空题1、( 2016 年四川省高考)设O 为坐标原点, P 是以 F 为焦点的抛物线y2 2 px(p0) 上随意一点, M 是线段 PF 上的点,且PM =2 MF ,则直线 OM 的斜率的最大值为( A)3( B )22(D)1 3( C)232、( 2015 年四川省高考)过双曲线x2y21的右焦点且与x 轴垂直的直线,交该双曲线3的两条渐近线于A、B两点,则 |AB|A.43B.23C. 6D.4333、(四川省2016 届高三展望金卷x2y21(a0,b0) 的左、右焦点分)已知双曲线ba22别为 F1、F2,过F2的直线交双曲线于P,Q 两点且PQ PF1,若 |PQ || PF1 |,54,则双曲线离心率 e 的取值范围为().123A. (1,10 ]B. (1,37 ]C. [37 ,10 ]D. [10 ,)255224、(成都市2016 届高三第二次诊疗)已知抛物线y=x 2的焦点为 F,经过 y 轴正半轴上一点uur uuurN 作直线 l 与抛物线交于 A ,B两点,且 OA OB =2(O为坐标原点),点F对于直线OA 的对称点为 C,则四边形OCAB 面积的最小值为(A)3(B)3(C)233 (D)25、(成都市都江堰x2y21(a0,b0) 的一个焦点2016 届高三 11 月调研)已知双曲线b2a2与抛物线 y212x 的焦点重合,且双曲线的离心率等于 3 ,则该双曲线的标准方程为()x 2y21y2x21x 2y21x 2y2A.18B .27C .24D .127181236 6、(乐山市高中2016 届高三第二次检查研究)抛物线y24x 的焦点为F,经过点F 的直线与抛物线在x 轴上方的部分交于点 A ,与准线l 交于点 B ,且AK l 于点K ,假如|AF|=|BF| ,那么△AKF的面积为A. 43B. 3 3C.8D. 47、(绵阳中学2017 届高三上学期入学考试)若圆C1: x2y 2ax0 与圆C2 : x2y22ax y tan0 都对于直线2x y10 对称,则 sin cos()2B.2C.62A .537D.538、(成都市双流中学2017 届高三9 月月考)已知椭圆x2y21(0m9), 左、右焦点9m分别为 F1、 F2,过 F1的直线交椭圆于A、B两点,若| AF2|| BF2 | 的最大值为10 ,则m 的值为A. 3B. 2C.1D.39、(内江市2016 届高三第四次(3 月)模拟)F为双曲线x2y 21的右焦点,点P 在a2 b 2双曲线右支上,POF (O为坐标原点)知足OF OP5,PF2 5 ,则双曲线的离心率为BA. 3 1B.5C. 2D.310、(成都市双流中学 2016 届高三 5月月考)已知x 2y21上的不一样A, B, P 是双曲线2b2a三点,且 AB 连线经过坐标原点,若直线PA, PB 的斜率乘积kPAkPB2,则该双曲线的3离心率 e( B )5B.1510D .2A .3C.2211、(成都市双流中学2017 届高三 9 月月考)抛物线 C : y24x 的准线方程为A. x1B. x1C. x2D. x212 、(遂宁市2016届高三第二次诊疗考试)设B 、C 是定点,且均不在平面上 动点 A 在,平面上 ,且 sin ABC1,则点 A 的轨迹为2A .圆或椭圆B .抛物线或双曲线C .椭圆或双曲线D .以上均有可能13、(宜宾市2016 届高三第二次诊疗)已知直线2x y 10 0x 2 y 2 1过双曲线b 2a 2a 0,b 0 的焦点,且与该双曲线的一条渐近线垂直,则该双曲线的标准方程为(A)x 2y 2 1(B) x 2 y 2 (C)x 2 y 2(D)1692015 1520x 2 y 2 191614、(宜宾市 2016 届高三第二次诊疗)设动直线 l : y kx m (此中 k , m 为整数)与椭圆 x2y 21 交 于 不 同 两点 A, B , 与 双 曲 线 x 2y 2 1交于不一样两点 C,D ,且16124 12AC BD 0 ,则切合上述条件的直线l 共有(A ) 5条(B )7条(C ) 9条( D ) 11条15、(资阳市资阳中学 2017 届高三上学期入学考试)如图平面直角坐标系 xOy 中,椭圆x 2 y 2 1(a b 0)的离心率 e3, A 1 , A 2 分别是椭圆的左、 右两个极点, 圆 A 1 的半径为a2b22a ,过点 2 作圆 A的切线,切点为 P,在 x 轴的上方交椭圆于点Q .则PQ .A1QA 216、(成都市x2y22016 届高三第二次诊疗)双曲线2=l 的一个焦点坐标为 (3,0) ,则该双a5曲线的离心率为。
关于机会成本的理解(精选5篇)第一篇:关于机会成本的理解你的选择是最优的吗?在生活中我们会遇到很多选择,选择走哪条路,选择上大学还是打工,选择一件衣服还是一本书,甚至过年了,我们是选择回家过年还是出去打工挣钱,如果我们回家了我们享受了与家人团聚的乐趣,却失去了外出打工所挣的钱。
这都是微观经济学中的机会成本的体现。
西方经济学家认为,从经济资源的稀缺性来说,当一个社会或一个一个企业用一定的经济资源生产一定数量的一种或者几种产品时,这些经济资源就不能同时被用于其他生产用途上。
这就是说,这个社会或这个企业所获得的一定数量的产品收入,是以放弃用同样的经济资源来生产其他产品时所能获得的收入为代价的。
这就产生了机会成本。
一般的,生产一单位的某种商品的机会成本是指生产者所放弃的使用相同的生产要素在其他生产用途中所能得到的最高收入。
从个人角度分析,对于一件事,不同的抉择都有不同的机会成本。
例如,寒假到来了,同学们都在考虑要回家过年还是外出打工,还是留在学校学习。
这是三种不同的选择,所带来的效果也不一样。
如果其中一位同学选择回家过年,那么他将享受到与家人,朋友团聚的乐趣,而他将失去外出打工所获得的经验和收入报酬,他也将失去留在学校学习所获得的知识。
我们假设这三种选择都获得一个收入报酬,假如这位同学选择了回家过年,那么他回家过年的机会成本就是他外出打工或留校学习的所获得最大收入报酬。
当然,在现实生活中,有的选择可以直接用货币来度量,而有的选择却不可以直接用货币度量,比如回家过年和亲人团聚带来的快乐。
但是在上例中我们假设他们都可以用货币来度量,但是他们所带来的收入效用的大小却与每个人不同的观念有关,比如同学1认为亲人最重要,那么对于他来说回家过年带来的收入报酬最大,而同学2认为留在学校学习最重要,因为他认为现在学习是为将来更好的生活做准备,所以对于他来说留校学习获得的收入报酬最大,我们不能根据自己的观念就认为哪种选择比另一种选择带来的收入报酬大,应根据具体的人具体的事来做出判断。
圆锥曲线151.直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x k k x x ……②2.如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A ,B 两点,点Q 是点P 关于原点的对称点.(I )设点P 分有向线段AB 所成的比为λ,证明:)(QB QA QP λ-⊥;(II )设直线AB 的方程是x -2y+12=0,过A 、B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.解:(Ⅰ)依题意,可设直线AB 的方程为 ,m kx y +=代入抛物线方程y x 42=得.0442=--m kx x ①设A 、B 两点的坐标分别是 ),(11y x 、122),,(x y x 则、x 2是方程①的两根.所以 .421m x x -=由点P (0,m )分有向线段AB 所成的比为λ, 得.,012121xx x x -==++λλλ即 又点Q 是点P 关于原点的对称点,故点Q 的坐标是(0,-m ),从而)2,0(m QP =.).)1(,(),(),(21212211m y y x x m y x m y x QB QA λλλλλ-+--=+-+=- ])1([2)(21m y y m QB QA QP λλλ-+-=-⋅221212122212144)(2])1(44[2x m x x x x m n x x x x x x m +⋅+=++⋅+= .0444)(2221=+-⋅+=x m m x x m 所以 ).(QB QA QP λ-⊥。
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。
山东省2016届高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(2015年山东高考)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .2、(2014年山东高考)已知0b 0,a >>,椭圆1C 的方程为1x 2222=+by a ,双曲线2C 的方程为1x 2222=-b y a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A )02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =±3、(2013年山东高考)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A B C D 4、(德州市2015届高三二模).已知双曲线()222210,0x y a b a b-=>>的半焦距为c ,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线24y cx =的准线被双曲线截得的弦长是23(e 为双曲线的离心率),则e 的值为___________. 5、(菏泽市2015届高三二模)已知双曲线=1(a >0,b >0)的一条渐近线与直线x+3y+1=0垂直,则双曲线的离心率等于( )A .B .C .D .6、(青岛市2015届高三二模)已知双曲线=1(a >0,b >0)的右焦点为F ,过F 作斜率为﹣1的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若△OFP 的面积为,则该双曲线的离心率为( )A .B .C .D .7、(潍坊市2015届高三二模)抛物线)0(2:2>=p px y C 的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为π36,则抛物线的方程为 ;8、(淄博市2015届高三三模)已知双曲线()222210,0x y a b a b-=>>的半焦距为c ,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线24y cx =的准线被双曲线截得的弦长是23be (e 为双曲线的离心率),则e 的值为(C) 233或(D)29、(德州市2015届高三上期末)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为1,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形,若 110PF =,椭圆与双曲线的离心率分别为 12,e e ,则 21e e -的取值范围是 A . 2(,)3+∞ B . 4(,)3+∞C . 2(0,)3D . 24(,)3310、(莱州市2015届高三上期末)已知双曲线22221x y a b -=的焦点到其渐近线的距离等于2,抛物线22y px =的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为A. 24y x =B. 2y =C. 2y =D. 28y x =11、(临沂市2015届高三上期末)已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是3y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -= 12、(德州市2015届高三一模)已知抛物线28y x =与双曲线2221x y x-=的一个交点为M ,F 为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为A 、5x ±3y =0B 、3x ±5y =0C 、4x ±5y =0D 、5x ±4y =013、(菏泽市2015届高三一模)设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线28x y =的交点相同,则此双曲线的方程为( )A .2213x y -=B .221412x y -=C .2213x y -= D .221124x y -= 14、(临沂市2015届高三一模)已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -= 15、(青岛市2015届高三一模)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线方程为A .221205x y -=B .221520x y -=C .2233125100x y -=D .2233110025x y -=二、解答题1、(2015年山东高考)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.(ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值.2、(2014年山东高考)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =,当点A 的横坐标为3时,ADF 为正三角形。
山东省2016届高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(2015年山东高考)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .2、(2014年山东高考)已知0b 0,a >>,椭圆1C 的方程为1x 2222=+by a ,双曲线2C 的方程为1x 2222=-b y a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A )02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =±3、(2013年山东高考)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A .16 B .8 C .3 D .34、(德州市2015届高三二模).已知双曲线()222210,0x y a b a b-=>>的半焦距为c ,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线24y cx =的准线被双曲线截得的弦长是23(e 为双曲线的离心率),则e 的值为___________. 5、(菏泽市2015届高三二模)已知双曲线=1(a >0,b >0)的一条渐近线与直线x+3y+1=0垂直,则双曲线的离心率等于( )A .B .C .D .6、(青岛市2015届高三二模)已知双曲线=1(a >0,b >0)的右焦点为F ,过F 作斜率为﹣1的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若△OFP 的面积为,则该双曲线的离心率为( )A .B .C .D .7、(潍坊市2015届高三二模)抛物线)0(2:2>=p px y C 的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为π36,则抛物线的方程为 ;8、(淄博市2015届高三三模)已知双曲线()222210,0x y a b a b-=>>的半焦距为c ,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线24y cx =的准线被双曲线截得的弦长是23(e 为双曲线的离心率),则e 的值为(C)233或9、(德州市2015届高三上期末)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为 1,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形,若 110PF =,椭圆与双曲线的离心率分别为 12,e e ,则 21e e -的取值范围是 A . 2(,)3+∞ B . 4(,)3+∞C . 2(0,)3D . 24(,)3310、(莱州市2015届高三上期末)已知双曲线22221x y a b-=的焦点到其渐近线的距离等于2,抛物线22y px =的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为A. 24y x =B. 2y =C. 2y =D. 28y x =11、(临沂市2015届高三上期末)已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是3y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -= 12、(德州市2015届高三一模)已知抛物线28y x =与双曲线2221x y x-=的一个交点为M ,F 为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为A 、5x ±3y =0B 、3x ±5y =0C 、4x ±5y =0D 、5x ±4y =013、(菏泽市2015届高三一模)设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线28x y =的交点相同,则此双曲线的方程为( )A .2213x y -=B .221412x y -=C .2213x y -= D .221124x y -= 14、(临沂市2015届高三一模)已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -= 15、(青岛市2015届高三一模)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线方程为A .221205x y -= B .221520x y -= C .2233125100x y -= D .2233110025x y -=二、解答题1、(2015年山东高考)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.(ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值.2、(2014年山东高考)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =,当点A 的横坐标为3时,ADF 为正三角形。
山东省届高三数学理一轮复习专题突破训练
圆锥曲线
一、选择、填空题
、(年山东高考)
平面直角坐标系中,双曲线的渐近线与抛物线
交于点,若的垂心为的焦点,则的离心率为.
、(年山东高考)已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为
()()()()
、(年山东高考)抛物线:=(>)的焦点与双曲线:的右焦点的连线交于第一象限的点.若在点处的切线平行于的一条渐近线,则=( ).
....
、(德州市届高三二模).已知双曲线的半焦距为,过右焦点且斜
率为的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是
(为双曲线的离心率),则的值为.
、(菏泽市届高三二模)已知双曲线(>,>)的一条渐近线与直线垂直,则双曲线的离心率等于()
....
、(青岛市届高三二模)已知双曲线(>,>)的右焦点为,过作斜率为﹣的直线
交双曲线的渐近线于点,点在第一象限,为坐标原点,若△的面积为,则该双曲线的离心率为()
....
、(潍坊市届高三二模)抛物线的焦点为,点是坐标原点,过点,的圆与抛物线的准线相切,且该圆的面积为,则抛物线的方程为;
、(淄博市届高三三模)已知双曲线的半焦距为,过右焦点且斜率
为的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是
(为双曲线的离心率),则的值为
() ()()()
、(德州市届高三上期末)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为
,且两条曲线在第一象限的交点为,是以为底边的等腰三角形,若
,椭圆与双曲线的离心率分别为,则的取值范围是
..
..
、(莱州市届高三上期末)已知双曲线的焦点到其渐近线的距离等于,抛物线
的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为,则抛物线方程为
....
、(临沂市届高三上期末)已知抛物线的准线与双曲线相交于、两点,双曲线的一条渐近线方程是,点是抛物线的焦点,且△是等边三角形,则该双曲线的标准方程是
....
、(德州市届高三一模)已知抛物线与双曲线的一个交点为,为抛物线。