与圆有关的面积计算 专题复习课教案
- 格式:doc
- 大小:573.00 KB
- 文档页数:8
《圆的整理与复习》教学设计优秀4篇圆的面积教案篇一教学目的使学生知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确地计算圆的面积。
教具、学具准备教师仿照教科书第94页上的图用木板制作教具,准备长方形、平行四边形、梯形和圆形纸片各一个;学生把教科书第187页上面的图剪下来贴在纸板上,作为操作用的学具。
教学过程一、复习1、教师:什么叫做面积?长方形的面积计算公式是什么?2、教师:请同学们回忆一下平行四边形、三角形和梯形的面积计算公式的推导过程。
想一想这些推导过程有什么共同点?二、新课1、教学圆面积的含义及计算公式。
教师依次拿出长方形、平行四边形、三角形和梯形图,边演示(然后贴在黑板上)边说:“我们已经学过这些图形的面积,请同学们说一说这些图形的面积有什么共同的地方?”使学生明确:这些图形的面积都是由边所围成的平面的大小。
教师再出示圆,提问:这是一个圆,谁能联系前面这些图形的面积说一说圆的面积是什么?让大家讨论。
最后教师归纳出:圆所围平面的大小叫做圆的面积。
教师:我们已经知道了什么是圆的面积,请同学们联系前面一些图形的面积公式的推导过程想一想,怎样能计算圆的面积呢?使学生初步领会到可以把圆转化成一个已学过的图形来推导圆面积的计算公式。
2、教学例3。
教师出示例3,指名读题,让学生试着做,提醒学生不用写公式,直接列算式就可以。
然后让学生对照书上的解题过程,看自己做得对不对;如果错了,错在什么地方。
教师要强调指出:列出算式后,要先算平方,再与π相乘。
最后小结一下解题过程。
三、课堂练习做练习二十四的第1~5题。
1、第1题,让学生直接列式计算,指名板演,教师巡视,检查学生有没有把圆的面积公式写成圆的周长公式来计算,书写格式对不对,写没写单位名称。
订正时了解学生还存在什么问题,及时纠正。
2、第2题,让学生独立做,教师巡视,除了注意学生在做第1题时易犯的错误外,还要检查学生有没有把第(2)小题的直径当半径直接计算的,订正时提醒学生做题时要认真审题。
圆的面积教学设计《圆的面积》教学设计优秀7篇作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。
优秀的教案都具备一些什么特点呢?下面是可爱的小编飞白帮大伙儿收集整理的7篇《圆的面积》教学设计,希望对大家有一些参考价值。
《圆的面积》教学设计篇一教学目标:1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。
3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。
教学重难点:圆面积公式的推导。
教学关键:弄清圆与转化后的近似图形之间的关系。
教具:多媒体计算机。
学具:每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。
教学过程:一、复习旧知、设疑导入同学们,有一首歌中唱到:结识新朋友,不忘老朋友。
新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!微机显示一个圆,再把圆涂成红色。
提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。
怎样计算圆的面积呢?引入课题。
二、动手操作、探索新知1、通过度量,猜想圆面积的大小。
用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。
初步猜想:圆的面积相当于r2的3倍多一些。
3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。
2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。
问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?3、学生小组合作。
圆的面积教学设计教案(精选7篇)圆的面积教学设计教案(精选7篇)作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么大家知道正规的教案是怎么写的吗?下面是由给大家带来的圆的面积教学设计教案7篇,让我们一起来看看!圆的面积教学设计教案(精选篇1)教学目标1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点圆面积的计算公式推导和运用。
课前准备一个大圆、剪刀、小正方形。
课时安排:1课时授课人授课时间教学过程一、复习引入,导入新课。
教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。
学生说出自己的见解。
教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎样表示?学生做出回答。
教师引导交流:圆的周长和直径、半径有关。
大家猜想一下,圆的面积与谁有关?二、探索尝试,解释交流。
教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。
大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?全班汇报交流:谁想先来展示一下?(学生回答)教师引导交流:你能让平行四边形的底再直一点吗?学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。
学生领悟:多分几份,平行四边形的底就会直一些。
教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。
教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?师:这样就把求圆转化成了求长方形。
教学目标:1.了解圆的概念,掌握圆的相关术语。
2.学习圆的周长和圆的面积的计算公式。
3.掌握圆周长和圆面积的应用。
4.进行综合训练,提高学生的综合运算能力。
教学重点:1.圆的定义和相关术语。
2.圆的周长和圆的面积的计算公式。
教学难点:1.圆周长和圆面积的应用。
2.综合运用知识解决问题。
教学准备:1.教学课件。
2.圆规、直尺、剪刀、工具。
3.教学板书:圆周长和圆面积的计算公式。
教学过程:一、导入(5分钟)教师挂上“圆”字词语画报,让学生观察图片,引发学生对圆的认识。
二、引入(10分钟)教师通过小组讨论的方式,引出圆的定义和相关术语。
三、学习(30分钟)1.复习圆的相关术语。
2.学习圆的周长和圆的面积的计算公式,通过教学课件进行展示和讲解。
3.学生进行课堂练习,巩固圆的周长和圆的面积计算方法。
四、拓展(10分钟)教师出示一些与圆相关的实际问题,引导学生进行思考和解决。
五、练习(25分钟)学生进行综合训练,解决各种与圆周长和圆面积相关的问题,提高学生的综合运算能力。
六、总结(5分钟)教师进行课堂总结,回顾今天的学习内容和重点,提醒学生需要掌握的知识点。
七、作业布置(5分钟)布置相关作业,要求学生完成,以检验学生对本节课知识的掌握情况。
教学反思:通过本节课的教学,学生对圆的概念有了更加深入的了解,掌握了圆的周长和圆的面积的计算方法,并能够应用到实际问题中。
通过练习题的训练,提高了学生的综合运算能力。
但是还需要加强学生对圆的相关术语的记忆和理解。
在以后的教学中,应该多利用思维导图、图示化和解决实际问题的方法,让学生更好地掌握和应用所学知识。
《圆的整理与复习》教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《圆的整理与复习》教学设计【优秀5篇】作为一无名无私奉献的教育工作者,编写教案是必不可少的,借助教案可以让教学工作更科学化。
《圆的周长和面积的复习》教案《圆的周长和面积的复习》教案(通用14篇)作为一名优秀的教育工作者,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。
那么应当如何写教案呢?以下是小编为大家整理的《圆的周长和面积的复习》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆的周长和面积的复习》教案篇1教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
教学目标:1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。
复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。
这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?2、圆的周长和面积公式是怎样推导出来的?3、精彩会放。
(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)4、圆的周长和面积公式的推导过程对我们学习的启示。
(转化思想)5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?三、发现生活中的数学问题教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典以开心词典的形式,让学生做六道选择题。
小学六年级数学教案圆的面积(5篇)圆的面积教案篇一教学目标1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;2.培养学生动手操作的能力,启发思维,开阔思路;3.渗透初步的`辩证唯物主义思想。
教学重点和难点圆面积公式的推导方法。
教学过程设计(一)复习准备我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?已知半径,圆周长的一半怎么求?(出示一个整圆)哪部分是圆的面积?(指名用手指一指。
)这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)(二)学习新课1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。
圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:(1)你摆的是什么图形?(2)所摆的图形面积与圆面积有什么关系?(3)图形的各部分相当于圆的什么?(4)你如何推导出圆的面积?(学生开始动手摆,小组讨论。
)指名发言。
(在幻灯前边说边摆。
)①拼出长方形,学生叙述,老师板书:②还能不能拼出其它图形?学生可以拼出:等等刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。
这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?S=r2=3.1442=3.1416=50.24(平方厘米)答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?(三)巩固反馈1.求下面各圆的面积。
r=2(单位:分米)d=6(单位:分米)2.选择题。
圆的周长和面积复习课教学设计---------------------------------------《圆的周长和面积复习课》教学设计玉山县四股桥小学陈美仙许明华教学目标:1.根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。
2.培养学生灵活、全面地运用知识的能力,及运用所学知识解决简单实际问题的能力。
3.培养学生认真审题的良好学习习惯。
教学重点:圆的周长和面积的计算和应用。
解决措施:设计分层次的典型习题、课件演示。
教学难点:圆的周长和面积的推导过程。
1、解决措施:形象直观的多媒体演示。
(一)谜语导入激发兴趣:1、出示谜语2、思考猜测3、电脑演示分析:利用谜语激发学生的兴趣,利用多媒体优势展示生动形象的画面,创设良好的学习情景,让学生在思考的同时,得到形象直观的验证。
媒体应用策略:直观、形象、感染力强、人人自主动手。
(二)复习旧知,形成网络。
1、学生独立思考:师:关于圆的周长和面积,想一想你都学了哪些知识?它们二者有什么联系和区别?下面以最快得速度自己独立思考1分钟!找几名同学回答。
根据情况教师引导。
师:除了以上几位同学的回答,还有那些知识呢?下面以小组为单位,大家讨论补充一下。
根据同学们的回答,引导学生回想圆的面积的推导过程,先找学生说,再进行课件演示。
2、根据学生的回答教师板书:周长面积1.意义不同:围成圆的曲线的长圆所占平面的大小2.计算公式不同:C=πd 或C=2πr S=πr3.单位不同:长度单位面积单位分米厘米米平方厘米平方分米平方米(三)练习拓展1、基础题2、实际应用题3、提高题4、拓展题感谢阅读,欢迎大家下载使用!。
圆的面积教学设计(优秀7篇)圆的面积教案篇一教学目的:通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
重点:圆面积计算公式。
难点:圆面积计算公式的推导。
教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。
教学过程:一、复习。
1.口算:2.已知圆的半径是2.5分米,它的周长是多少?3.一个长方形的长是6.2米,宽是4米,它的面积是多少?4.说出平行四边形的面积公式是怎样推导出来的?我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。
(板书课题:圆的面积)二、新授。
1.圆的面积的含义。
问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。
)以前学过长方形面积的含义是指长方形所围成平面的大小。
那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。
)2.圆的面积公式的推导。
怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。
但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。
怎样分割呢?教师拿出圆的面积教具进行演示:先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。
(学生试操作,把学具圆拼成一个平行四边形。
)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
向学生说明:如果分的等份越多所拼的图形就越接近长方形。
教师边提问边完成圆面积公式的推导:拼成的图形近似于什么图形?原来圆的面积与这个长方形的。
面积是否相等?长方形的长相当于圆的哪部分的长?长方形的宽是圆的哪部分?长方形的面积=长×宽圆的面积= ×= ×= ×=用S表示圆的面积,那么圆的面积可以写成:3.圆面积公式的应用。
圆的面积教案【精选6篇】《圆的面积》教学设计篇一教学目标:1、用转化的思想使学生能够理解并掌握圆的面积计算公式,学会利用圆的面积计算公式解答简单的实际问题。
2、通过圆的面积计算公式的推导及应用,培养学生知识迁移能力,观察发现能力,分析概括能力和解决实际问题能力。
3、通过本节课的学习,渗透转化数学思想,让学生体会到数学知识之间的内在联系,感受学数学的快乐。
教学重难点:理解圆的面积计算公式的推导过程及应用。
教学思路:直观引入,演示发现,学会应用。
教学过程:一、激发兴趣,引出概念1、回忆圆的周长概念及计算公式,引出圆的面积概念。
2、回忆学过平面图形的面积公式,例举某图形面积计算公式的推导过程。
渗透转化数学思想,引出学生对圆面积计算公式推导的探究兴趣。
二、点题提出目标1、圆的面积计算公式的推导。
(1)课件演示将圆平均分成若干份后,拼接成近似长方形的全过程。
让学生不仅懂得圆平均分的份数越多,拼接成的图形越接近长方形;还了解到圆转化成近似长方形后形状发生了变化,但面积没有变化。
(2)学生分组尝试(或教师教具演示等)将圆转化长方形的全过程。
让学生进一步感受转化的数学思想,并在操作(或观察)发现拼接成的近似长方形的长相当于圆的哪一部分;宽相当于圆的哪一部分。
(3)由长方形面积公式推导出圆的面积计算公式。
(4)小结:在一个圆里,圆的面积与半径有关系,知道了圆的半径就可以求出圆的面积。
2、教学例1题。
(1)出示例题,学生根据圆面积计算公式独立解决,集体评议。
(2)尝试练习,做一做第1题,练习二十四第3题等。
圆的面积教案篇二教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学-圆的面积。
教学目的:1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
教学重点:理解和掌握圆面积的计算公式的推导过程教学难点:圆面积计算公式的推导教学过程:一、创设情境,提出问题(课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。
《点、直线、圆和圆的位置关系》复习题
7.如图,⊙O 的直径为20cm ,弦cm AB 16=,AB OD ⊥,垂足为D 。
则AB 沿射线OD 方向 平移 cm 时可与⊙O 相切.
8.如图在68⨯的网格图中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.
9T 10T
9.如图,小圆的圆心在原点,半径为3,大圆的心坐标为(a ,0)半径为5.如果两圆内含,那么a 的取值范围是______________.
★10.如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点, ⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连结DF 并延长交CB 的延长线于点G . 则CG = . 二、选择题
11.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为
A.外离
B.外切
C.相交
D.内切
12.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( ) (A )相交 (B )外切 (C )外离 (D )内含 13.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )
A .2
B .3
C 3
D .3
13T 14T 15T
14.如图,在Rt △ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点
C
为圆心,以2 cm
的长为半径作圆,则⊙C 与AB 的位置关系是( ).
A .相离
B .相切
C .相交
D .相切或相交
O
15.如图,在△ABC 中,AB=BC=2,以AB 为直径的⊙0与BC 相切于点B ,则AC 等于( )
A .2
B .3 c .22 D .23 16.如图,PA 、PB 是O 的切线,切点分别是A 、B ,如果∠P =60°, 那么∠AOB 等于( ) A.60° B.90° C.120° D.150°
17.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )
A.与x 轴相切,与y 轴相切
B.与x 轴相切,与y 轴相交
C.与x 轴相交,与y 轴相切
D.与x 轴相交,与y 轴相切
18.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是( ) A .1 cm B .5 cm C .1 cm 或5 cm D .0.5cm 或2.5cm
19.已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ).
A 、2
B 、4
C 、6
D 、8
20.已知两圆的半径R 、r 分别为方程0652
=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是( )
A .外离
B .内切
C .相交
D .外切
21.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设x OP =,则x 的取值范围是 A .-
1≤x ≤1 B .x ≤2 C .0≤x ≤2 D .x
>
2
21T 22T 23T
22.如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C , D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为( ) A .35︒ B .40︒ C .50︒ D .80︒
23.如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误..的是( ). (A )43
3
MN =
(B )若MN 与⊙O 相切,则3AM =(C )若∠MON =90°,则MN 与⊙O 相切 (D )l 1和l 2的距离为2 ★24.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( )
A .2
B .1
C .22
-
D .2
★ 25.如图,点B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线
l 上取一点P,使∠APB=30°
,则满足条件的点有几个( ) A.3个 B.2个 C.1个 D.不存在
三、解答题
26.如图,AB 是半圆的直径,O 为圆心,AD 、BD 是半圆的弦, 且PDA PBD ∠=∠.
(1)判断直线PD 是否为⊙O 的切线,并说明理由;
(2)如果60BDE ∠=,PD =,求PA 的长。
27.如图,在△ABC 中,AB =AC ,D 是BC 中点,AE 平分 ∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两 点, 交AD 于点G ,交AB 于点F . (1)求证:BC 与⊙O 相切; (2)当∠BAC =120°时,求∠EFG 的度数.
28.如图,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD
的中点.求证:GE 是⊙O 的切线.
29.如图,点O 在APB ∠的平分线上,⊙O 与PA 相切于点C .
(1) 求证:直线PB 与⊙O 相切;
★(2)PO 的延长线与⊙O 交于点E 若⊙O 的半径为3,PC=4, 求弦CE 的长.
30.已知如图所示,△ABC 中∠A =∠B =30°,CD 是△ABC 的角平分线,以C 为圆心,CD 为半径画圆,交CA 所在直线于E 、F 两点,连接DE 、DF 。
(1)求证:直线AB 是⊙C 的切线。
(2)若AC =10cm ,求DF 的长
31.如图,AB 是⊙O的直径,∠A =30,延长OB 到D ,使BD =OB .
(1)△OCB 是否是等边三角形?说明你的理由; (2)求证:DC 是⊙O的切线.
32.已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D 、B 、C 三点, ∠DOC =2∠ACD =90°.
(1)求证:直线AC 是⊙O 的切线; (2)如果∠ACB =75°,⊙O 的半径为2,求BD 的长.
33.已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C . (Ⅰ)如图①,若2AB =,30P ∠=︒,求AP 的长(结果保留根号); (Ⅱ)如图②,若D 为AP 的中点,求证直线CD 是⊙O 的切线
.
34.如图,MN 是⊙O 的切线,B 为切点,BC 是⊙O 的弦且∠CBN =45︒
,过点C 的直线与⊙O 、
MN
A
B
C
D
O
分别交于A、D两点,过C作CE⊥BD于点E。
(1)求证:CE是⊙O的切线;
★(2)若∠D=30 ,BD=2+
O的半径r。
★35
.如图,已知点(0,6)
A B,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设
它们运动的时间为t秒.
(1)用含t的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时P与直线CD的位置关系.
l
x
强化提高训练
1.如图,线段AB 经过圆心O ,交⊙O 于点A,C ,点D 在⊙O 上,连接AD BD ,,30A B ∠=∠=.BD 是⊙O
的切线吗?请说明理由.
3.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC BD =,连结AC ,过点D 作DE AC ⊥,
垂足为E . (1)求证:AB AC =; (2)求证:DE 为⊙O 的切线;
(3)若⊙O 的半径为5,60BAC ∠=,求DE 的长.
4.已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.
(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.。