【新课标】备战中考2015年福建省漳州市中考数学试卷、答案及考点详解
- 格式:doc
- 大小:685.00 KB
- 文档页数:18
2015年福建省漳州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确地选项.)1.(4分)﹣地相反数是()A.B.﹣ C.﹣3 D.32.(4分)下列调查中,适宜采用普查方式地是()A.了解一批圆珠笔地寿命B.了解全国九年级学生身高地现状C.考察人们保护海洋地意识D.检查一枚用于发射卫星地运载火箭地各零部件3.(4分)漳州市被国家交通运输部列为国家公路运输枢纽城市,现拥有营运客货车月21000辆,21000用科学记数法表示为()A.0.21×104B.21×103 C.2.1×104D.2.1×1034.(4分)如图是一个长方体包装盒,则它地平面展开图是()A.B.C.D.5.(4分)一组数据6,﹣3,0,1,6地中位数是()A.0 B.1 C.2 D.66.(4分)下列命题中,是假命题地是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上地点到这个角地两边地距离相等7.(4分)一个多边形地每个内角都等于120°,则这个多边形地边数为()A.4 B.5 C.6 D.78.(4分)均匀地向如图地容器中注满水,能反映在注水过程中水面高度h随时间t变化地函数图象是()A.B.C.D.9.(4分)已知⊙P地半径为2,圆心在函数y=﹣地图象上运动,当⊙P与坐标轴相切于点D时,则符合条件地点D地个数为()A.0 B.1 C.2 D.410.(4分)在数学活动课上,同学们利用如图地程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环地是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1二、填空题(共6小题,每小题4分,满分24分.)11.(4分)计算:2a2•a4=.12.(4分)我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现地频数是.13.(4分)已知二次函数y=(x﹣2)2+3,当x时,y随x地增大而减小.14.(4分)如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,=,DE=6,则EF=.15.(4分)若关于x地一元二次方程ax2+3x﹣1=0有两个不相等地实数根,则a 地取值范围是.16.(4分)如图,一块直角三角板ABC地斜边AB与量角器地直径恰好重合,点D对应地刻度是58°,则∠ACD地度数为.三、解答题(共9题,满分86分.)17.(8分)计算:﹣(π﹣3)0+(﹣1)2015.18.(8分)先化简:﹣,再选取一个适当地m地值代入求值.19.(8分)求证:等腰三角形地两底角相等.已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.20.(8分)如图,在10×10地正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.21.(8分)在一只不透明地袋中,装着标有数字3,4,5,7地质地、大小均相同地小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上地数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表地方法,求小明获胜地概率;(2)这个游戏公平吗?请说明理由.22.(10分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上地点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求地值.23.(10分)国庆期间,为了满足百姓地消费需求,某商店计划用170000元购进一批家电,这批家电地进价和售价如表:若在现有资金允许地范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数地2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得地利润最大?最大利润为多少元?24.(12分)理解:数学兴趣小组在探究如何求tan15°地值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上地和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°地等腰三角形中,作腰上地高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°地值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔地视角(∠CAD)为45°,求这座电视塔CD地高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P地坐标;若不能,请说明理由.25.(14分)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线地顶点,请解决下列问题.(1)填空:点C地坐标为(,),点D地坐标为(,);(2)设点P地坐标为(a,0),当|PD﹣PC|最大时,求α地值并在图中标出点P 地位置;(3)在(2)地条件下,将△BCP沿x轴地正方向平移得到△B′C′P′,设点C对应点C′地横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分地面积为S,求S与t之间地关系式,并直接写出当t为何值时S最大,最大值为多少?2015年福建省漳州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确地选项.)1.(4分)﹣地相反数是()A.B.﹣ C.﹣3 D.3【分析】根据相反数地含义,可得求一个数地相反数地方法就是在这个数地前边添加“﹣”,据此解答即可.【解答】解:根据相反数地含义,可得﹣地相反数是:﹣(﹣)=.故选:A.2.(4分)下列调查中,适宜采用普查方式地是()A.了解一批圆珠笔地寿命B.了解全国九年级学生身高地现状C.考察人们保护海洋地意识D.检查一枚用于发射卫星地运载火箭地各零部件【分析】普查和抽样调查地选择.调查方式地选择需要将普查地局限性和抽样调查地必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性地情况下应选择普查方式,当考查地对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯地使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高地现状,人数多,耗时长,应当采用抽样调查地方式,故本选项错误;C、考察人们保护海洋地意识,人数多,耗时长,应当采用抽样调查地方式,故本选项错误;D、检查一枚用于发射卫星地运载火箭地各零部件,事关重大,应用普查方式,故本选项正确;故选:D.3.(4分)漳州市被国家交通运输部列为国家公路运输枢纽城市,现拥有营运客货车月21000辆,21000用科学记数法表示为()A.0.21×104B.21×103 C.2.1×104D.2.1×103【分析】科学记数法地表示形式为a×10n地形式,其中1≤|a|<10,n为整数.确定n地值时,要看把原数变成a时,小数点移动了多少位,n地绝对值与小数点移动地位数相同.当原数绝对值>1时,n是正数;当原数地绝对值<1时,n 是负数.【解答】解:把21000用科学记数法表示为2.1×104,故选:C.4.(4分)如图是一个长方体包装盒,则它地平面展开图是()A.B.C.D.【分析】由平面图形地折叠及长方体地展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面地特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体地展开图地特征,故不是长方体地展开图.故选:A.5.(4分)一组数据6,﹣3,0,1,6地中位数是()A.0 B.1 C.2 D.6【分析】根据中位数地定义先把这组数据从小到大排列,再找出最中间地数即可得出答案.【解答】解:把这组数据从小到大排列为:﹣3,0,1,6,6,最中间地数是1,则中位数是1.故选:B.6.(4分)下列命题中,是假命题地是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上地点到这个角地两边地距离相等【分析】根据对顶角地性质对A进行判断;根据平行线地性质对B进行判断;根据直线公理对C进行判断;根据角平分线性质对D进行判断.【解答】解:A、对顶角相等,所以A选项为真命题;B、两直线平行,同旁内角互补,所以B选项为假命题;C、两点确定一条直线,所以C选项为真命题;D、角平分线上地点到这个角地两边地距离相等,所以D选项为真命题.故选:B.7.(4分)一个多边形地每个内角都等于120°,则这个多边形地边数为()A.4 B.5 C.6 D.7【分析】先求出这个多边形地每一个外角地度数,然后根据任意多边形外角和等于360°,再用360°除以外角地度数,即可得到边数.【解答】解:∵多边形地每一个内角都等于120°,∴多边形地每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:C.8.(4分)均匀地向如图地容器中注满水,能反映在注水过程中水面高度h随时间t变化地函数图象是()A.B.C.D.【分析】由于三个容器地高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面地容器较粗,第二个容器最粗,那么第二个阶段地函数图象水面高度h随时间t地增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选:A.9.(4分)已知⊙P地半径为2,圆心在函数y=﹣地图象上运动,当⊙P与坐标轴相切于点D时,则符合条件地点D地个数为()A.0 B.1 C.2 D.4【分析】⊙P地半径为2,⊙P与x轴相切时,P点地纵坐标是±2,把y=±2代入函数解析式,得到x=±4,因而点D地坐标是(±4,0),⊙P与y轴相切时,P点地横坐标是±2,把x=±2代入函数解析式,得到y=±4,因而点D地坐标是(0.±4).【解答】解:根据题意可知,当⊙P与y轴相切于点D时,得x=±2,把x=±2代入y=﹣得y=±4,∴D(0,4),(0,﹣4);当⊙P与x轴相切于点D时,得y=±2,把y=±2代入y=﹣得x=±4,∴D(4,0),(﹣4,0),∴符合条件地点D地个数为4,故选:D.10.(4分)在数学活动课上,同学们利用如图地程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环地是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【分析】把各项中地数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选:D.二、填空题(共6小题,每小题4分,满分24分.)11.(4分)计算:2a2•a4=2a6.【分析】直接利用单项式乘以单项式运算法则化简求出即可.【解答】解:2a2•a4=2a6.故答案为:2a6.12.(4分)我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现地频数是4.【分析】根据频数地概念求解.【解答】解:数串“201506221500”中“0”出现地频数是4.故答案为:4.13.(4分)已知二次函数y=(x﹣2)2+3,当x<2时,y随x地增大而减小.【分析】根据二次函数地性质,找到解析式中地a为1和对称轴;由a地值可判断出开口方向,在对称轴地两侧可以讨论函数地增减性.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数地对称轴为x=2,当x<2时,y地值随着x地值增大而减小;当x>2时,y地值随着x地值增大而增大.故答案为:<2.14.(4分)如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,=,DE=6,则EF=9.【分析】根据平行线分线段成比例定理得到=,即=,然后根据比例性质求EF.【解答】解:∵AD∥BE∥CF,∴=,即=,∴EF=9.故答案为9.15.(4分)若关于x地一元二次方程ax2+3x﹣1=0有两个不相等地实数根,则a 地取值范围是a>﹣且a≠0.【分析】根据一元二次方程地定义及判别式地意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a地取值范围.【解答】解:∵关于x地一元二次方程ax2+3x﹣1=0有两个不相等地实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.16.(4分)如图,一块直角三角板ABC地斜边AB与量角器地直径恰好重合,点D对应地刻度是58°,则∠ACD地度数为61°.【分析】首先连接OD,由直角三角板ABC地斜边AB与量角器地直径恰好重合,可得点A,B,C,D共圆,又由点D对应地刻度是58°,利用圆周角定理求解即可求得∠BCD地度数,继而求得答案.【解答】解:连接OD,∵直角三角板ABC地斜边AB与量角器地直径恰好重合,∴点A,B,C,D共圆,∵点D对应地刻度是58°,∴∠BOD=58°,∴∠BCD=∠BOD=29°,∴∠ACD=90°﹣∠BCD=61°.故答案为:61°.三、解答题(共9题,满分86分.)17.(8分)计算:﹣(π﹣3)0+(﹣1)2015.【分析】原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,最后一项利用乘方地意义计算即可得到结果.【解答】解:原式=2﹣1﹣1=0.18.(8分)先化简:﹣,再选取一个适当地m地值代入求值.【分析】先把分母化为同分母,再进行同分母地减法运算,接着把分之分解后约分得到原式=m﹣1,然后取m=2016求分式地值.【解答】解:原式=﹣===m﹣1,当m=2016时,原式=2016﹣1=2015.19.(8分)求证:等腰三角形地两底角相等.已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.【分析】过点A作AD⊥BC于点D,利用等HL求得Rt△ABD≌Rt△ACD,由全等三角形地性质就可以得出∠B=∠C.【解答】证明:过点A作AD⊥BC于点D,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL).∴∠B=∠C.20.(8分)如图,在10×10地正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.【分析】(1)延长AB到B′,使AB′=2AB,得到B地对应点B′,同样得到C、D 地对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【解答】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.21.(8分)在一只不透明地袋中,装着标有数字3,4,5,7地质地、大小均相同地小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上地数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表地方法,求小明获胜地概率;(2)这个游戏公平吗?请说明理由.【分析】(1)先根据题意画出树状图,再根据概率公式即可得出答案;(2)先分别求出小明和小东地概率,再进行比较即可得出答案.【解答】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9地有4种,∴P(小明获胜)==;(2)∵P(小明获胜)=,∴P(小东获胜)=1﹣=,∴这个游戏不公平.22.(10分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上地点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求地值.【分析】(1)根据折叠地性质,易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易证FG=FE,故由四边相等证明四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出地值.【解答】(1)证明:由折叠地性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)解:设DE=x,根据折叠地性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+(8﹣x)2=x2,解得:x=5,CE=8﹣x=3,∴=.23.(10分)国庆期间,为了满足百姓地消费需求,某商店计划用170000元购进一批家电,这批家电地进价和售价如表:若在现有资金允许地范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数地2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得地利润最大?最大利润为多少元?【分析】(1)根据表格中三种家电地进价表示三种家电地总进价,小于等于170000元列出关于x地不等式,根据x为正整数,即可解答;(2)设商店销售完这批家电后获得地利润为y元,则y=(2300﹣2000)2x+(1800﹣1600)x+(1100﹣1000)(100﹣3x)=500x+10000,结合(1)中x地取值范围,利用一次函数地性质即可解答.【解答】解:(1)根据题意,得:2000•2x+1600x+1000(100﹣3x)≤170000,解得:x,∵x为正整数,∴x至多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得地利润为y元,则y=(2300﹣2000)2x+(1800﹣1600)x+(1100﹣1000)(100﹣3x)=500x+10000,∵k=500>0,∴y随x地增大而增大,∵x且x为正整数,∴当x=26时,y有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得地利润最大,最大利润为23000元.24.(12分)理解:数学兴趣小组在探究如何求tan15°地值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上地和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°地等腰三角形中,作腰上地高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°地值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔地视角(∠CAD)为45°,求这座电视塔CD地高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P地坐标;若不能,请说明理由.【分析】(1)如图1,只需借鉴思路一或思路二地方法,就可解决问题;(2)如图2,在Rt△ABC中,运用勾股定理求出AB,运用三角函数求得∠BAC=30°.从而得到∠DAB=75°.在Rt△ABD中,运用三角函数就可求出DB,从而求出DC长;(3)①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F,可先求出点A、B、C地坐标,从而求出tan∠ACF地值,进而利用和(差)角正切公式求出tan ∠PCE=tan(45°+∠ACF)地值,设点P地坐标为(a,b),根据点P在反比例函数地图象上及tan∠PCE地值,可得到关于a、b地两个方程,解这个方程组就可得到点P地坐标;②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4,由①可知∠ACP=45°,P((,3),则有CP⊥CG.过点P作PH⊥y轴于H,易证△GOC∽△CHP,根据相似三角形地性质可求出GO,从而得到点G地坐标,然后用待定系数法求出直线CG地解析式,然后将直线CG与反比例函数地解析式组成方程组,消去y,得到关于x地方程,运用根地判别式判定,得到方程无实数根,此时点P不存在.【解答】解:(1)方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tan∠DAC=tan75°====2+;方法二:tan75°=tan(45°+30°)====2+;(2)如图2,在Rt△ABC中,AB===30,sin∠BAC===,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB=,∴DB=AB•tan∠DAB=30•(2+)=60+90,∴DC=DB﹣BC=60+90﹣30=60+60.答:这座电视塔CD地高度为(60+60)米;(3)①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组,得或,∴点A(4,1),点B(﹣2,﹣2).对于y=x﹣1,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF===,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)===3,即=3.设点P地坐标为(a,b),则有,解得:或,∴点P地坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P((,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴=.∵CH=3﹣(﹣1)=4,PH=,OC=1,∴==,∴GO=3,G(﹣3,0).设直线CG地解析式为y=kx+b,则有,解得,∴直线CG地解析式为y=﹣x﹣1.联立,消去y,得=﹣x﹣1,整理得:x2+3x+12=0,∵△=32﹣4×1×12=﹣39<0,∴方程没有实数根,∴点P不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P地坐标为(﹣1,﹣4)或(,3).25.(14分)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线地顶点,请解决下列问题.(1)填空:点C地坐标为(0,3),点D地坐标为(1,4);(2)设点P地坐标为(a,0),当|PD﹣PC|最大时,求α地值并在图中标出点P 地位置;(3)在(2)地条件下,将△BCP沿x轴地正方向平移得到△B′C′P′,设点C对应点C′地横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分地面积为S,求S与t之间地关系式,并直接写出当t为何值时S最大,最大值为多少?【分析】(1)根据抛物线与坐标轴交点坐标求法和顶点坐标求法计算即可;(2)求|PD﹣PC|地值最大时点P地坐标,应延长CD交x轴于点P.因为|PD﹣PC|小于或等于第三边CD,所以当|PC﹣PD|等于CD时,|PC﹣PD|地值最大.因此求出过CD两点地解析式,求它与x轴交点坐标即可;(3)过C点作CE∥x轴,交DB于点E,求出直线BD地解析式,求出点E地坐标,求出P′C′与BC地交点M地坐标,分点C′在线段CE上和在线段CE地延长线上两种情况,再分别求得N点坐标,再利用图形地面积地差,可表示出S,再求得其最大值即可.【解答】解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴C(0,3),D(1,4),故答案为:0;3;1;4;(2)∵在三角形中两边之差小于第三边,∴延长DC交x轴于点P,设直线DC地解析式为y=kx+b,把D、C两点坐标代入可得,解得,∴直线DC地解析式为y=x+3,将点P地坐标(a,0)代入得a+3=0,求得a=﹣3,如图1,点P(﹣3,0)即为所求;(3)过点C作CE∥x,交直线BD于点E,如图2,由(2)得直线DC地解析式为y=x+3,由法可求得直线BD地解析式为y=﹣2x+6,直线BC地解析式为y=﹣x+3,在y=﹣2x+6中,当y=3时,x=,∴E点坐标为(,3),设直线P′C′与直线BC交于点M,∵P′C′∥DC,P′C′与y轴交于点(0,3﹣t),∴直线P′C′地解析式为y=x+3﹣t,联立,解得,∴点M坐标为(,),∵B′C′∥BC,B′坐标为(3+t,0),∴直线B′C′地解析式为y=﹣x+3+t,分两种情况讨论:①当0<t<时,如图2,B′C′与BD交于点N,联立,解得,∴N点坐标为(3﹣t,2t),S=S△B′C′P﹣S△BMP﹣S△BNB′=×6×3﹣(6﹣t)×(6﹣t)﹣t×2t=﹣t2+3t,其对称轴为t=,可知当0<t<时,S随t地增大而增大,当t=时,有最大值;②当≤t<6时,如图3,直线P′C′与DB交于点N,联立,解得,∴N点坐标为(,),S=S△BNP′﹣S△BMP′=(6﹣t)×﹣×(6﹣t)×=(6﹣t)2=t2﹣t+3;显然当<t<6时,S随t地增大而减小,当t=时,S=综上所述,S与t之间地关系式为S=,且当t=时,S有最大值,最大值为.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
精品文档2OL5年漳州市初中毕业壁高中阶段招生考试数学试题©瞽'分:150分;寿试时间;翩分传)友情提示:请把所有答案填写(涂)到答题卡上!清不要錯位、越界答题'!姫名准症证号------------------燒■:左US.中,凡•可先用婚.■在答上間伊■用弓単季子!■福・认,昔对无敕・_忌择■供10小谶.每小/ I分,滴分40分.勉小H只有一个正晴的地虱请在着舉十的构应 &宣壊*】32.卜”鼻请中,谐宣采剤样代方式的足〜了第一爪阔#遇的使用寿命KTM全国九蚯缰学生鸟臨的观伏a 的成訳aGff-ttMTXZMllS!的読伐火场的各写都件L:♦耕布黄収家上■上愉初刊为叫家公路远探中詡〈布,理拥奇处小奪W牝讨2121 为KO^lXlCi" K2IX1O1 a X1X101|>乙 A时‘mF左—TK/T体包我点•二它的¥面■开图必A贩1MK6.-3.0.L6的中仪故員A.0 &I« bMfeC中倉笔的呈。
-鼻内第九朴C—St—分tt史的0貝达个命的■边的7.一个多边形的每个内角都等于120.,则这个名族形的边数为A.4 H5 C5 D.78•均匀地向坷下左图的容网中注満水•能反映在注水过程中水面高度A随时间,変化的函故由蓋:U匕:U比A B C D9已知③P的半岐为2.圖心在两数尸一亨的用象上运訪.当⑥尸与坐怀辅相切于点。
时.削符合条件的点D的个數为A。
ai Q2 U410.在數学活动课上.同学们利用如四(第10题国)的暮序进行计算.发H无论T取任何正整敷. 結果部会逬人循邓.下面透項一定不是该:循拜的是. •A. 4,2.1 R 2,1,4 G 1,4,2 口2,4,1二、填空JB(共6小题,每小题4分,満分24分.请将答案缜入誓H卡的相位位置)• • •11.计算3,1 - _________________ .12.我巾今年中争數学学科开考时间是6月Z2H 15酎.数申・201506221500”中出现的频效13.已知二次函数》・(工一2妙+ 3,当z ______________ 时"随x的増大而减小・11.如图(第14哪W.AD〃财CFqflU.M与这三条平行技分别女干点ABC和点D.E.F.健.•(,嗟・6,则£F- ____________ .is.若关于M的一元二次方程aH+ir-i■。
福建省漳州市2015年中考数学试卷一、选择题(共10题,每题3分,满分30分)1、(2015•漳州)在﹣1、3、0、四个实数中,最大的实数是()A、﹣1B、3C、0D、2、(2015•漳州)下列运算正确的是()A、a3•a2=a5B、2a﹣a=2C、a+b=abD、(a3)2=a93、(2015•漳州)9的算术平方根是()A、3B、±3C、D、±4、(2015•漳州)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是()A、B、 C、D、5、(2015•漳州)下列事件中,属于必然事件的是()A、打开电视机,它正在播广告B、打开数学书,恰好翻到第50页C、抛掷一枚均匀的硬币,恰好正面朝上D、一天有24小时6、(2015•漳州)分式方程=1的解是()A、﹣1B、0C、1D、7、(2015•漳州)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是()A、79,85B、80,79C、85,80D、85,858、(2015•漳州)下列命题中,假命题是()A、经过两点有且只有一条直线B、平行四边形的对角线相等C、两腰相等的梯形叫做等腰梯形D、圆的切线垂直于经过切点的半径9、(2015•漳州)如图,P(x,y)是反比例函数y=的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积()A、不变B、增大C、减小D、无法确定10、(2015•漳州)如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A、0.6mB、1.2mC、1.3mD、1.4m二、填空题(共6题,每题4分,共24分.)11、(2015•海南)分解因式:x2﹣4=_________.12、(2015•漳州)2014年我市为突出“海西建设,漳州先行”发展主线,集中力量大干150天,打好五大战役,全市经济增长取得新的突破,全年实现地区生产总值约为140 070 000 000元,用科学记数法表示为_________元.13、(2015•漳州)口袋中有2个红球和3个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是_________.14、(2015•漳州)两圆的半径分别为6和5,圆心距为10,则这两圆的位置关系是_________.15、(2015•漳州)如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为_________cm2.(结果保留π)16、(2015•漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子_________枚.(用含n的代数式表示)三、解答题(共10题,满分96分)17、(2015•漳州)|﹣3|+(﹣1)0﹣()﹣1.18、(2015•漳州)已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:19、(2015•漳州)如图,∠B=∠D,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC≌△ADE,并证明.(1)添加的条件是_________;(2)证明:20、(2015•漳州)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.21、(2015•漳州)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_________人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?22、(2015•漳州)某校“我爱学数学”课题学习小组的活动主题是“测量学校旗杆的高度”.以课题测量学校旗杆的高度图示发言记录小红:我站在远处看旗杆顶端,测得仰角为30°小亮:我从小红的位置向旗杆方向前进12m看旗杆顶端,测得仰角为60°小红:我和小亮的目高都是1.6m请你根据表格中记录的信息,计算旗杆AG的高度.(取1.7,结果保留两个有效数字)23、(2015•漳州)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.24、(2015•漳州)2008年漳州市出口贸易总值为22.52亿美元,至2014年出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.(1)求这两年漳州市出口贸易的年平均增长率;(2)按这样的速度增长,请你预测2015年漳州市的出口贸易总值.(温馨提示:2252=4×563,5067=9×563)25、(2015•漳州)如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(_________,_________),点D的坐标是(_________,_________);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.26、(2015•漳州)如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.(1)填空:OB=_________,OC=_________;(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.答案与评分标准一、选择题(共10题,每题3分,满分30分.)1、(2015•漳州)在﹣1、3、0、四个实数中,最大的实数是()A、﹣1B、3C、0D、考点:实数大小比较。
2015年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,26小题;满分150分;考试时间:120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题!毕业学校_______________________姓名_______________考生号__________一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确选项.)1.a的相反数是(C)A.|a| B. C.-a D.2.下列图形中,由∠1=∠2能得到AB∥CD的是(B)3.不等式组的解集在数轴上表示正确的是(A)4.计算,结果用科学记数法表示为(D )A. B. C. D.5.下列选项中,显示部分在总体中所占百分比的统计图是(A )A.扇形图 B.条形图 C.折线图 D.直方图6.计算的结果为( C)A.-1 B.0 C.1 D.-a7.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( B )A.A点 B.B点 C.C点 D.D点8.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为(B)A.80º B.90º C.100º D.105º9.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是(C)A.0 B.2.5 C.3 D.510.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是(D)A.正比例函数 B.一次函数 C.反比例函数 D.二次函数二、填空题(共6小题,每题4分,满分24分)11.分解因式的结果是___(a+3)(a-3)_______.12.计算(x-1)(x+2)的结果是__________.13.一个反比例函数图象过点A(-2,-3),则这个反比例函数的解析式是________.14.一组数据:2015,2015,2015,2015,2015的方差是____0____.15.一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2cm,则正方体的体积为____cm.15.如图,在Rt△ABC中,∠ABC=90º,AB=BC=.将△ABC绕点C逆时针旋转60º,得到△MNC,连接BM,则BM的长是______.三、解答题(共10题,满分96分)17.(7分)计算:+sin30º+.解:原式=-1++1=.18.(7分)化简:.解:原式===1.19.(8分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.证明:∵∠3=∠4,∴∠ABC=∠ABD.∵∠1=∠2,AB=AB,∴△ABC≌△ABD.∴AC=AD.20.(8分)已知关于x的方程有两个相等的实数根,求m的值.解:∵方程有两个相等的实数根,∴△=.解得m=,或m=.21.(9分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?解:设有x支篮球队参赛,则有(48-x)支排球队参赛.依题意列方程10x+12(48-x)=520.解得x=28.所以48-x=20.答:篮球、排球队各有28、20支参赛.22.(9分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是________;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.解:(1)相同(2)2(3)由树状图得一次试验中一共有12种可能的结果,并且它们发生的可能性都相等,事件“两次摸出的球颜色不同”包含其中的10种结果,所以所求概率为=.23.(10分)如图,Rt△ABC中,∠C=90º,AC=,tan B=.半径为2的⊙C分别交AC、BC于点D、E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.解:(1)过点C作CF⊥AB,F为垂足.∵AC=,tan B==,∴BC=.∴AB==5.∵=AC·BC=AB·CF.∴CF==2.∴点C到AB的距离等于⊙C的半径.∴AB为⊙C的切线.(2)由(1)得=AC·BC=5,而=,阴影部分的面积=5-.24.(12分)定义:长宽比为∶1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD=.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90º,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴,即.∴.∴BC∶BF=1∶=∶1.∴四边形BCEF为矩形.阅读以上内容,回答下面问题:(1)在①中,所有与CH相等的线段是___GH,GD____,tan∠HBC的值是________;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形.(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是____6_____.解:(2)证明:设矩形BCEF的边长BF=1,则BC=,则BE=.由折叠性质可知BP=BC=,∠FNM=∠BNM=90º,则四边形BCMN为矩形.∴∠F=∠BNM.∴MN∥FE.∴,即.∴.∴BC∶BN=∶=∶1.∴四边形BCMN为矩形.(3)附录:证明矩形经过上述操作后得到矩形.如附录图,设矩形BCEF的边长BF=1,则BC=,则BE=.由折叠性质可知BP=BC=,∠FNM=∠BNM=90º,则四边形BCMN为矩形.∴∠F=∠BNM.∴MN∥FE.∴,即.∴.∴BC∶BN=∶=∶1.∴四边形BCMN为矩形.25.(13分)如图①,在锐角△ABC中,D、E分别为AB、BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.解:(1)证明:∵DM∥EF,∴∠AMD=∠AFE.∵∠AFE=∠A,∴∠AMD=∠A.∴DM=DA.(2)证明:∵∠DGB=180º-∠B-∠BDG,∠A=180º-∠B-∠C,∠BDG=∠C,∴∠DGB=∠A.∵∠A=∠AFE,∴∠DGB=∠AFE.∵∠DGE=180º-∠DGB,∠EFC=180º-∠AFE,∴∠DGE=∠EFC.又∵DE是中位线,∴DE∥AC.∴∠DEB=∠C.∴△DEG∽△ECF.(3)提示:如答图,由△BDG∽△BED,得,由△EFH∽△ECF,得.由BD=DA=DM=EF,且BE=EC,得EH=BG=1.26.(13分)如图,抛物线与x轴交于O、A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是___ __,直线PQ与x轴所夹锐角的度数是______;(2)若两个三角形面积满足=,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD·DQ的最大值.解:(1)x=2 45º(2)设直线PQ交x轴于点B,分别在△POQ和△PAQ中作PQ边上的高OE和AF.按点B的不同位置分三种情况讨论如下:①如答图①,若点B在线段OA的延长线上,OE>AF,=不成立.②如答图②,若点B在线段OA上,∵=,∴.∵OB=,AB=.∴AB=3OB.∵A(4,0),∴OA=4.∴OB=1.∴B(1,0).∵点B在直线y=x+m上,∴m=-1.③若点B在线段AO的延长线上,与②类似,可得OB==2.∴B(-2,0).∴m=2.综上所述,当m=-1或2时,=.(3)①如答图④,过点C作CH∥x轴交直线PQ于点H.则△CHQ是等腰直角三角形.由C(2,2),A(4,0)得直线AC与x轴所夹锐角的度数为45º.∴CD是等腰直角三角形CHQ斜边上的高.∴DQ=DH.∴PD+DQ=PH.过点P作PM⊥CH于点M,则△PMH也是等腰直角三角形.∴PH =.∵点P在抛物线上,设它的横坐标为n,则它的纵坐标为.∴点M的纵坐标为2,∴PM=.配方,得=.∵0<n<4,∴当n=2时,PM取得最大值是6.∵PD+DQ=PH=,∴PD+DQ的最大值为.②由①可得PD+DQ≤.设PD=a,则DQ≤-a.∴PD·DQ≤==.∵a的取值范围是0<a≤,∴当a=时,PD·DQ的最大值为18.附加说明:(对a的取值范围的说明)设点P的坐标为(n,),延长PM交AC于点N.PD=a====.∵<0,0<n<4,∴当n=时,a有最大值为.∴0<a≤.说明:本卷解答由张越初中数学提供,仅供参考!如有疏漏或谬误之处,尚祈专家、同行不吝指教!。
为方便广大师生备战中考,特整理2015年全国中考全部真题及答案解析,由于文本较大,本套分为了五个系列共计182套真题与答案解析欢迎进入空间分别下载。
2015年福建省福州市中考数学试卷真题一、选择题(共10小题,每小题3分,满分30分) .. . . D .3.(3分)(2015•福州)不等式组的解集在数轴上表示正确的是( ).B ..D .77﹣17.(3分)(2015•福州)如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )8.(3分)(2015•福州)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()9.(3分)(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值10.(3分)(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x二、填空题(共6小题,满分24分)11.(4分)(2015•福州)分解因式a2﹣9的结果是.12.(4分)(2015•福州)计算(x﹣1)(x+2)的结果是.13.(4分)(2015•福州)一个反比例函数图象过点A(﹣2,﹣3),则这个反比例函数的解析式是.14.(4分)(2015•福州)一组数据:2015,2015,2015,2015,2015,2015的方差是.15.(4分)(2015•福州)一个工件,外部是圆柱体,内部凹槽是正方体,如图所示,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.16.(4分)(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、解答题(共10小题,满分96分)17.(7分)(2015•福州)计算:(﹣1)2015+sin30°+(2﹣)(2+).18.(7分)(2015•福州)化简:﹣.19.(8分)(2015•福州)如图,∠1=∠2,∠3=∠4,求证:AC=AD.20.(8分)(2015•福州)已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.21.(9分)(2015•福州)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?22.(9分)(2015•福州)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.23.(10分)(2015•福州)如图,Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C,分别交AC,BC于点D,E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.24.(12分)(2015•福州)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是.25.(13分)(2015•福州)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.2015年福建省福州市中考数学试卷真题参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)....D.3.(3分)(2015•福州)不等式组的解集在数轴上表示正确的是().B..D.的解集是﹣后在数轴上表示出不等式组的解集是:∴不等式组的解集在数轴上表示为:.77﹣17.(3分)(2015•福州)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()8.(3分)(2015•福州)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()9.(3分)(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值10.(3分)(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x由题意得,,解得,y=,二、填空题(共6小题,满分24分)11.(4分)(2015•福州)分解因式a2﹣9的结果是(a+3)(a﹣3).12.(4分)(2015•福州)计算(x﹣1)(x+2)的结果是x2+x﹣2.13.(4分)(2015•福州)一个反比例函数图象过点A(﹣2,﹣3),则这个反比例函数的解析式是.y==..14.(4分)(2015•福州)一组数据:2015,2015,2015,2015,2015,2015的方差是0.15.(4分)(2015•福州)一个工件,外部是圆柱体,内部凹槽是正方体,如图所示,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为2cm3.AB=,),.16.(4分)(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.BO=BM=BO+OM=1+AB=BC=BO=BM=BO+OM=1+,.三、解答题(共10小题,满分96分)17.(7分)(2015•福州)计算:(﹣1)2015+sin30°+(2﹣)(2+).,结合平方差公式进行计算,即可解1+.18.(7分)(2015•福州)化简:﹣.﹣19.(8分)(2015•福州)如图,∠1=∠2,∠3=∠4,求证:AC=AD.中,20.(8分)(2015•福州)已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.﹣21.(9分)(2015•福州)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?解得:22.(9分)(2015•福州)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是2;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率..23.(10分)(2015•福州)如图,Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C,分别交AC,BC于点D,E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.,再利用勾股定理计算出=,BC=2AC=2AB==5CH ACCH=×﹣24.(12分)(2015•福州)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是﹣1;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是6.x矩形沿用“矩形沿用(“矩形沿“xDC=DH+CH=x=HBC==.;,BE===,即×=BN==矩形沿用(矩形矩形沿用(矩形矩形沿用(矩形中的“25.(13分)(2015•福州)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是2,直线PQ与x轴所夹锐角的度数是45°;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.PH=PM,设﹣﹣a=),得出S=,==,OB=OA=2=SPH=PM6,+6)a=32015年福建省龙岩市中考数学试卷真题一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求)...的值比8大5.(4分)(2015•龙岩)如图所示几何体的主视图是(). .6.(4分)(2015•龙岩)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S 甲2=0.80,S 乙2=1.31,S 丙2=1.72,S 丁2=0.42,则成绩最稳定的同学8.(4分)(2015•龙岩)如图,在边长为的等边三角形ABC 中,过点C 垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为( ). . 9.(4分)(2015•龙岩)已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=( ).10.(4分)(2015•龙岩)如图,菱形ABCD 的周长为16,∠ABC=120°,则AC 的长为( )二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2015•龙岩)2015年6月14日是第12个“世界献血者日”,据国家相关部委公布,2014年全国献血人数达到约130 000 000人次,将数据130 000 000用科学记数法表示为.12.(3分)(2015•龙岩)分解因式:a2+2a=.13.(3分)(2015•龙岩)若4a﹣2b=2π,则2a﹣b+π=.14.(3分)(2015•龙岩)圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是°.15.(3分)(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.16.(3分)(2015•龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有个.三、解答题(本大题共9小题,共92分)17.(6分)(2015•龙岩)计算:|﹣|+20150﹣2sin30°+﹣9×.18.(6分)(2015•龙岩)先化简,再求值:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2,其中x=2.19.(8分)(2015•龙岩)解方程:1+=.20.(10分)(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.21.(11分)(2015•龙岩)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?22.(12分)(2015•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.24.(13分)(2015•龙岩)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.25.(14分)(2015•龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.2015年福建省龙岩市中考数学试卷真题参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求)...的值比8大的值比5.(4分)(2015•龙岩)如图所示几何体的主视图是()..解:几何体的主视图为6.(4分)(2015•龙岩)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学8.(4分)(2015•龙岩)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()..=1PBC==19.(4分)(2015•龙岩)已知点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=().y=图象上异于点(﹣+=+==10.(4分)(2015•龙岩)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()×=2,.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2015•龙岩)2015年6月14日是第12个“世界献血者日”,据国家相关部委公布,2014年全国献血人数达到约130 000 000人次,将数据130 000 000用科学记数法表示为 1.3×108.12.(3分)(2015•龙岩)分解因式:a2+2a=a(a+2).13.(3分)(2015•龙岩)若4a﹣2b=2π,则2a﹣b+π=2π.14.(3分)(2015•龙岩)圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是90°.15.(3分)(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.16.(3分)(2015•龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有9个.三、解答题(本大题共9小题,共92分)17.(6分)(2015•龙岩)计算:|﹣|+20150﹣2sin30°+﹣9×.+1×+218.(6分)(2015•龙岩)先化简,再求值:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2,其中x=2.x=2219.(8分)(2015•龙岩)解方程:1+=.20.(10分)(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.,AE=DC=AB=CD=,即())21.(11分)(2015•龙岩)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?×100%=25%,即b=25;22.(12分)(2015•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.==4会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.,424.(13分)(2015•龙岩)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.MD=AD DN=AC=3AC=3cosA==,=,解得cosA==,即=,AM=,AD=t=2AM=,时,25.(14分)(2015•龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.ACO==,CBO==,即可得出∠,t﹣y=(,=3,x﹣ACO==,CBO==,x+4,t+4,x+4+4==4+224+2﹣211+),x+4•+4==4+2,4+2),,x+4•+4=,4+2),4+2),11+4+2﹣)4+2﹣23+2015年福建省莆田市中考数学试卷真题一、选择题(共10小题,每小题4分,满分40分)3.(4分)(2015•莆田)右边几何体的俯视图是( )....5.(4分)(2015•莆田)不等式组的解集在数轴上可表示为( )..6.(4分)(2015•莆田)如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )7.(4分)(2015•莆田)在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8.(4分)(2015•莆田)如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()9.(4分)(2015•莆田)命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则10.(4分)(2015•莆田)数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是()二、细心填一填(共6小题,每小题4分,满分24分)11.(4分)(2015•莆田)要了解一批炮弹的杀伤力情况,适宜采取(选填“全面调查”或“抽样调查”).12.(4分)(2015•莆田)八边形的外角和是.13.(4分)(2015•莆田)中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.14.(4分)(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.15.(4分)(2015•莆田)如图,AB切⊙O于点B,OA=2,∠BAO=60°,弦BC∥OA,则的长为(结果保留π).16.(4分)(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.三、耐心做一做(共10小题,满分86分)17.(7分)(2015•莆田)计算:|2﹣|﹣+(﹣1)0.18.(7分)(2015•莆田)解分式方程:=.19.(8分)(2015•莆田)先化简,再求值:﹣,其中a=1+,b=﹣1+.20.(10分)(2015•莆田)为建设”书香校园“,某校开展读书月活动,现随机抽取了一部分学生的日人均阅读时间x(单位:小时)进行统计,统计结果分为四个等级,分别记为A,B,C,D,其中:A:0≤x<0.5,B:0.5≤x<1,C:1≤x<1.5,D:1.5≤x<2,根据统计结果绘制了如图两个尚不完整的统计图.(1)本次统计共随机抽取了名学生;(2)扇形统计图中等级B所占的圆心角是;(3)从参加统计的学生中,随机抽取一个人,则抽到“日人均阅读时间大于或等于1小时”的学生的概率是;(4)若该校有1200名学生,请估计“日人均阅读时间大于或等于0.5小时”的学生共有人.21.(8分)(2015•莆田)如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.22.(8分)(2015•莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.23.(8分)(2015•莆田)某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的变化趋势如图1,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图2中所确定抛物线的解析式;(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?24.(8分)(2015•莆田)如图,矩形OABC,点A,C分别在x轴,y轴正半轴上,直线y=﹣x+6交边BC于点M(m,n)(m<n),并把矩形OABC分成面积相等的两部分,过点M的双曲线y=(x>0)交边AB于点N.若△OAN的面积是4,求△OMN的面积.25.(10分)(2015•莆田)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c 为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q 为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.26.(12分)(2015•莆田)在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF 的中点,连接PC,PE.特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;。
2015年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确选项)1.a的相反数是( )A.|a|B.1C.-aD.√aa2.下列图形中,由∠1=∠2能得到AB∥CD的是( )的解集在数轴上表示正确的是( )3.不等式组{x≥-1,x<24.计算3.8×107-3.7×107,结果用科学记数法表示为( )A.0.1×107B.0.1×106C.1×107D.1×1065.下列选项中,显示部分在总体中所占百分比的统计图是( )A.扇形图B.条形图C.折线图D.直方图6.计算a·a-1的结果为( )A.-1B.0C.1D.-a7.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点8.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为( )A.80°B.90°C.100°D.105°9.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是( )A.0B.2.5C.3D.510.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y 随x的增大而减小,则符合上述条件的函数可能是( )A.正比例函数B.一次函数C.反比例函数D.二次函数第Ⅱ卷(非选择题,共120分)二、填空题(共6小题,每题4分,满分24分)11.分解因式a2-9的结果是.12.计算(x-1)(x+2)的结果是.13.一个反比例函数图象过点A(-2,-3),则这个反比例函数的解析式是.14.一组数据:2015,2015,2015,2015,2015,2015的方差是.15.一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=√2.将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是.三、解答题(共10小题,满分96分)17.(7分)计算:(-1)2015+sin30°+(2-√3)(2+√3).18.(7分)化简:(a+b)2a 2+b 2-2aba 2+b 2.19.(8分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.20.(8分)已知关于x 的方程x 2+(2m-1)x+4=0有两个相等的实数根,求m 的值.21.(9分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?22.(9分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率..半径为2的☉C,分别交AC,BC于点D,E, 23.(10分)如图,Rt△ABC中,∠C=90°,AC=√5,tan B=12得到DE⏜.(1)求证:AB为☉C的切线;(2)求图中阴影部分的面积.24.(12分)定义:长宽比为√n∶1(n为正整数)的矩形称为√n矩形.下面,我们通过折叠的方式折出一个√2矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为√2矩形.图①证明:设正方形ABCD的边长为1,则BD=√12+12=√2.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形,∴∠A=∠BFE.∴EF∥AD.∴BGBD =BFAB,即√2=BF1.∴BF=12.∴BC∶BF=1∶1√2=√2∶1.∴四边形BCEF为√2矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2)已知四边形BCEF为√2矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN 是√3矩形;(3)将图②中的√3矩形BCMN沿用(2)中的方式操作3次后,得到一个“√n矩形”,则n的值是.图②25.(13分)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)如图,抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m 与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;S△PAQ,求m的值;(2)若两个三角形面积满足S△POQ=13(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ 的最大值;②PD·DQ的最大值.备用图答案全解全析:一、选择题1.C只有符号不同的两个数叫做互为相反数,所以a的相反数是-a,故选C.2.B根据内错角相等,两直线平行,可知B选项正确,故选B.3.A不等式组的解集为-1≤x<2,故选A.4.D 3.8×107-3.7×107=0.1×107=1×106,故选D. 5.A 扇形图可以反映部分在总体中所占的百分比,故选A. 6.C a ·a -1=a 1-1=a 0=1,故选C.7.B 以点B 为坐标原点,网格线所在直线为坐标轴,建立平面直角坐标系,则点A,C 关于坐标轴对称,故选B.8.B 在以C 为圆心的圆中,AB 是直径,M 为圆周上一点,所以∠AMB=90°,故选B. 9.C 当x ≤2时,中位数是2,此时1+2+3+4+x5=2,解得x=0,符合题意;当2<x<3时,中位数是x,此时1+2+3+4+x5=x,解得x=2.5,符合题意;当x ≥3时,中位数是3,此时1+2+3+4+x5=3,解得x=5,符合题意.故符合题意的x 的值为0,2.5,5,不可能是3,故选C. 评析 本题重点考查平均数和中位数的概念,属于中等难度题.10.D 易知经过点(1,-4),(2,-2)的直线不经过原点,所以所求函数不是正比例函数,A 不符合;若为一次函数或反比例函数,则在自变量x 的某个取值范围内,函数值y 随x 的增大而增大,所以B 、C 不符合题意;只有D 正确,故选D.二、填空题11.答案 (a+3)(a-3) 解析 a 2-9=a 2-32=(a+3)(a-3).12.答案 x 2+x-2解析 (x-1)(x+2)=x 2+2x-x-2=x 2+x-2.13.答案 y=6x解析 设这个反比例函数的解析式为y=kx (k ≠0),代入点A 的坐标,得k=6,故这个反比例函数的解析式为y=6x . 14.答案 0解析 该组数据的平均数为2 015,方差s 2=16×[6×(2 015-2 015)2]=0.15.答案 2√2解析 由题意可知圆柱底面的直径为2 cm,则圆柱底面内接正方形的对角线长为2 cm,边长为√2 cm,故正方体的体积是2√2 cm 3.16.答案 √3+1解析 如图,连结AM,易知△AMC 是等边三角形,所以CM=AM,易证△BMC ≌△BMA,所以∠CBM=∠ABM=45°,∠CMB=∠AMB=30°,所以∠CDM=∠CDB=90°.在Rt △CDB 中,CD=CB ·sin 45°=1,所以BD=CD=1.在Rt △CDM 中,DM=CM ·sin 60°=√3,所以BM=BD+DM=√3+1.评析 解决本题的关键是证出BM ⊥AC,再利用含有特殊角的直角三角形分别求得BD 、DM 的长,从而求出BM,综合性较强,属于难题.三、解答题17.解析 原式=-1+12+(4-3)=12. 18.解析 原式=(a+b)2-2ab a 2+b 2=a 2+b 2+2ab -2ab a 2+b 2=a 2+b 2a 2+b 2=1.19.证明 ∵∠3=∠4,∴∠ABC=∠ABD. 在△ABC 和△ABD 中,{∠1=∠2,AB =AB,∠ABC =∠ABD.∴△ABC ≌△ABD(ASA). ∴AC=AD.20.解析 ∵关于x 的方程x 2+(2m-1)x+4=0有两个相等的实数根,∴Δ=(2m -1)2-4×1×4=0. ∴2m -1=±4. ∴m=52或m=-32.21.解析 解法一:设有x 支篮球队和y 支排球队参赛, 依题意得{x +y =48,10x +12y =520.解得{x =28,y =20.答:篮球、排球队各有28支与20支.解法二:设有x 支篮球队,则排球队有(48-x)支, 依题意得10x+12(48-x)=520. 解得x=28. 48-x=48-28=20.答:篮球、排球队各有28支与20支. 22.解析 (1)相同. (2)2.(3)由树状图可知:共有12种结果,且每种结果出现的可能性相同.其中两次摸出的球颜色不同(记为事件A)的结果共有10种,∴P(A)=1012=56. 23.解析 (1)过点C 作CF ⊥AB 于点F, 在Rt △ABC 中,tan B=AC BC =12, ∴BC=2AC=2√5.∴AB=√AC 2+BC 2=√(√5)2+(2√5)2=5. ∴CF=AC ·BC AB=√5×2√55=2. ∴AB 为☉C 的切线.(2)S 阴影=S △ABC -S 扇形CDE =12AC ·BC-nπr 2360 =12×√5×2√5-90π×22360=5-π. 24.解析 (1)GH,DG;√2-1.(2)证明:∵BF=√22,BC=1,∴BE=√BF 2+BC 2=√62.由折叠性质可知BP=BC=1,∠FNM=∠BNM=90°,则四边形BCMN 为矩形,∴∠BNM=∠F. ∴MN ∥EF.∴BP BE =BN BF ,即BP ·BF=BE ·BN. ∴√62BN=√22.∴BN=√3. ∴BC∶BN=1∶√3=√3∶1. ∴四边形BCMN 是√3矩形.(3)6.25.解析图① (1)证明:∵DM ∥EF,∴∠AMD=∠AFE.∵∠AFE=∠A,∴∠AMD=∠A.∴DM=DA.(2)证明:∵D,E 分别为AB,BC 的中点,∴DE ∥AC.图② ∴∠DEB=∠C,∠BDE=∠A.又∠AFE=∠A,∴∠BDE=∠AFE.∴∠BDG+∠GDE=∠C+∠FEC.∵∠BDG=∠C,∴∠EDG=∠FEC.∴△DEG ∽△ECF.(3)解法一:如图③所示,∵∠BDG=∠C=∠DEB,∠B=∠B,图③ ∴△BDG ∽△BED.∴BD BE =BG BD ,即BD 2=BE ·BG.∵∠A=∠AFE,∠B=∠CFH,∴∠C=180°-∠AFE-∠CFH=∠EFH.又∵∠FEH=∠CEF,∴△EFH ∽△ECF.∴EH EF =EF EC ,即EF 2=EH ·EC. ∵DE ∥AC,DM ∥EF,∴四边形DEFM 是平行四边形.∴EF=DM=AD=BD.∵BE=EC,∴EH=BG=1.解法二:如图④,在DG 上取一点N,使DN=FH.图④ ∵∠A=∠AFE,∠ABC=∠CFH,∠C=∠BDG,∴∠EFH=180°-∠AFE-∠CFH=∠C=∠BDG.∵DE ∥AC,DM ∥EF,∴四边形DEFM 是平行四边形.∴EF=DM=AD=BD.∴△BDN ≌△EFH.∴BN=EH,∠BND=∠EHF.∴∠BNG=∠FHC.∵∠BDG=∠C,∠DBG=∠CFH,∴∠BGD=∠FHC.∴∠BNG=∠BGD.∴BN=BG.∴EH=BG=1.解法三:如图⑤,取AC 中点P,连结PD,PE,PH,则PE ∥AB.图⑤∴∠PEC=∠B.又∠CFH=∠B,∴∠PEC=∠CFH.又∠C=∠C,∴△CEP ∽△CFH.∴CE CF =CP CH .∴△CEF ∽△CPH.∴∠CFE=∠CHP.由(2)可得∠CFE=∠DGE,∴∠CHP=∠DGE.∴PH ∥DG.∵D,P 分别为AB,AC 的中点,∴DP ∥GH,DP=12BC=BE.∴四边形DGHP 是平行四边形.∴DP=GH=BE.∴EH=BG=1.解法四:如图⑥,作△EHF 的外接圆交AC 于另一点P,连结PE,PH.图⑥ 则∠HPC=∠HEF,∠FHC=∠CPE.∵∠B=∠CFH,∠C=∠C,∴∠A=∠CHF.∴∠A=∠CPE.∴PE ∥AB.∵DE ∥AC,∴四边形ADEP 是平行四边形.∴DE=AP=12AC.∴DE=CP.由(2)可得∠GDE=∠CEF,∠DEB=∠C,∴∠GDE=∠CPH.∴△DEG ≌△PCH.∴GE=HC.∴EH=BG=1.解法五:如图⑦,取AC 中点P,连结PE,PH,则PE ∥AB.图⑦∴∠PEC=∠B.又∠CFH=∠B,∴∠PEC=∠CFH.又∠C=∠C,∴△CEP ∽△CFH.∴CE CF =CP CH .∴△CEF ∽△CPH.∴∠CEF=∠CPH.由(2)可得∠CEF=∠EDG,∠C=∠DEG.∵D,E 分别是AB,BC 的中点,∴DE=12AC=PC.∴△DEG ≌△PCH.∴CH=EG.∴EH=BG=1.26.解析 (1)x=2;45°.(2)设直线PQ 交x 轴于点B,分别过点O,A 作PQ 的垂线,垂足分别是E,F.显然当点B 在OA 的延长线上时,S △POQ =13S △PAQ 不成立.①当点B 落在线段OA 上时,如图1,图1S △POQ S △PAQ =OE AF =13. 由△OBE ∽△ABF 得OB AB =OE AF =13. ∴AB=3OB.∴OB=1OA.由y=x 2-4x 得点A(4,0), ∴OB=1.∴B(1,0).∴1+m=0.∴m=-1.②当点B 落在AO 的延长线上时,同理可得OB=12OA=2.图2∴B(-2,0).∴-2+m=0.∴m=2.综上所述,当m=-1或2时,S△POQ=1S△PAQ.3(3)①解法一:过点C作CH∥x轴交直线PQ于点H,如图3,可得△CHQ是等腰三角形.∵∠CDQ=45°+45°=90°,∴AD⊥PH.∴DQ=DH.∴PD+DQ=PH.过点P作PM⊥直线CH于点M,则△PMH是等腰直角三角形.∴PH=√2PM.∴当PM最大时,PH最大.当点P在抛物线顶点处时,PM取最大值,此时PM=6.∴PH的最大值为6√2,即PD+DQ的最大值为6√2.图3解法二:如图4,过点P作PE⊥x轴,交AC于点E,作PF⊥CQ于点F,图4 则△PDE,△CDQ,△PFQ 是等腰直角三角形.设点P(x,x 2-4x),则E(x,-x+4),F(2,x 2-4x). ∴PE=-x 2+3x+4,FQ=PF=|2-x|.∴点Q(2,x 2-5x+2).∴CQ=-x 2+5x.∴PD+DQ=√22(PE+CQ) =√22(-2x 2+8x+4) =-√2(x-2)2+6√2(0<x<4).∴当x=2时,PD+DQ 的最大值为6√2.②由①可知:PD+DQ ≤6√2.设PD=a,则DQ ≤6√2-a.∴PD ·DQ ≤a(6√2-a)=-a 2+6√2a=-(a-3√2)2+18.∵当点P 在抛物线的顶点时,a=3√2,∴PD ·DQ ≤18.∴PD ·DQ 的最大值为18.附加说明:(对a 的取值范围的说明)设P 点坐标为(n,n 2-4n),延长PM 交AC 于N. PD=a=√22PN=√22[4-n-(n 2-4n)] =-√2(n 2-3n-4)=-√2(n -3)2+25√2. ∵-√22<0,0<n<4,∴当n=32时,有最大值,为258√2.∴0<a ≤258√2. 评析 在第(2)问中,因为△PQA 和△PQO 共用底边PQ,可以作高,把面积的比转换为高的比,再利用相似三角形求得OA 和OB 的关系,构造方程,求出m 的值;第(3)问构造等腰直角三角形是解题的突破口,综合性较强,属于难题.。
2015年中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. πC. 0.33333...D. √4答案:B2. 一个矩形的长是宽的两倍,若宽为x,则其面积为?A. 2x^2B. x^2C. 4x^2D. x答案:A3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 10答案:A4. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 2 = 4C. 4x - 5 = 3D. 5x + 6 = 16答案:A5. 一个等腰三角形的两边长分别为3和5,其周长是多少?A. 11B. 13C. 16D. 14答案:B6. 一个圆的半径为3,其面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C7. 函数y=2x+3中,当x=1时,y的值是多少?A. 5B. 6C. 7D. 8答案:A8. 下列哪个选项表示的是正比例关系?A. y = 2xB. y = x^2C. y = 1/xD. y = √x答案:A9. 一个数的立方根等于它本身,这个数是?A. 0B. 1C. -1D. 所有选项答案:D10. 一个数的平方等于9,这个数是?A. 3B. -3C. ±3D. 9答案:C二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个数的平方是25,这个数可能是______。
答案:±513. 一个数的倒数是2,这个数是______。
答案:1/214. 一个数的立方是8,这个数是______。
答案:215. 一个数除以2余1,除以3余2,除以4余3,这个数最小是______。
答案:5716. 一个等差数列的首项是3,公差是2,第5项是______。
答案:1117. 一个等比数列的首项是2,公比是3,第3项是______。
答案:1818. 一个直角三角形的两个直角边长分别是3和4,斜边长是______。
漳州市2015年中考数学压卷预测题1.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在□ABCD中,对角线焦点为O,A1、B1、C1、D1分别是OA、OB、OC、OD 的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?2.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.漳州市2015年中考数学压卷题训练1参考答案1.解:(1)已知:在△ABC中,D、E分别是边AB、AC的中点,求证:DE∥BC且DE=BC,证明:如图,延长DE至F,使EF=DE,∵E是AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴AD=CF(全等三角形对应边相等),∠A=∠ECF(全等三角形对应角相等),∴AD∥CF,∵点D是AB的中点,∴AD=BD,∴BD=CF且BD∥CF,∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴DF∥BC且DF=BC(平行四边形的对边平行且相等),∵DE=EF=DF,∴DE∥BC且DE=BC;(2)∵A1、B1、C1、D1分别是OA、OB、OC、OD的中点,∴A1B1=AB,B1C1=BC,C1D1=CD,A1D1=AD,∴四边形A1B1C1D1的周长=×1=,同理可得,四边形A2B2C2D2的周长=×=,四边形A3B3C3D3的周长=×=,…,∴四边形的周长之和l=1++++…;(3)由图可知,+++…=1(无限接近于1),所以l=1++++…=2(无限接近于2).2.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(-1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=-x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=-x2+x+2,得x1=0,x2=3.当y=-2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=-x+2.由BC∥AD,设AD的解析式为y=-x+n,由图象,得0=-×(-1)+n∴n=-,y AD=-x-.∴-x2+x+2=-x-,解得:x1=-1,x2=5∴D(-1,0)与A重合,舍去,D(5,-3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(-1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°.漳州市2015年中考数学压卷题训练21.已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA,OB ,OC ,△ABC 被划分为三个小三角形 ∵S =S △OBC +S △OAC +S △OAB=12BC ·r +12AC ·r +12AB ·r =12(a +b +c )r , ∴r =2S a b c++.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图2,各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图3,在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求12r r 的值.2.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y =﹣x 2+bx +c 与直线BC 交于点D (3,﹣4). (1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在疑点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP是平行四边形时,试求动点P的坐标.漳州市2015年中考数学压卷题训练2参考答案1.(1)连接OA,OB,OC,OD.作出对应四个三角形的高OE,OF,OG,OH.∵S=S △AOB +S △BOC +S △COD +S △AOD=12ar +12br +12cr +12dr=12(a +b +c +d)r, ∴r=2Sa b c d+++.(2)过点D 作DE ⊥AB 于点E ,则 AE=12(AB-DC)=12×(21-11)=5.BE=AB-AE=21-5=16.∵AB ∥DC ,∴ABD BCDSS=AB DC =2111. 又∵ABD BCDS S=()()121132120*********r r ++++=125444r r =122722rr ,∴122722r r =2111.即12r r =149. 2. 解:(1)∵y=2x +2,∴当x=0时,y=2, ∴B (0,2).当y=0时,x=﹣1, ∴A (﹣1,0).∵抛物线y=﹣x 2+bx +c 过点B (0,2),D (3,﹣4), ∴,解得:,∴y=﹣x 2+x +2;设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x +2; (2)存在.如图1,设M (a ,﹣a 2+a +2). ∵MN 垂直于x 轴,∴MN=﹣a 2+a +2,ON=a . ∵y=﹣2x +2, ∴y=0时,x=1, ∴C (1,0),∴OC=1.∵B(0,2),∴OB=2.当△BOC∽△MON时,∴,∴,解得:a1=1,a2=﹣2M(1,2)或(﹣2,﹣4);如图2,当△BOC∽△ONM时,,∴,∴a=或,∴M(,)或(,).∵M在第一象限,∴符合条件的点M的坐标为(1,2),(,);(3)设P(b,﹣b2+b+2),H(b,﹣2b+2).如图3,∵四边形BOHP是平行四边形,∴BO=PH=2.∵PH=﹣b2+b+2+2b﹣2=﹣b2+3b.∴2=﹣b2+3b∴b1=1,b2=2.当b=1时,P(1,2),当b=2时,P(2,0)∴P点的坐标为(1,2)或(2,0).漳州市2015年中考数学压卷题训练31.如图1,P(m,n)是抛物线y=24x-1上任意一点,l是过点(0,-2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【探究】(1)填空:当m=0时,OP=,PH=;当m=4时,OP=,PH=;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=24x-1上滑动,求A,B两点到直线l的距离之和的最小值2.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,-4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.漳州市2015年中考数学压卷题训练3参考答案1. 解:(1)1;1;5;5;(2)OP=PH.理由如下:将P(m,n)代入y=24x-1中得n=24m-1,∴m2=4n+4.∴OP2=m2+n2=n2+4n+4=(n+2)2,又∵PH=n+2,∴PH2=(n+2)2.∴OP=PH.(3)由(2)的结论可知,A点到直线l的距离等于OA的长,B点到直线l的距离等于OB的长,要使A,B两点到直线l的距离之和最小,则A、O、B三点在一条直线上,A,B两点到直线l的最小距离之和等于AB的长,等于6.2. 解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=-2.∴A(-2,0)、B(0,4).∵抛物线的顶点为点A(-2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,-4)在抛物线上,代入上式得:-4=4a,解得a=-1,∴抛物线的解析式为y=-(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=-(x-m)2+2m+4,∴F(0,-m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2-1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,-m2+2m+4),∴BH=|2m|,FH=|-m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|-m2|=|2m|.若-4m2=2m,解得m=-或m=0(与点B重合,舍去);若-4m2=-2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立∴m=-,∴E(-,3).②假设存在.联立抛物线:y=-(x+2)2与直线AB:y=2x+4,可求得:D(-4,-4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=-(x-m)2+2m+4与直线AB:y=2x+4,可求得:G(m-2,2m).∴点E与点M横坐标相差2,即:|x G|-|x E|=2.如答图2-2,S△EFG=S△BFG-S△BEF=BF•|x G|-BF|x E|=BF•(|x G|-|x E|)=BF.∵B(0,4),F(0,-m2+2m+4),∴BF=|-m2+2m|.∴|-m2+2m|=64或|-m2+2m|=1,∴-m2+2m可取值为:64、-64、1、-1.当取值为64时,一元二次方程-m2+2m=64无解,故-m2+2m≠64.∴-m2+2m可取值为:-64、1、-1.∵F(0,-m2+2m+4),∴F坐标为:(0,-60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,-60)、(0,3)、(0,5).。
福建省漳州市2015年中考化学真题试题2015年漳州市初中毕业暨高中阶段招生考试化学试题t歸试彭式:闭程满分:10。
分灌试时间諾0分钟)友情提示:请把所有答案填写(涂倒答題卡上!请不要错位、越界答题!!姓名---------------------- 准考址号_______________________ 可能用到的唱.时應子頂聂;H —l O—It? S 32 — 241选择题(共30分)毎小題的四个选頊中只和一巫符含貌目旻求八舟心簧酉卡填逹眈晒的字毎°1.能便带火星的攵条壤毬的%体'江血气氐艳笛代体2.F列过程礴于化学变化的E3.实騒宅用于JR貂ft体的仪器圮L'•昱气1丄二買化珥G冰融比“鲁石壤4 “•]」%連團町盘尿的讦干业A. Hr K Ch'■ •听用J i、't戟忒申;堆水附为迭址九购%峰H香龄色<违塑尢色剋皿幫液变£1的是人下列樹喷的用理常饯的上人干冰用于人丁降白G金厲锅可制电汽CA'C)IX CH.G加肥电忒 D.过濾('•逞谓水D•氢X化馆洛浪K盘气可件燃轴D.石糖用專戟玻璃化举试,魅I < 其6英& 2015年6月5日圧第44个“世界环境日”•我国援出的主题是“践行绿色生活”.以下做法 不符合该主题的是A.电视机长时何待机B 便用太阳能路灯照明 C.绿化先行・富美漳州D.拆除九龙江两岸养殂场 9.皈化氢气体与X 反应的化学方程式为2H,S+X=3S$ +2HQ,其中X 超10.艮化钾的溶解度曲线如右图所示.F 列说法正确的是A.升高温度可使接近饱和的氯化钾溶液变为饱和溶液K 10 9时・65. 5 g 氯化钾的!fe 和溶液中加入5 R 氯化怦•充分溶解后格温度升离到40 9,得到70 g 氯化钾也和溶液C. 50 g 水中加入20 g 氯化钾充分溶解,形成氯化钾饱和溶液D. 40匸时•氯化輝饱和溶液中溶质的质就分数为40%0非选择题(共70分)11. (4分)用化学符号填空;(1) 铁元素 _________ »(2) 2个康原子 _________ I(3) 氢离子 _________ ;.(4〉五氧化二碑 _________ .12. (13分)“了解潭州•爱我家乡”.请结合所学化学知识回答问题: (1〉花果之乡——漳州水仙、云用枇杷、平和後柚、长泰芦柑、龙海盈枝、天宅香離闻名邈迩. 甜美的水果中富含的焕籍(GHnQ)是由 _____________ 种元*组成•其中碳、氢原子的个 数比是 __________ '硝酸钾(KNQ)是花卉、果树的靈熨足料.它図于 ___________ 肥(填 “氮”、“钾”或“夏合”).A.SO,Cg化手试题第2買共6頁(2)旅游圣地一东山风动石、龙文云洞岩、漳浦天福园是游览观光、品尝吳食的好去处・海鲜——鱼、虾主耍离含__________ (填“堆生素”成“蛋白质5云洌岩盐玛的制作需耍用到食盐•仅盐的主费成分迪___________ ・(3)文明之城一讹安书丙之乡、南靖云水谣、田螺坑土槎、华安二宜楼等孚誉国内外・用凰写的字可以长时间保存•是因为歩在常温下化学性质________________ (填“活泼”或••不活泼”〉;碳点燃能与値气反应•其完全燃恍的化学方程式是____________ ;土後里常设有水井•便于取水灭火•用水灭火的原理是____________ •石灰浆是修建土樓的主耍材料之一•它与二软化碳反应的化学方程式是_____________ ・13.(5分)索有“中国海块硒邵”之称的诏安是养生圣地.请结合硒元索的“身份证”信息填空:14.(6分)科学家证明了“一氧化氮气体分子晁保持心血管系统健康的信号分子”.通常情况下.一氧化亂址一种无色无味的有谱气体,难溶于水,常溫下易与氧代反应生成冇帝的二羅化氮咒体;二氛化氮又能与水反应生成fifilKCHNO,)和-值化氨.结合材料回答何题:(1)_______________________ -M化氮的物理性质是(回答一点即可人不能血接排入大代中的理由是_________________________________ ・(2)____________________________________ 二氧化氮与水反应的化学方程式是・化学这4 第3頁共6頁(背面还有试題)15. (14分)结合下列图示装Th回答有关问题:ABC<1>W岀怀号①仪器的名办: __________ ■(2)实验室用装置A制取氧代,其反应的化学方程式泉___________ ,若用排水法收集氧气,耍把集满氛气的集气瓶转移到桌面上的具体操作是____________ ・(3)实脸室常用______ 和稀盐酸反应制取二氣化琰,其反应的化学方程式是____________ ,生成的二氧化碳中常含有少量___________ 代体杂质•为获得纯净的二氧化碳气体,导管口连接的正确顺序足:_)-*(_)-*(—)-*( _________________ )-*b.16.(8分)请你舟務我是谁:下图牵手汲示在一定条件下会发生化学反应.A、B、C、D、E分别是木炭、氧化铁、二氧化碳、烯盐战、氢氧化钠中的一种物质•其中C是破.E具有吸附性.(DA __________ > B _________ , C __________ •(2)A和B反应的化学方程式是 ______________ ・(3)牵手时•能生成盐和水的反应共有_个.A和E_____ (填”能”或“不能T牵手.17.(10分)20 g康賊镂溶液中混有少蚩硫酸•往该溶液中滴加足嫌氢氧化钠港液•充分反应后得到2.9 g氢轧化橫沉淀. 沉淀的质fit变化如右图所示.(1)求20 g溶液中硫酸镂的质做分数.[相关反应的化学方程式为MgSO<+ 2NaOH — Mg(OH)2; + N也SO,](2〉氢氧化钠的质________ g时•反应不产生沉淀•其廉因是_________________化学试题第4页共6頁18.(10分)复习课上•老师要求学生用不同的方法鉴别稀硫酸和氢魚化钠溶液.小东、小南两位同学取同一溶液分别进行如下实验:• • • •【实验方案】实脸步骤'・实验现象实脸结论1小东用玻璃棒鷹取溶液滴到pH试纸上.对照比色卡并读岀pHpH试纸变色PH _ 7(填“〉”或“V")该浴液总氢詆化钠溶液I小南取适桥溶液于试管中. 加入经打腭过的铝条冇气泡产生该溶液耙稀硫酸;【提出问麵】为什么我们取相同溶液而实验结论却不同呢?【解决问题】小东•小南讨论后决定再用换煦铜溶液进一步验证•结果观察到的现狡足____________ ,于是一致认为该溶液足負氧化钠溶液.为什么小南加人恪条会有气泡产生呢?通过任阅资料•他们发現切中當见金属中只有祀能与傲、菠反应•铝化讷溶液反应的化学方程式是2AI + 2NaOH+2H:O—2NaAlQ+ 3H,仁【拓展廷伸】利用老肺婴求鉴别的那两沖溶液•测定镁铝侧存金中并成分的;TSL丈验设计如下:【回答何麵】«1〉写出操作I中玻璃棒的作用: ----------- ・(2)a溶液是_________ •选择诊洛威的理由是---------------------- .(3)金朋钢的质歌为__________ 口固体A含的的物頂魁____________ •溶液A中所含溶质ft __________ ■2015年漳州市初中毕业坠高中阶段招生考试化学参考答案及评分建议总说明:1.出现其它合理符案•请参廉评卷补充说明给分•2 •书写化学方程式时•化学式写错不给分'化学式正确但其它出现错谋(包括未配平. 未注明反应条件、未标出成标t o的扣i分・3.化学专用名呵中出现错别字的扣1分•元索符号備谋的不得分.4.凡试题中未指明写物质的名称或化学式的•只要正确均给分.I选择题部分(本题共30分,毎小题3分)1. A ZB 3.D 4.C 5.C 6.D 7.D &A 9.C 10. BD非选择题(共70分)H•(共4 分•每空1 分〉⑴ Fe (2)2C⑶H* (4)P,<X12.(共13分,每个化学方程式3分,每空1分〉(1)3| n 2, 复合《2)蛋白质$ 氯化钠(3)不活浚$C+Q 竺CO H使温度降到着火点以下CO>+Ca(OH):—€aCO> I +H:O13•(共5分毎空1分)非金属(2)+4 (3)4 (4)34 (5〉7& 9614.(共6分•化学方程式3分•第(1)題第一空1分)(1)无色(其他合理答案即可h —氧化氮易与氧气反应生成有秦的二氧化氮•且二氧化氮能形成酸再(2)3NO:+H:O—2HNQ+N015.(共14分•毎个化学方程式3分,第(2〉第二空、第(3)题第三空、顺序各2分,其余每空1分)瓶⑵2H,O+ 0,f |在水中用玻璃片的磨砂面養住瓶口•取出肓正放于桌面⑶大理石『CaCO,+ 2HC1 —CaCb+COi f +H:O;水蒸气、氯化氢)f-g-d-e化手试题答赛第1買*2K16.(共8分化学方程式3分,其余每空1分)«1>氛化怏,常盘氢氧化傍⑵ Fg +6HC1 —2FCCU +3R0⑶3$ 能17•(共10分计算題7分•第(2)題第一空1分)(1〉解:设20 g溶液中醸酸帳的质盘为xMgSO<+ 2NaOH —Mg(OH)t I +Na,SO<120 58120_ x58 一2五...............................................2分20 g溶液中的质•分数=»备:x 100%・30%答血g辭液中就酸栈的质童分数为30%(2)<a »氢氧化傍不足,即使生成氢氛化快也立即与反应1& (共10分第(3)題第二.三空各2分•其余毎空1分)【实验方案】>【解决何題】有藍色沉淀产生【回答何題】(D9IM(2)氢氛化侧溶液)只有金层铝能与氢氛化钠溶液反应产生氢代,通过生成氢代质駅方可求岀13的质■<3)0.5i Mg.Cui NaOH .NaAlQ>。
2015年福建省漳州市中考数学试卷、答案及考点详解一、选择题(共10题,每题3分,满分30分.)1、(2015•漳州)在﹣1、3、0、四个实数中,最大的实数是()A、﹣1B、3C、0D、考点:实数大小比较。
专题:计算题。
分析:根据正数大于0,0大于负数,正数大于负数,比较即可.解答:解:∵﹣1<0<<3,∴四个实数中,最大的实数是3.故答案为B.点评:本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2、(2015•漳州)下列运算正确的是()A、a3•a2=a5B、2a﹣a=2C、a+b=abD、(a3)2=a9考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。
专题:常规题型。
分析:根据同底数幂的乘法,底数不变指数相加,合并同类项法则,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a3•a2=a3+2=a5,故本选项正确;B、应为2a﹣a=a,故本选项错误;C、a与b不是同类项,不能合并,故本选项错误;D、应为(a3)2=a3×2=a6,故本选项错误.故选A.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.3、(2015•漳州)9的算术平方根是()A、3B、±3C、D、±考点:算术平方根。
分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.解答:解:∵32=9,∴9算术平方根为3.故选:A.点评:此题主要考查了算术平方根的定义,其中算术平方根的概念易与平方根的概念混淆而导致错误.4、(2015•漳州)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是()A、B、 C、D、考点:由三视图判断几何体。
分析:根据题意,主视图是由3个小正方形组成,利用空间想象力可得出该几何体由2层,2排小正方形组成,第一排有上下两层,第二排有一层组成.解答:解:根据题意得:小正方体有两排组成,而A,B,D,都有3排,故只有C符合.故选:C.点评:此题主要考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路,不要被几何体的各种可能情况所困绕.5、(2015•漳州)下列事件中,属于必然事件的是()A、打开电视机,它正在播广告B、打开数学书,恰好翻到第50页C、抛掷一枚均匀的硬币,恰好正面朝上D、一天有24小时考点:随机事件。
分析:根据必然事件的定义:一定发生的事件,即可判断.解答:解:A、是随机事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是必然事件,故选项正确.故选D.点评:本题主要考查了必然事件的定义,是一个基础题.6、(2015•漳州)分式方程=1的解是()A、﹣1B、0C、1D、考点:解分式方程。
分析:本题需先根据解分式方程的步骤分别进行计算,再对结果进行检验即可求出答案.解答:解:=1,2=x+1,x=1,检验:当x=1时,x+1=1+1=2≠0,∴x=1是原方程的解,故选C.点评:本题主要考查了解分式方程,在解题时要注意解分式方程的步骤并对结果进行检验是本题的关键.7、(2015•漳州)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是()A、79,85B、80,79C、85,80D、85,85考点:众数;中位数。
专题:常规题型。
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:70,75,80,85,85,数据85出现了两次最多为众数,80处在第3位为中位数.所以本题这组数据的中位数是80,众数是85.故选C.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、(2015•漳州)下列命题中,假命题是()A、经过两点有且只有一条直线B、平行四边形的对角线相等C、两腰相等的梯形叫做等腰梯形D、圆的切线垂直于经过切点的半径考点:命题与定理;直线的性质:两点确定一条直线;平行四边形的性质;等腰梯形的判定;切线的性质。
专题:常规题型。
分析:根据直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质判断各选项即可.解答:解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确D、圆的切线垂直于经过切点的半径,故本选项正确.故选B.点评:本题考查了直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质,属于基础题,注意这些知识的熟练掌握.9、(2015•漳州)如图,P(x,y)是反比例函数y=的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积()A、不变B、增大C、减小D、无法确定考点:反比例函数系数k的几何意义。
专题:计算题。
分析:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.解答:解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.故选A.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10、(2015•漳州)如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A、0.6mB、1.2mC、1.3mD、1.4m考点:相似三角形的应用。
分析:利用平行得出三角形相似,运用相似比即可解答.解答:解:∵AB∥DE,∴,∴,∴h=1.4m.故选:D.点评:此题主要考查了相似三角形的判定,根据已知得出是解决问题的关键.二、填空题(共6题,每题4分,共24分.)11、(2015•海南)分解因式:x2﹣4= (x+2)(x﹣2).考点:因式分解-运用公式法。
分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12、(2015•漳州)2018年我市为突出“海西建设,漳州先行”发展主线,集中力量大干150天,打好五大战役,全市经济增长取得新的突破,全年实现地区生产总值约为140 070 000 000元,用科学记数法表示为 1.4007×1011元.考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:140 070 000 000=1.4007×1011,故答案为:1.4007×1011,点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、(2015•漳州)口袋中有2个红球和3个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是.考点:概率公式。
专题:应用题。
分析:口袋中共有5个球,随机摸出一个是红球的概率是.解答:解:P(红球)=.故答案为.点评:本题主要考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.14、(2015•漳州)两圆的半径分别为6和5,圆心距为10,则这两圆的位置关系是相交.考点:圆与圆的位置关系。
分析:由两圆的半径分别为6和5,圆心距为10,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出这两圆位置关系.解答:解:∵两圆的半径分别为6和5,圆心距为10,又∵6+5=11,6﹣5=1,1<10<11,∴这两圆的位置关系是相交.故答案为:相交.点评:此题考查了圆与圆的位置关系.解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.15、(2015•漳州)如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为75πcm2.(结果保留π)考点:圆锥的计算。
专题:计算题。
分析:纸杯的侧面积=π×底面半径×母线长,把相关数值代入计算即可.解答:解:纸杯的侧面积为π×5×15=75πcm2.故答案为75π.点评:考查圆锥的计算;掌握圆锥侧面积的计算公式是解决本题的关键.16、(2015•漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子3n+1 枚.(用含n的代数式表示)考点:规律型:图形的变化类。
专题:规律型。
分析:解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.解答:解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子3n+1枚.故答案为:3n+1.点评:此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.三、解答题(共10题,满分96分)17、(2015•漳州)|﹣3|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂。
专题:计算题。
分析:根据绝对值、零指数幂、负整数指数幂等考点进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+1﹣2=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值等考点的运算.18、(2015•漳州)已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式。