成比例线段
- 格式:ppt
- 大小:2.33 MB
- 文档页数:21
第13讲 《图形的相似》培优训练4.1成比例线段§4.1成比例线段学 习 目 标1.知道两条线段的比的概念并且会计算两条线段的比2.知道成比例线段的定义并会判断四条线段是否成比例3.熟记比例的基本性质并会应用.重点:1、会求两条线段的比 2、知道成比例线段的定义 3、会用比例的性质应用 难点:成比例线段及比例的基本性质的理解与运用。
导学过程:【自主学习,认真准备】小学里已经学过了比例的有关知识,请同学们口答下列问题: 1、若a 与b 的比值和c 与d 的比值相等,应记为: 2、地理中的比例尺是指什么? 【自主探究、合作交流】任务一:自学课本76页——77页内容,思考并完成下列练习:1、一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是2、已知线段AB=1.5m ,线段CD=250cm ,那么线段AB 与CD 的比是3、已知A 、B 两地的实际距离是60km,画在地图上其距离A ’B ’是6cm,求这幅地图的比例尺归纳定义:两条线段的比:____________________任务二:完成课本77页“做一做”: 1、计算:=EFAB =EH AD =AD AB =EH EF2、发现: 归纳定义:成比例线段:任务三:完成课本78页“议一议”内容1、结论:归纳:比例的基本性质:如果dcb a ,那么 ;如果ad =bc (a ,b ,c ,d 都不等于0),那么 .还可以写成 形式。
【展示交流】1 、如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即 AD AE = ABAD,那么a 的值应当是多少?,2、已知a=3,b=6,c=9(1)若a,b,c,x 是成比例线段,求x.(2)若a,x,b,c 是成比例线段,求x【当堂练习】1、已知:线段a=5cm ,b=2cm ,则ab= 2、已知a ,b ,m ,n 是成比例线段,其中a=2cm ,b=3cm ,n=9cm ,则m= . 若a=2,b=18,且a :x=x :b ,则x=3、把mn=pq (m,n,p,q 都不等于0)写成比例式,写错的是( ) A .m q p n = B .p nm q= C .q n m p = D .m p n q =4、如图,△ABC 中,AG DEAH BC=,且DE=12,BC=15,AG=4,求AH .5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离为 7.5cm ,那么福州与上海之间的实际距离是多少?归纳:比例的基本性质如果b a =dc,那么__________。
成比例线段练习题及答案成比例线段是初中数学中的一个重要知识点,它在几何图形的相似性质、比例关系以及实际问题的解决中起着重要的作用。
掌握成比例线段的求解方法,对于提高学生的数学能力和解决实际问题具有重要意义。
本文将介绍一些成比例线段的练习题及其解答,帮助读者更好地理解和掌握这一知识点。
1. 题目:已知线段AB与线段CD成比例,AB = 5,CD = 15,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/15。
将已知条件代入,得到5/15 = EF/15。
通过交叉相乘法,我们可以得到EF = 5/15 * 15 = 5。
所以线段EF的长度为5。
2. 题目:已知线段AB与线段CD成比例,AB = 3/4,CD = 9/10,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(9/10)。
将已知条件代入,得到(3/4)/(9/10) = EF/(9/10)。
通过分数的除法,我们可以得到EF = (3/4)/(9/10) * (9/10) = 3/4 * 10/9 = 30/36 = 5/6。
所以线段EF的长度为5/6。
3. 题目:已知线段AB与线段CD成比例,AB = 2x,CD = 3x + 4,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(3x + 4)。
将已知条件代入,得到(2x)/(3x + 4) = EF/(3x + 4)。
通过交叉相乘法,我们可以得到EF =(2x)/(3x + 4) * (3x + 4) = 2x。
所以线段EF的长度为2x。
4. 题目:已知线段AB与线段CD成比例,AB = 3a + 2,CD = 5a - 1,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(5a - 1)。
将已知条件代入,得到(3a + 2)/(5a - 1) = EF/(5a - 1)。
通过交叉相乘法,我们可以得到EF = (3a + 2)/(5a - 1) * (5a - 1) = 3a + 2。
3.1 成比例线段3.1.1 线段的比,成比例的线段学习目的:1、知道线段的比的概念。
理解成比例线段的概念2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
重点:线段的比与成比例线段的概念。
教学过程: 一、自主预习(一)阅读课本 ,思考并回答下列问题:1、一般地,如果选用 量得两条线段AB ,CD 的长度分别为m,n ,那么这两条线段的比就是他们长度的比,即AB ∶CD= m:n,或写成,nm CD AB =其中,线段AB ,CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k,那么CD k AB k CDAB •==或,。
(1)在比b a 或a ∶b 中,a 是 ,b 是 。
⑵两条线段的 要统一 。
⑶在同一单位下线段长度的比与选用的 无关。
⑷线段的比是一个没有 的数。
(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。
2、比例尺为1:50000,意思为: 。
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。
(举例说明)如:2、四条线段成比例,记作:其中a,d 叫比例外项,b,c 叫比例内项。
3、四条线段a,b ,c,d 成比例,有顺序关系。
即a,b,c,d 成比例线段,则比例式为:a:b=c:d ;a,b, d,c 成比例线段,则比例式为:a:b=d:c4、思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A 、B 两地的实际距离AB= 250m ,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。
例2:已知,在Rt △ABC 中,∠C =90°,∠A =30°,斜边AB =2。
求⑴BC AB ,⑵ABAC四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c 是成比例线段,其中a=4,b=5,c=10,求线段d 的长。