函数的对称性与函数的图象变换
- 格式:ppt
- 大小:676.50 KB
- 文档页数:49
函数与图像的对称性在数学中,函数与图像之间存在着一种特殊的关系,那就是对称性。
对称性是数学中一个重要的概念,它可以帮助我们更好地理解函数的性质和图像的形态。
一、关于对称轴的对称性首先,我们来讨论一下函数关于对称轴的对称性。
对称轴是指函数图像上的一条直线,当函数关于该直线对称时,我们称之为关于对称轴的对称性。
以二次函数为例,二次函数的一般形式为y=ax^2+bx+c。
当二次函数的二次项系数a为正数时,函数图像开口向上,此时函数关于y轴对称;当a为负数时,函数图像开口向下,此时函数关于x轴对称。
对于一般的函数,我们可以通过观察函数的表达式来判断其是否具有关于对称轴的对称性。
例如,对于函数y=sin(x),我们知道正弦函数的图像关于原点对称。
同样地,对于函数y=cos(x),我们知道余弦函数的图像关于y轴对称。
二、关于原点的对称性除了对称轴的对称性,函数还可以具有关于原点的对称性。
当函数图像关于原点对称时,我们称之为关于原点的对称性。
对于奇函数来说,它具有关于原点的对称性。
奇函数的特点是f(-x)=-f(x),也就是说,当x取相反数时,函数值也取相反数。
例如,函数y=x^3就是一个奇函数,它的图像关于原点对称。
相比之下,偶函数具有关于y轴的对称性。
偶函数的特点是f(-x)=f(x),也就是说,当x取相反数时,函数值保持不变。
例如,函数y=x^2就是一个偶函数,它的图像关于y轴对称。
三、关于倒影的对称性除了对称轴和原点的对称性,函数还可以具有关于倒影的对称性。
当函数图像关于某一直线倒影时,我们称之为关于倒影的对称性。
以指数函数为例,指数函数的一般形式为y=a^x。
当指数函数的底数a大于1时,函数图像是递增的,没有关于倒影的对称性。
然而,当底数a小于1时,函数图像是递减的,并且关于y轴有关于倒影的对称性。
此外,对数函数也具有关于倒影的对称性。
对数函数的一般形式为y=log_a(x),当底数a大于1时,函数图像是递增的,没有关于倒影的对称性。
函数的对称性及图象变换试卷1姓名____________班级___________学号____________分数______________一、选择题(36分)1 .下列函数中,图象与函数y =4x 的图象关于y 轴对称的是( )A .y =-4xB .y =4–xC .y =-4–xD .y =4x+4–x2 .设函数1)1(log )(2=-==x x y x f y的图像关于直线的图像与对称,则)(x f y =为( )A .)1(log 2x y +=B .)1(log 2-=x yC .)2(log 2-=x yD .)2(log 2x y -=3 .函数y=-e x的图象( )A .与y=e x的图象关于y 轴对称.B .与y=e x的图象关于坐标原点对称.C .与y=e -x的图象关于y 轴对称.D .与y=e -x的图象关于坐标原点对称.4 .已知函数)(x f y =的图像与函数)0(2≥=x x y 的图像关于直线x y =对称,那么下列情形不可能出现的是( )A .函数)(x f y =有最小值B .函数)(x f y =过点(4,2)C .函数)(x f y =是偶函数D .函数)(x f y =在其定义域上是增函数5 .已知函数))((R x x f y ∈=满足)1()1(-=+x f x f ,且]1,1[-∈x 时,2)(x x f =,则函数)(x f y =与x y 5log =的图象的交点个数为 ( )A .0个B .2个C .3个D .4个6 .函数()ln 1f x x =-的图像大致是7 .直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为 ( )A .1133y x =-+ B .113y x =-+ C .33y x =-D .113y x =+ 8 .若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m<0C .m ≥1D .0<m ≤19 .函数)(x f 的图象无论经过平移还是沿直线翻折后仍不能与x y 21log=的图象重合,则)(x f 是( ) ( )A .x -2B .x 4log 2C .)1(log 2+xD .x 421⋅10.若)(x f 是偶函数,且当[)+∞∈,0x 时,1)(-=x x f ,则不等式0)1(<-x f 的解集是( )A .{}01<<-x xB .{}210<<<x x x 或C .{}20<<x xD {}21.<<x x11.设偶函数y =f (x )的图像关于直线x =1对称,在0≤x ≤1时f (x )=x 2,则f(2008)=( )A .0B .1C .2008D .200612.函数||2x y -=的大致图像是13.已知2()-=x f x a ,()log ||=a g x x (a 0,>且a 1)≠,且f (4)g(4)0-<;则)(),(x g y x f y ==在同一坐标系内的图象大致是211Aoyx211Boyx211C ox211Dox14.设方程x xlg 2=-的两个根为21,x x ,则( )A .21x x <0B .21x x =1C .21x x >1D .0<21x x <115.函数12()log 1f x x =-的图像大致是xy 0 1 2 A xy1 2-1 -2Bxy1 2 xy12 -1 -2D16.已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集 ( )A .(-1,2)B .(1,4)C .(-∞,-1]∪[4,+ ∞)D .(-∞,-1]∪[2,+ ∞)17.定义在R 上的函数)2,()(-∞=在x f y上是增函数,且函数)2(+=x f y 的图象的对称轴是直线x =0,则( )A .)3()1(f f <-B .)3()0(f f >C .)3()1(f f =-D .)3()2(f f <18.若1x 满足2x+2x=5, 2x 满足2x+22log (x-1)=5, 1x +2x =( )A .52B .3C .72D .4二、填空题(30分)19.已知下图(1)中的图像对应的函数为()y f x =,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是_________.(请填上你认为正确的答案的序号)①|()|y f x = ②(||)y f x = ③(||)y f x =- ④(||)y f x =-20.已知函数)(|2|)(2R x b ax x x f ∈+-=.给下列命题:①)(x f 必是偶函数;②当)2()0(f f =时,)(x f 的图像必关于直线x =1对称;③若02≤-b a ,则)(x f 在区间[a ,+∞)上是增函数;④)(x f 有最大值||2b a -.其中正确的序号是________.21.函数y =log 3(3-x )的图象是由y = log 3(x+3)的图象经怎样的变换而得到___________22.函数1)(+++-=a x ax x f 图象的对称中心为(3,-1)则a =__________。
函数对称性的总结函数对称性是数学中一个重要的概念,在各个领域都有广泛应用。
理解和应用函数对称性有助于我们更好地理解和解决数学问题。
本文将对函数对称性的概念、性质和应用进行总结。
函数对称性的概念:在数学中,函数对称性是指函数具有某种变换性质,使得在一定的条件下,函数在变换前后保持不变。
具体来说,如果对于定义域上的任意一个元素x,都存在一个元素y,使得对称变换后的x,会得到y,在函数对称变换之后,函数的图像也会发生相应的变化。
函数对称性可以分为轴对称、中心对称和周期对称等。
1.轴对称:一个函数在平面上如果具有轴对称性,比如存在一个轴使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是轴对称函数。
轴对称函数的图像具有左右对称的特点。
比如,y = x^2 就是一个轴对称函数,其图像关于y轴对称。
2.中心对称:一个函数在平面上如果具有中心对称性,比如存在一个点使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是中心对称函数。
中心对称函数的图像具有上下左右对称的特点。
比如,y = sin(x) 就是一个中心对称函数,其图像关于原点对称。
3.周期对称:一个函数如果具有周期对称性,那么在一定的周期内,函数的变换可以形成循环。
即,在给定的周期内,函数的某个值与另一个值相等。
周期对称函数的图像在周期内具有相似的形状和变化趋势。
比如,y = sin(x) 就是一个周期对称函数,其周期为2π。
函数对称性的性质:1.对称轴或对称中心是函数对称性的重要特征。
通过找到函数的对称轴或对称中心,可以更好地理解函数的变化规律和性质。
2.函数对称性能够简化函数的分析和计算过程。
根据函数对称性的特点,我们可以通过分析对称图形的一部分,推断出对称图形的其他部分;通过对称性可以简化函数的复杂性,并提供更方便的计算方法。
3.函数对称性能够提供问题求解的启示。
函数对称性在实际问题中具有重要的应用价值,比如建筑设计中的对称线、电路中的交流信号分析等。
函数关于某点对称的问题一般涉及到函数的对称性、图像变换等知识点。
以下是对这类问题的一些基本理解和解题思路:
1. 理解函数对称的基本概念:函数的对称性是指函数图像关于某点、某直线或某种对称变换的特性。
常见的对称变换包括轴对称、中心对称等。
2. 掌握函数对称的基本性质:如果函数f(x)满足f(a+x)=f(b-x),那么函数图像关于x=(a+b)/2成轴对称图形。
如果函数f(x)满足f(x)=f(2a-x),那么函数图像关于直线x=a成轴对称图形。
3. 根据对称性质求解函数表达式:设函数f(x)与g(x)的图像关于点(a,b)对称,那么可以找到一个函数h(x)=f(2a-x),使得h(x)与g(x)的图像关于点(a,b)对称。
4. 灵活运用中点坐标公式:对于任意两点A(x1,y1),B(x2,y2),其关于点(a,b)对称的点C(x,y)满足条件:x=(x1+x2)/2,y=(y1+y2)/2。
这个公式可以用来求解对称点坐标。
5. 熟练掌握常见函数的对称性:例如,奇函数图像关于原点对称,偶函数图像关于y轴对称;正弦函数和余弦函数图像关于垂直直线对称等。
6. 注意对称问题的应用范围:在实际问题中,函数的对称性可以用来简化复杂的问题,例如在几何、光学、物理学等领域都有广泛的应用。
总之,解决函数关于某点对称的问题需要熟练掌握函数的基本概念、性质和对称变换的原理,同时结合具体问题灵活运用所学知识。
函数与像的对称性与变换函数与像的对称性与变换是数学中一个重要的概念和技巧,它主要用于研究函数图像的性质与特点。
通过对函数的变换和对称性的研究,可以更深入地了解函数的行为和特性,从而解决一些实际问题。
一、函数的对称性函数的对称性是指函数图像在某些操作下表现出的某种规律性。
常见的函数对称性有:奇函数、偶函数、周期函数和一般函数。
1. 奇函数:若对于任意x,有f(x)=-f(-x),则函数f(x)为奇函数。
奇函数的图像以原点为对称中心,即左右对称。
2. 偶函数:若对于任意x,有f(x)=f(-x),则函数f(x)为偶函数。
偶函数的图像以y轴为对称轴,即左右对称。
3. 周期函数:若存在正数T,对于任意x,有f(x+T)=f(x),则函数f(x)为周期函数。
周期函数的图像呈现出某种规律的重复性。
4. 一般函数:既不满足奇函数也不满足偶函数性质的函数称为一般函数,它的图像没有明显的对称性。
二、函数的变换函数的变换是指通过一系列的操作,改变函数图像的位置、形状、大小等特征。
常见的函数变换操作包括平移、伸缩、翻转和旋转等。
1. 平移:函数的平移是指将整个函数图像沿着坐标轴的方向移动一定的距离。
平移有水平平移和垂直平移两种情况,分别用平移量a和b 来表示。
2. 伸缩:函数的伸缩是指将整个函数图像在坐标轴的方向上进行拉伸或压缩。
伸缩有水平伸缩和垂直伸缩两种情况,分别用伸缩因子k 和h来表示。
3. 翻转:函数的翻转是指将整个函数图像关于某一直线对称。
翻转有水平翻转和垂直翻转两种情况,分别用翻转轴x=a和y=b来表示。
4. 旋转:函数的旋转是指将整个函数图像绕坐标原点或者某一点旋转一定的角度。
旋转用旋转中心和旋转角度来表示。
三、应用实例函数与像的对称性与变换在实际问题中有着广泛的应用。
以下举几个例子进行说明。
1. 对称轴的求解:利用函数的对称性,可以通过观察函数的图像来推断函数的对称轴,并进一步求解问题。
例如,通过观察一条曲线图像在x轴的对称性,可以得出该函数是偶函数,进而得到函数的性质和解析式。
芯衣州星海市涌泉学校2021届高三数学专题教案:函数图像的变换及应用一.知识梳理复习函数图像的变换:(1)、奇偶函数图象的对称性;(2)、假设f(x)满足f(a+x)=f(b -x)那么f(x)的图象以2a b x+=为对称轴;特例:假设f(a+x)=f(a -x)那么f(x)的图象关于x=a 对称。
(3)、假设f(x)满足f(a+x)=-f(b -x)那么f(x)的图象以(,0)2a b +为对称中心;特例:假设f(a+x)=-f(a -x)那么f(x)的图象以点〔a,0〕为对称中心。
(4)、假设f(x)满足f(a+x)+f(b-x)=c 那么f(x)的图象关于点(,)22a b c +中心对称。
二.例题讲解例1、求函数y=f 〔1-x 〕与函数y=f 〔x-1〕的图象对称轴方程?〔1〕.对于定义在R 上的函数)(x f ,有下述命题: ①假设)(x f 是奇函数,那么)1(-x f 的图像关于点)0,1(A 对称;②假设对R x ∈,恒有)1()1(-=+x f x f ,那么)(x f 的图像关于直线1=x 对称; ③假设函数)1(-x f 的图像关于直线1=x 对称,那么)(x f 为偶函数; ④函数)1(x f +与函数)1(x f -的图像关于直线1=x 对称.其中正确命题的序号为______________________.例2、设f(x)=x+1,求f(x+1)关于直线x=2对称的曲线的解析式。
例3、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
例3、设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,那么关于x 的方程0)()(2=++c x bf x f有7个不同实数解的充要条件是〔〕(A)0<b 且0>c(B)0>b 且0<c (C)0<b 且0=c (D)0≥b 且0=c 例4.函数)(x f 的图像与函数21++=x x y 的图像关于点)1,0(A 对称. 〔1〕求)(x f 的解析式;〔2〕假设xa x f x g +=)()(且)(x g 在区间]2,0(上为减函数,求正数a 的取值范围. 例5、函数4(1)|1|()2(1)x x f x x ⎧≠⎪-=⎨⎪=⎩〔1〕作出函数()y f x =的大致图像. 〔2〕〔考虑题〕假设关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x 、、,求222123x x x ++的值.三、课后习题:1、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
反函数●知识梳理1.反函数定义:若函数y=f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到x=ϕ(y ).如果对于y 在C 中的任何一个值,通过x=ϕ(y ),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x=ϕ(y )(y ∈C )叫做函数y=f (x )(x ∈A )的反函数,记作x=f -1(y ). 在函数x=f -1(y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量,y 表示函数,因此我们常常对调函数x=f -1(y )中的字母x 、y ,把它改写成y=f -1(x ).2.互为反函数的两个函数y=f (x )与y=f -1(x )在同一直角坐标系中的图象关于直线y=x 对称.3.求反函数的步骤:(1)解关于x 的方程y=f (x ),得到x=f -1(y ).(2)把第一步得到的式子中的x 、y 对换位置,得到y=f -1(x ). (3)求出并说明反函数的定义域〔即函数y=f (x )的值域〕.一. 条件存在型例1.函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [)a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. []a ∈12, 二. 式子求解型 例2.函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113 B. y x x =-+≥-()()113 C. y x x =+≥()()103 D. y x x =-+≥()()103三.求定义域值域型 例3.若fx -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
四.性质判断型例4. 函数y e e x x=--2的反函数是( )A. 奇函数,在(0,+∞)上是减函数;B. 偶函数,在(0,+∞)上是减函数C. 奇函数,在(0,+∞)上是增函数;D. 偶函数,在(0,+∞)上是增函数 五. 反函数求值型例5. 设352)(-+==x x x f y ,已知 y=g(x)的图象与)1(1+=-x f y 的图象关于直线y=x 对称,则 g(4)= 。
函数图象的几种常见变换⑪ 平移变换:左右平移---“左加右减”(注意是针对x 而言);上下平移----“上加下减”(注意是针对()f x 而言).⑫翻折变换:()|()|→f x f x ;“下沿X 轴翻折到上面”()(||)→f x f x .“右往左翻折—沿Y 轴”⑬对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关 于直线x a =对称;⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b x +=对称;⑥函数()y f a x =+,()y f b x =-的图像关于直线2b a x -=对称(由a x b x +=-确定);⑦函数()y f x a =-与()y f b x =-的图像关于直线2a b x +=对称;⑧函数()y f x =,()y A f x =-的图像关于直线2A y =对称(由()()2f x A f x y +-=确定);⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =--的图像关于点22(,)m n对称;⑩函数()y f x =与函数1()y f x -=的图像关于直线y x =对称;曲线1C :(,)0f x y =,关于y x a =+,y x a =-+的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=;曲线1C :(,)0f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=. 9.函数的周期性:⑪若()y f x =对x R ∈时()()f x a f x a +=-恒成立,则 ()f x 的周期为2||a ;⑫若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;⑬若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ;⑭若()y f x =关于点(,0)a ,(,0)b 对称,则()f x 的周期为2||a b -;⑮()y f x =的图象关于直线x a =,()x b a b =≠对称,则函数()y f x =的周期为2||a b -;⑯()y f x =对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-,则()y f x =的周期为2||a ;。
参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。
2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。
3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。
4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。
5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。
6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。
对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。
函数图像变换与旋转一.平移变换:=f(x)→y=f(x±a)(a>0) 原图像横向平移a个单位(左+右-)=f(x)→y=f(x)±b(b>0) 原图像纵向平移b个单位(上+下-)3.若将函数y=f(x)的图像右移a,上移b个单位,得到函数y=f(x-a)+b二.对称变换:=f(x)→y=f(-x) 原图像与新图像关于y轴对称;对比:若f=(-x)=f(x)则函数自身的图像关于y轴对称;=f(x)→y=-f(x) 原图像与新图像关于x轴对称;=f(x)→y=-f(-x) 原图像与新图像关于原点对称;对比:若f(-x)=-f(x)则函数自身的图像关于原点对称;=f(x)→y=f-1(x)原图像与新图像关于直线y=x对称;=f(x)→y=f-1(-x)原图像与新图像关于直线y=-x对称;=f(x)→y=f(2a-x)原图像与新图像关于直线x=a对称;=f(x)→y=2b-f(x)原图像与新图像关于直线y=b对称;=f(x)→y=2b-f(2a-x)原图像与新图像关于点(a,b)对称;三.翻折变换:1.y=f(x)→y=f(|x|)的图像在y轴右侧(x>0)的部分与y=f(x)的图像相同,在y轴的左侧部分与其右侧部分关于y轴对称;2.y=f(x)→y=|f(x)|的图像在x轴上方部分与y=f(x)的图像相同,其他部分图像为y=f (x)图像下方部分关于x轴的对称图像;3. y=f(x)→y=f(|x+a|)变换步骤:法1:先平移|a|个单位(左+右-)保留直线x=a右边图像,后去掉直线x=a左边图像并作关于直线x=a对称图像y=f(x)→y=f(x+a)→y=f(|x+a|)法2:先保留y轴右边图像,去掉y轴左边图像,并作关于y轴对称图像,后平移|a|个单位(左+右-)y=f(x)→y=f(|x|)→y=f(|x+a|)四.伸缩变换:=f(x)→y=af(x)(a>0)原图像上所有点的纵坐标变为原来的a倍,横坐标不变;=f(x)→y=f(ax)(a>0)原图像上所有的横坐标变为原来的,纵坐标不变;五.对称性:1.函数自身对称性之轴对称:(1).若f(x)=f(2a-x)(或f(a+x)=f(a-x)或f(-x)=f(2a+x))则函数自身关于直线x=a对称;(2).若y=f(x)的图像关于直线对称等价于f(a+mx)=f(b-mx)等价于f(a+b-mx)=f(mx);2.函数自身对称性之中心对称:(1).若f(mx+a)=-f(b-mx),则函数自身关于点(,0)对称;(2).若f(mx+a)+f(b-mx)=c,则函数自身关于点(,)对称;(3).若f(a+x)+f(a-x)=2b(或f(x)+f(2a-x)=2b或f(-x)+f(2a+x)=2b则函数自身关于点(a,b)对称;3.不同函数之间的对称性:(1).函数y=f(a+x),y=f(b-x)的图像关于直线对称;推论:函数y=f(a+x)与f(a-x)的图像关于直线x=0对称;函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称;函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称;特例:函数y=f(a+x),y=f(a-x)的图像关于直线x=0对称;(2).函数y=f(a+x),y=-f(b-x)的图像关于点(,0)对称;特例:函数y=f(a+x)与y=-f(a-x)关于原点中心对称4.抽象函数的对称性:(1).性质一:若函数y=f(x)关于直线x=a轴对称,则以下三个时式子成立切等价:f(a+x)=f(a-x); f(2a-x)=f(x); f(2a+x)=f(-x);(2).性质二:若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:f(a+x)=-f(a-x); f(2a-x)=-f(x); f(2a+x)=-f(-x);易知,y=f(x)为偶(或奇)函数分别为性质一(或二)当a=0时的特例;六.周期性;(x+a)=f(x)周期:|a|(x+a)=-f(x)周期:2|a|(x+a)=(或周期:2|a|(x+a)=f(x-a)周期:2|a|(x+a)=-f(x-a)周期:4|a|(x+a)=(或)周期:4|a|(x+2a)=f(x+a)-f(x) 周期:6|a|8.若p>0,f(px)=f(px-) 周期:七.对称性与周期性:1.若y=f(x)的图像关于直线x=a,x=b对称(a不等于b),则f(x)是周期函数,且周期T=2|a-b|;特例:若y=f(x)是偶函数且其图像关于直线x=a对称,则周期T=2|a|;2.若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期函数,且周期T=2|a-b|;3.若y=f(x)的图像关于直线x=a,对称中心(b,0)对称(a不等于b)则f(x)为周期函数,且周期T=4|a-b|;特例;若y=f(x)是奇函数且其图像关于直线x=a对称,则周期T=4|a|;综上:若函数的图像同时具备两种对称性,两条对称轴或两个对称中心,或一条对称轴一个对称中心,则函数必定为周期函数。
函数对称性知识点归纳总结函数对称性是数学中一个重要的概念,它涉及到函数图像在某种变换下的性质和特点。
本文将针对函数对称性的相关知识进行归纳总结,包括函数关于x轴对称、y轴对称和原点对称的特点以及应用。
希望通过本文的介绍,读者能够全面了解函数对称性,并能够应用到实际问题中。
1. 函数关于x轴对称函数关于x轴对称是指函数图像在x轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(x, -y)。
如果函数的表达式为f(x),那么函数关于x轴对称可以表示为f(x) = f(-x)。
常见的函数关于x轴对称的例子有二次函数和正弦函数。
2. 函数关于y轴对称函数关于y轴对称是指函数图像在y轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, y)。
如果函数的表达式为f(x),那么函数关于y轴对称可以表示为f(x) = f(-x)。
常见的函数关于y轴对称的例子有二次函数和余弦函数。
3. 函数关于原点对称函数关于原点对称是指函数图像以原点为对称中心,旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, -y)。
如果函数的表达式为f(x),那么函数关于原点对称可以表示为f(x) = -f(-x)。
常见的函数关于原点对称的例子有奇次函数和正切函数。
除了以上三种常见的对称性,函数还可能具有其他特殊的对称性,比如关于直线y=x的对称性、关于直线y=-x的对称性等。
这些对称性在函数的研究和应用中都有重要的意义。
函数对称性的应用十分广泛。
其中一项重要的应用是利用对称性来求函数的零点。
如果函数关于x轴对称,也就是满足f(x) = f(-x),那么我们可以通过找到函数图像上的一个零点,得到一个对称的零点。
这是因为如果f(x) = 0,则f(-x) = 0,对称点也是零点。
同样,对于关于y 轴对称或原点对称的函数,我们也可以利用对称性来求解零点。
函数图像的变换1、平移变换函数y = f(x)的图像向右平移a个单位失掉函数y = f(x - a)的图像;向上平移b个单位失掉函数y =f(x)+ b 的图像 ;左平移a个单位失掉函数y = f(x + a)的图像;向下平移b个单位失掉函数y =f(x)- b 的图像(a ,b>0)。
2、伸缩变换函数 y = f(x)的图像上的点坚持横坐标不变纵坐标变为原来的k倍(01时,伸)失掉函数 y = k f(x)的图像;函数 y = f(x)的图像上的点坚持纵坐标不变横坐标变为原来的1/k倍(01时,缩)失掉函数y = f(k x)的图像(k>0,且 k ≠1)。
3、对称变换(1)函数y = f(x)的图象关于y轴对称的图像为 y =f(-x);关于x轴对称的图像为y =-f(x);关于原点对称的图像为y =-f(-x)。
(2)函数y = f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y =2b-f(x);关于点(a,b)中心对称的图像为y =2b-f(2a-x)。
(3)相对值效果①函数 y =f(x)x轴及其上方的图像坚持不变,把下方图像关于x轴对称的翻折到上方,再把下方的图像去掉失掉函数 y =| f(x)|的图像;②函数 y =f(x)y轴及其右侧的图像坚持不变,把左侧图像去掉,再把右侧图像关于y轴对称的翻折到左侧失掉函数 y =f(| x|)的图像;③函数y = f(x)先用第②步的方法失掉函数y =f(| x|)的图像,再平移a个单位失掉函数y =f(|x-a|)图象。
我们还可以失掉下面的结论:(1)函数y = f(x)与y =f(2a-x)图象关于直线x = a 对称;(2)函数y = f(x)与y =2b-f(x)图象关于直线y = b 对称;(3)函数y = f(x)与y =2b-f(2a-x)图象关于点(a,b)对称;附注:下面是有关函数图象自身的对称性的一些结论,我们把它放在这里来对比一下:(1)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=f(a -x)成立,那么函数 f(x)的图像关于x=a对称;(2)假定函数 f(x)满足:对恣意的实数x,都有f(bx)=f(2a -bx)成立,那么函数 f(x)的图像关于x=a对称;(b≠0)(3)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=-f(a -x)成立,那么函数 f(x)的图像关于点(a,0)对称;(4)假定函数 f(x)满足:对恣意的实数x,都有f(bx)=-f(2a -bx)成立,那么函数 f(x)的图像关于(a,0)对称;(b≠0)(5)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=2b -f(a -x)成立,那么函数 f(x)的图像关于点(a,b)对称;(6)假定函数 f(x)满足:对恣意的实数x,都有f(x)=2b -f(2a -x)成立,那么函数 f(x)的图像关于(a,b)对称。
二次函数的性质与图像变换二次函数是高中数学中重要的一个概念,它在代数学和几何学中都有广泛的应用。
二次函数的性质与图像变换是我们对二次函数的深入了解的重要方面。
本文将从二次函数的性质以及图像变换两个方面来展开讨论。
首先,我们来了解二次函数的性质。
二次函数的一般形式可以表示为:f(x) =ax^2 + bx + c,其中a,b,c分别为实数,且a ≠ 0。
二次函数的性质可以总结为以下几点:1. 对称性:二次函数的图像关于抛物线的顶点对称。
这意味着如果(x, y)是抛物线上的一个点,那么(2h - x, y)也是抛物线上的一个点,其中h为抛物线的顶点的横坐标。
2. 奇偶性:二次函数关于y轴是偶函数,即满足f(-x) = f(x);关于x轴是奇函数,即满足f(-x) = -f(x)。
这个性质可以从二次函数的图像中看出来。
3. 零点:二次函数的零点是使得函数值为0的x值。
可以通过求解二次方程ax^2 + bx + c = 0来求得二次函数的零点。
当判别式D = b^2 - 4ac为正时,二次函数有两个不相等的实根;当D = 0时,二次函数有两个相等的实根;当D为负时,二次函数没有实根。
4. 极值:二次函数的顶点是函数的极值点。
当二次函数的导数为0时,即f'(x) = 0,解这个方程可以得到函数的极值点。
通过了解这些性质,我们可以更好地理解二次函数的特点,进一步应用于实际问题的解决中。
其次,我们来讨论二次函数的图像变换。
二次函数的图像可以通过改变系数a,b,c来进行平移、伸缩、翻转等操作。
1. 平移:二次函数的图像可以沿x轴和y轴进行平移。
当抛物线的顶点的横坐标加上一个常数h时,抛物线向左移动h个单位;当抛物线的顶点的纵坐标加上一个常数k时,抛物线向上移动k个单位。
2. 伸缩:二次函数的图像可以沿x轴和y轴进行伸缩。
当系数a的绝对值增大时,抛物线变得更加狭长;当系数a的绝对值减小时,抛物线变得更加扁平。
简析两个函数图象的对称性
两个函数图象的对称性指的是函数的轴对称,图象的结构是由点的一系列排列组成的,具有一定的平衡性和美感,函数的对称性决定了函数的展示规律是一致的,可以清晰的表示出函数的变化趋势。
观察可知,两个函数图象都具有典型的轴对称特征,它们的图象有一条中轴线,这条线就是轴对称的轴,轴线左右两侧的形状和大小是一样的,但是是反着的。
其中函数一的轴对称轴是y轴,函数二的轴一般都是x轴,轴线左右形状是一样的,但是反着的,而且两个函数变化状态是一样的,所以可以判断函数是具有轴对称特性的。
此外,对称能更好的表达函数的特性,函数轴对称的特点使得图象具有视觉上的和谐性,在使用函数图象来描述函数曲线时,能够很清楚地看出函数变化的趋势和变化极值点,可以更直观和动态地表达函数的变化情况。
总的来说,两个函数的对称性表明它能够很好的表达函数的曲线走向,可以帮助我们更好的观察函数的变化,从而分析函数的特点,更好的理解函数的规律,并能够准确的应用到实际的问题中。