钢结构第四章1
- 格式:ppt
- 大小:3.52 MB
- 文档页数:80
P1084.1解: 示意图要画焊缝承受的剪力V=F=270kN ;弯矩M=Fe=270⨯300=81kN.mI x =[0.8⨯(38-2⨯0.8)3]/12+[(15-2)⨯1⨯19.52]⨯2=13102cm 4=腹板A e =0.8⨯(38-2⨯0.8)=29.12 cm 2截面最大正应力σmax =M/W= 81⨯106⨯200/13102⨯104=123.65 N/mm 2≤f t w =185N/mm 2剪力全部由腹板承担τ=V/A w =270⨯103/2912≤=92.72 N/mm 2 =f v w =125N/mm 2腹板边缘处”1”的应力σ1=(M/W)(190/200)=123.65(190/200)=210.19=117.47腹板边缘处的折算应力应满足1.1w zs t f σ=≤=2≤1.1f t w =203.5N/mm 2焊缝连接部位满足要求4.2解:(1) 角钢与节点板的连接焊缝“A ”承受轴力N=420kN连接为不等边角钢长肢相连 题意是两侧焊肢背分配的力N 1=0.65 ⨯420=273 kN肢背分配的力N 2=0.35 ⨯420=147 kNh fmin =1.5(t max )1/2=1.5(10)1/2=4.74mmh fmax =1.2(t min )=1.2(6)=7.2mm取h f =6mm肢背需要的焊缝长度l w1=273⨯103/(2⨯0.7⨯6⨯160)+2⨯6=203.12+12=215.13mm肢尖需要的焊缝长度l w2=147⨯103/(2⨯0.7⨯6⨯160)+2⨯6=109.38+12=121.38mm端部绕角焊2h f 时,应加h f (书中未加)取肢背的焊缝长度l w1=220mm ;肢尖的焊缝长度l w2=125mm 。
l wmax =60h f =360mm ;l wmin =8h f =48mm ;焊缝“A ”满足要求4.3解:节点板与端板间的连接焊缝“B ”承受拉力N 对焊缝“B ”有偏心,焊缝“B ”承受拉力N=(1.5/1.8) ⨯420=350kN ;剪力V=(1/1.8) ⨯420=233.33 kN ;弯矩M=350⨯50=17.5 kN.mh fmin =1.5(t max )1/2=1.5(20)1/2=6.71mmh fmax =1.2(t min )=1.2(10)=12mm焊缝“B ”h f =7mm焊缝“B ”A 点的力最大焊缝“B ”承受的剪应力τ=233.33⨯103/(2⨯0.7⨯7⨯386)=61.68 N/mm 2焊缝“B ”承受的最大正应力σ=N/Ae+M/W=350⨯103/(2⨯0.7⨯7⨯386)+17.5⨯106⨯200/(2⨯0.7⨯7⨯3863/12)=92.52+71.91 =164.43 N/mm 2验算焊缝“B ”的强度=148.19 N/mm 2<f f w 焊缝“B ”满足要求。
第四章4.7 试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。
杆件由屈服强度2y f 235N mm =的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定不计残余应力。
320610mm E N =⨯2(由于材料的应力应变曲线的分段变化的,而每段的变形模量是常数,所以画出 cr -σλ 的曲线将是不连续的)。
解:由公式 2cr 2Eπσλ=,以及上图的弹性模量的变化得cr -σλ 曲线如下:4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为 2y f 235N mm =,弹性模量为 320610mm E N =⨯2,试画出 cry y σ-λ——无量纲关系曲线,计算时不计腹板面积。
f yyf (2/3)f y(2/3)f yx解:当 cr 0.30.7y y y f f f σ≤-=, 构件在弹性状态屈曲;当 cr 0.30.7y y y f f f σ>-=时,构件在弹塑性状态屈曲。
因此,屈曲时的截面应力分布如图全截面对y 轴的惯性矩 3212y I tb =,弹性区面积的惯性矩 ()3212ey I t kb =()322232232212212ey cryy y y yI t kb E E E k I tb πππσλλλ=⨯=⨯= 截面的平均应力 2220.50.6(10.3)2y ycr y btf kbt kf k f btσ-⨯⨯==-二者合并得cry y σ-λ——的关系式cry cry342cry σ(0.0273)σ3σ10y λ+-+-= 画图如下4.10 验算图示焊接工字型截面轴心受压构件的稳定性。
钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为0.6f yfyλσ0.20.40.60.81.0cryN=1500KN 。
解:已知 N=1500KN ,由支撑体系知对截面强轴弯曲的计算长度 ox =1200cm l ,对弱轴的计算长度 oy =400cm l 。
第四章4.7 试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。
杆件由屈服强度2y f 235N mm =的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定不计残余应力。
320610mm E N =⨯2(由于材料的应力应变曲线的分段变化的,而每段的变形模量是常数,所以画出 cr -σλ 的曲线将是不连续的)。
解:由公式 2cr 2Eπσλ=,以及上图的弹性模量的变化得cr -σλ 曲线如下:4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为 2y f 235N mm =,弹性模量为 320610mm E N =⨯2,试画出 cryy σ-λ——无量纲关系曲线,计算时不计腹板面积。
f yyf (2/3)f y(2/3)f yx解:当 cr 0.30.7y y y f f f σ≤-=, 构件在弹性状态屈曲;当 cr 0.30.7y y y f f f σ>-=时,构件在弹塑性状态屈曲。
因此,屈曲时的截面应力分布如图全截面对y 轴的惯性矩 3212y I tb =,弹性区面积的惯性矩 ()3212ey I t kb =()322232232212212ey cryy y y yI t kb E E E k I tb πππσλλλ=⨯=⨯= 截面的平均应力 2220.50.6(10.3)2y ycr y btf kbt kf k f btσ-⨯⨯==-二者合并得cry y σ-λ——的关系式cry cry342cry σ(0.0273)σ3σ10y λ+-+-= 画图如下4.10 验算图示焊接工字型截面轴心受压构件的稳定性。
钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为N=1500KN 。
0.6f yfyλσ0.20.40.60.81.0cry解:已知 N=1500KN ,由支撑体系知对截面强轴弯曲的计算长度 ox =1200cm l ,对弱轴的计算长度 oy =400cm l 。
《钢结构设计规范》(GB50017—2003)学习指导第四章 受弯构件的计算§4.1 强度计算 一 规范原文4.1.1 在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗弯强度应按下列规定计算:f W M W M nyy y nx x x≤+γγ (4.1.1)式中 M x 、M y ——同一截面处绕x 轴和y 轴的弯矩(对工字形截面:x 轴为强轴,y轴为弱轴);W nx 、W ny ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数;对工字形截面,05.1=x γ,20.1=y γ;对箱形截面,05.1==y x γγ;对其他截面,可按表5.2.1采用;f ——钢材的抗弯强度设计值。
当梁受压翼缘的自由外伸宽度与其厚度之比大于y f /23513而不超过y f /23515时,应取0.1=x γ,y f 为钢材牌号所指屈服点。
对需要计算疲劳的梁,宜取0.1==y x γγ。
4.1.2 在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗剪强度应按下式计算:v wf It VSr ≤=(4.1.2) 式中 V ——计算截面沿腹板平面作用的剪力;S ——计算剪应力处以上毛截面对中和轴的面积矩;I ——毛截面惯性矩; t w ——腹板厚度;f v ——钢材的抗剪强度设计值。
4.1.3 当梁上翼缘受有沿腹板平面作用的集中荷载,且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算:f l t Fzw c ≤=ψσ (4.1.3-1)式中 F ——集中荷载,对动力荷载应考虑动力系数;ψ——集中荷载增大系数;对重级工作制吊车梁,35.1=ψ;对其他梁,0.1=ψ;l z ——集中荷载在腹板计算高度上边缘的假定分布长度,按下式计算: R y z h h a l 25++= (4.1.3-2) a ——集中荷载沿梁跨度方向的支承长度,对钢轨上的轮压可取50mm ; h y ——自梁顶面至腹板计算高度上边缘的距离; h R ——轨道的高度,对梁顶无轨道的梁h R =0; f ——钢材的抗压强度设计值。