钢结构设计课程 第四章
- 格式:ppt
- 大小:3.40 MB
- 文档页数:129
P1084.1解: 示意图要画焊缝承受的剪力V=F=270kN ;弯矩M=Fe=270⨯300=81kN.mI x =[0.8⨯(38-2⨯0.8)3]/12+[(15-2)⨯1⨯19.52]⨯2=13102cm 4=腹板A e =0.8⨯(38-2⨯0.8)=29.12 cm 2截面最大正应力σmax =M/W= 81⨯106⨯200/13102⨯104=123.65 N/mm 2≤f t w =185N/mm 2剪力全部由腹板承担τ=V/A w =270⨯103/2912≤=92.72 N/mm 2 =f v w =125N/mm 2腹板边缘处”1”的应力σ1=(M/W)(190/200)=123.65(190/200)=210.19=117.47腹板边缘处的折算应力应满足1.1w zs t f σ=≤=2≤1.1f t w =203.5N/mm 2焊缝连接部位满足要求4.2解:(1) 角钢与节点板的连接焊缝“A ”承受轴力N=420kN连接为不等边角钢长肢相连 题意是两侧焊肢背分配的力N 1=0.65 ⨯420=273 kN肢背分配的力N 2=0.35 ⨯420=147 kNh fmin =1.5(t max )1/2=1.5(10)1/2=4.74mmh fmax =1.2(t min )=1.2(6)=7.2mm取h f =6mm肢背需要的焊缝长度l w1=273⨯103/(2⨯0.7⨯6⨯160)+2⨯6=203.12+12=215.13mm肢尖需要的焊缝长度l w2=147⨯103/(2⨯0.7⨯6⨯160)+2⨯6=109.38+12=121.38mm端部绕角焊2h f 时,应加h f (书中未加)取肢背的焊缝长度l w1=220mm ;肢尖的焊缝长度l w2=125mm 。
l wmax =60h f =360mm ;l wmin =8h f =48mm ;焊缝“A ”满足要求4.3解:节点板与端板间的连接焊缝“B ”承受拉力N 对焊缝“B ”有偏心,焊缝“B ”承受拉力N=(1.5/1.8) ⨯420=350kN ;剪力V=(1/1.8) ⨯420=233.33 kN ;弯矩M=350⨯50=17.5 kN.mh fmin =1.5(t max )1/2=1.5(20)1/2=6.71mmh fmax =1.2(t min )=1.2(10)=12mm焊缝“B ”h f =7mm焊缝“B ”A 点的力最大焊缝“B ”承受的剪应力τ=233.33⨯103/(2⨯0.7⨯7⨯386)=61.68 N/mm 2焊缝“B ”承受的最大正应力σ=N/Ae+M/W=350⨯103/(2⨯0.7⨯7⨯386)+17.5⨯106⨯200/(2⨯0.7⨯7⨯3863/12)=92.52+71.91 =164.43 N/mm 2验算焊缝“B ”的强度=148.19 N/mm 2<f f w 焊缝“B ”满足要求。
第四章钢构造深化设计方案4.1 深化设计总体思路及组织管理体系4.1.1 深化设计总体思路4.1.2 深化设计工作总流程4.1.3 深化设计组织管理体系4.1.3.1 公司层面深化设计组织管理体系我司重大项目实行需编制《深化设计方案》,会审图纸后,由各专业副总工程师部门根据合同及施工图规定旳设计工作内容、范畴、工期、质量原则、服务规定,并结合我司旳实际生产设备及工艺技术方案,分别编制《设计配合及优化方案》、《现场安装配合求》、《工艺技术配合规定》、《详图设计方案》,汇編形成《深化设计方案》后报总工程师审批,由深化设计部贯彻执行。
4.1.3.2 项目层面深化设计组织管理体系深化设计是钢构造工程实行旳源头,针对本工程地上钢构造旳深化设计,我司将从各专业技术线抽调骨干力量组建本工程深化设计部,由深化设计部长亲自兼任深化设计负责人,对设计方案编制、审批、执行等环节进行全过程管控,为工程旳顺利实行打下坚实旳基础。
图:深化设计组织架构4.1.3.3 岗位职责4.1.3.4 人员配备我公司为本工程旳深化设计组织了精良旳深化设计队伍,项目深化设计总负责人为专家级高工职称,从事专业工作年限46年;设计负责人、详图设计负责人、工艺负责人均为本科以上学历,从事专业工作年限均在6年以上;成员基本都为本科以上学历,深化设计工作年限基本在6-以上,为图纸深化设计旳质量提供了可靠旳人力保证。
根据本工程旳重要性,对本工程旳深化设计人员投入进行如下安排。
学历比例图工作年限比例图职称比例图4.1.3.5 硬件配备(一)电脑硬件配备考虑到诸暨市都市建设投资发展有限公司-剧院A、B区,地下室建设工程(钢构造制作与安装工程)重要限度,我公司配备了1台联想(Lenovo)锋行K330至尊版台式电脑作为本工程深化设计服务器,40台联想(Lenovo)扬天T3900d台式电脑作为本工程深化设计一般PC,为图纸深化设计旳质量提供了可靠旳电脑硬件保证,保证该工程深化设计旳圆满完毕。
第四章4.7试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。
杆件由屈服强度的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定2y f 235N mm =不计残余应力。
(由于材料的应力应变曲线的分段变化的,而每段320610mm E N =⨯2的变形模量是常数,所以画出 的曲线将是不连续的)。
cr -σλ(2/3)解:由公式 ,以及上图的弹性模量的变化得 曲线如下:2cr 2Eπσλ=cr -σλ(2/3)4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为,弹性模量为,试画出2y f 235N mm =320610mm E N =⨯2 无量纲关系曲线,计算时不计腹板面积。
cry y σ-λ——解:当 , 构件在弹性状态屈曲;当 时,cr 0.30.7y y y f f f σ≤-=cr 0.30.7y y y f f f σ>-=构件在弹塑性状态屈曲。
全截面对y 轴的惯性矩 ,弹性区面积的惯性矩 3212y I tb =()3212ey I t kb =()322232232212212ey cryy y y yI t kb E E E k I tb πππσλλλ=⨯=⨯=截面的平均应力2220.50.6(10.3)2y ycr ybtf kbt kf k f btσ-⨯⨯==-二者合并得的关系式cryy σ-λ——cry cry342cry σ(0.0273)σ3σ10y λ+-+-=画图如下4.10 验算图示焊接工字型截面轴心受压构件的稳定性。
钢材为钢,翼缘为火焰切割Q235边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为。
N=1500KNt h i nhe i rg解:已知 ,由支撑体系知对截面强轴弯曲的计算长度 ,对弱N=1500KN ox =1200cm l 轴的计算长度 。
抗压强度设计值 。
第四章4. 1有哪些因素影响轴心受压杆件的稳定系数? 答:①残余应力对稳定系数的影响;②构件的除弯曲对轴心受压构件稳定性的影响; ③构件初偏心对轴心轴心受压构件稳定性的影响; ④杆端约束对轴心受压构件稳定性的影响;4.3影响梁整体稳定性的因素有哪些?提高梁稳定性的措施有哪些? 答:主要影响因素:①梁的侧向抗弯刚度y EI 、抗扭刚度t GI 和抗翘曲刚度w EI 愈大,梁越稳定; ②梁的跨度l 愈小,梁的整体稳定越好;③对工字形截面,当荷载作用在上翼缘是易失稳,作用在下翼缘是不易失稳; ④梁支撑对位移约束程度越大,越不易失稳; 采取措施:①增大梁的侧向抗弯刚度,抗扭刚度和抗翘曲刚度; ②增加梁的侧向支撑点,以减小跨度;③放宽梁的受压上翼缘,或者使上翼缘与其他构件相互连接。
4.6简述压弯构件中等效弯矩系数mx β的意义。
答:在平面内稳定的计算中,等效弯矩系数mx β可以把各种荷载作用的弯矩分布形式转换为均匀守弯来看待。
4.10验算图示焊接工字形截面轴心受压构件的稳定性。
钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为N =1500kN 。
解:由支承条件可知0x 12m l =,0y 4m l =23364x 1150012850025012225012476.610mm 12122I +⎛⎫=⨯⨯+⨯⨯+⨯⨯⨯=⨯ ⎪⎝⎭3364y 5001821225031.310mm 1212I =⨯+⨯⨯⨯=⨯2225012500810000mm A =⨯⨯+⨯=x 21.8cm i ===,y 5.6cm i ===0x x x 12005521.8l i λ===,0y y y 40071.45.6l i λ===,翼缘为火焰切割边的焊接工字钢对两个主轴均为b 类截面,故按y λ查表得=0.747ϕ整体稳定验算:3150010200.8MPa 215MPa 0.74710000N f A ϕ⨯==<=⨯,稳定性满足要求。
第4章单个构件的承载能力--稳定性4.1 稳定问题的一般提法4.1.1 失稳的类别传统分类:分支点失稳和极值点失稳。
分支点失稳:在临界状态时,初始的平衡位形突变到与其临近的另一平衡位形。
(轴心压力下直杆)极值点失稳:没有平衡位形分岔,临界状态表现为结构不能再承受荷载增量。
按结构的极限承载能力:(1)稳定分岔屈曲:分岔屈曲后,结构还可承受荷载增量。
轴心压杆(2)不稳定分岔屈曲:分岔屈曲后,结构只能在比临界荷载低的荷载下才能维持平衡位形。
轴向荷载圆柱壳(3))跃越屈曲:结构以大幅度的变形从一个平衡位形跳到另一个平衡位形。
铰接坦拱,在发生跃越后, 荷载还可以显著增加,但是其变形大大超出了正常使用极限状态。
4.1.2 一阶和二阶分析材料力学:EI M //1+=ρ 高数:()()2/3222/1///1dx dy dx y d +±=ρ M>0 22/dx y d <0 ; M<0 22/dx y d >0 ;∴ M 与y ''符号相反()()EI M y y /1/2/32-='+''∴ (大挠度理论)当y '与1相比很小时 EI M y /-='' (1) (小挠度理论)不考虑变形,据圆心x 处 ()x h P M --=α1 一阶弯矩 考虑变形 ()()y p x h p M ----=δα2 二阶弯矩 将它们代入(1)式:()x h p y EI -=''α 一阶分析()()y p x h p y EI -+-=''δα 二阶分析边界条件: ()()000='=y y ()δ=h yEI ph 3/3αδ=()()]/)tan(3[)]3/([33kh kh kh EI ph -⨯=αδ (2) EI P k /2=由(2)有 ()∞=--32//)(t a n l i m kh kh kh kh π 得欧拉临界荷载 224/h EI P E π= 此为稳定分析过程:达临界荷载,构件刚度退化为0,无法保持稳定平衡,失稳过程本质上是压力使构件弯曲刚度减小,直至消失。
钢结构课程设计word文档一、课程目标知识目标:1. 让学生理解钢结构的基本概念、分类和特点;2. 掌握钢结构的设计原理、构造要求和连接方式;3. 了解钢结构在建筑领域的应用和发展前景。
技能目标:1. 培养学生运用理论知识进行钢结构设计和计算的能力;2. 提高学生运用CAD软件绘制钢结构施工图的能力;3. 培养学生分析、解决钢结构施工过程中常见问题的能力。
情感态度价值观目标:1. 培养学生对钢结构工程的兴趣和热情,激发学生探索建筑领域新技术的欲望;2. 培养学生严谨、务实的学习态度,树立正确的工程观念;3. 增强学生的团队协作意识,培养学生的沟通、交流能力。
本课程针对高中年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,充分调动学生的主观能动性,培养他们独立思考和解决问题的能力。
通过本课程的学习,期望学生能够掌握钢结构的基本知识,具备一定的设计和施工技能,为未来从事相关工作打下坚实基础。
二、教学内容1. 钢结构基本概念:介绍钢结构的概念、分类及特点,让学生了解钢结构在建筑行业中的应用。
教材章节:第一章 钢结构概述2. 钢结构设计原理:讲解钢结构设计的基本原理,包括材料性能、构件截面、连接方式等。
教材章节:第二章 钢结构设计原理3. 钢结构构造要求:分析钢结构的构造要求,包括构件布置、节点设计、抗震措施等。
教材章节:第三章 钢结构构造要求4. 钢结构连接方式:介绍钢结构常用的连接方式,如焊接、螺栓连接等,并分析其优缺点。
教材章节:第四章 钢结构连接方式5. 钢结构施工图绘制:教授学生如何运用CAD软件绘制钢结构施工图,包括平面图、立面图、剖面图等。
教材章节:第五章 钢结构施工图绘制6. 钢结构施工过程中问题分析:分析钢结构施工过程中常见问题,并提出解决方案。
教材章节:第六章 钢结构施工过程中问题分析7. 钢结构应用与发展前景:介绍钢结构在建筑领域的发展趋势,激发学生对行业前景的关注。
第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。
(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。
如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。
(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。
(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。
图4-2 (c)即T 形截面构件发生的弯扭屈曲。
图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。
E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。
(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。
稳定应力上限,弱轴:强轴:其中:,0<<1.0。
2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。