10.1压杆稳定的概念
- 格式:ppt
- 大小:2.36 MB
- 文档页数:11
第 十 章 压杆稳定§10−1 压杆稳定的概念一、压杆稳定性的概念1、下面先以小球为例介绍平衡的的三种状态:如果小球受到微小干扰而稍微偏离它原有的平衡位置,当干扰消除以后,它能够回到原有的平衡位置,这种平衡状态称为稳定平衡状态,如图10–1a 所示;如果小球受到微小干扰而稍微偏离它原有的平衡位置,当干扰消除以后,它不能够回到原有的平衡位置,但能够在附近新的位置维持平衡,原有的平衡状态称为随遇平衡状态,如图10–1b 所示;如果小球受到微小干扰而稍微偏离它原有的平衡位置,当干扰消除以后,它不但不能回到原有的平衡位置,而且继续离去,那么原有的平衡状态称为不稳定平衡状态,如图10–1c2、压杆稳定性的概念 细长直杆两端受轴向压力作用,向压力作用,杆件处于直线形状下的平衡。
为判断平衡的稳定性,可以加一横向干扰力,使杆件发生微小的弯曲变形(图10–2a ),然后撤消此横向干扰力。
当轴向压力较小时,撤消横向干扰力后杆件能够恢复到原来的直线平衡状态(图10–2b ),则原有的平衡状态是稳定平衡状态;当轴向压力增大到一定值时,撤消横向干扰力后杆件不能再恢复到原来的直线平衡状态(图10–2c ),则原有的平衡状态是不稳定平衡状态。
压杆由稳定平衡过度到不稳定平衡时所受轴向压力的临界值称为临界压力,或简称临界力,用F c r 表示。
当F =F c r 时,压杆处于稳定平衡与不稳定平衡的临界状态,称为临界平衡状态,这种状态的特点是:不受横向干扰时,压杆可在直线位置保持平衡;若受微小横向干扰并将干扰撤消后,压杆又可在微弯位置维持平衡,因此临界平衡状态具有两重性。
压杆处于不稳定平衡状态时,称为丧失稳定性,简称为失稳。
显然结构中的受压杆件绝不允许失稳。
图 10−1(b)除压杆外,还有很多其它形式的工程构件同样存在稳定性问题,例如薄壁杆件的扭转与弯曲、薄壁容器承受外压以及薄拱等问题都存在稳定性问题,在图10−3中列举了几种薄壁结构的失稳现象。
材料力学笔记之——压杆稳定概念、欧拉公式压杆稳定的概念构件除了强度、刚度失效外,还可能发生稳定失效。
稳定性是指构件在外力作用下保持其原有平衡状态的能力(受压直杆在压力作用下,保持原有直线平衡状态的能力)。
受轴向压力的细长杆,当压力超过一定数值时,压杆会由原来的直线平衡形式突然变弯,致使结构丧失承载能力,平衡形式的突然变化称为稳定失效,简称失稳或屈曲。
工程中的柱、桁架中的压杆、薄壳结构在压力作用下,都可能发生失稳。
构件的失稳往往是突然发生的,造成的事故往往是灾难性的。
因构件失稳而引起的重大事故,1907年加拿大劳伦斯河上,跨长五百多米的魁北克大桥,因压杆失稳而导致整座大桥倒塌,两次事故造成88人遇难。
倒塌的魁北克大桥魁北克大桥稳定失稳造成的事故现在仍时有发生,2000年10月25日,南京电视台演播中心工地,在施工浇筑混凝土中,因脚手架失稳,造成演播厅屋盖模板倒塌事故,部分施工人员被压,35人被送往医院抢救和治疗,并有5人死亡。
因此,稳定问题在工程设计中占有重要地位。
下端固定、上端自由的杆件如上图 (a) 所示,下端固定、上端自由的杆件,受到压力F 作用。
当载荷小于某一个临界力Fcr,如图(b) 所示,杆件若受到某种微小干扰力f 作用下,使杆件发生微小弯曲变形,杆件偏离直线平衡位置,当撤除干扰力后,杆件又回到原来的直线平衡位置。
当压力F等于临界力Fcr时,杆件可以保持原有的直线平衡状态,受到微小干扰力f作用下,杆件发生微小弯曲变形,但是当撤除干扰力后,杆件不再回到直线平衡位置,而是保持微小弯曲变形的平衡状态,如图 (c) 所示。
但当压力F超过临界力Fcr时,在干扰力作用下,杆件不再回到直线平衡位置,载荷稍大于临界力,就足以使杆产生很大的挠度。
当F≥Fcr 时,原有的直线平衡形式是不稳定的。
使中心受压直杆的直线平衡形式,由稳定平衡转变为不稳定平衡时所受的轴向压力,称为临界载荷,简称为临界力,用Fcr表示。
二、压杆的失稳12-2 细长压杆临界力公式——欧拉公式一、两端钝支细长压杆的j l P令: EI K j =则: Y K Y ⋅-=即: 02=⋅+''Y K Y此微分方程的通解:Y=C ;kx C kx cos sin 2+ ——(1) 边界条件: 当X=0, 02=C , kx C Y sin 1= ——(2) 又杆上端边界条件:X=l 代入(2)式kl sin 0=——(3) 若要使(3)式成立必有1C 或0sin =kl 方可。
如果 01=C 式就不成立,所以必定是0sin =kl πn kl =当 ππππn kl 3,2,,0=时,0sin =kl 得 ln EI P K jl π==又得 222l EI n P j l π= n=1 时, 2min2l EI P j l π=——临界力欧拉公式j l P ——临界力min I ——截面z I 、y I 选小值l ——杆长二、其他支座j l P()2min25.0l EI P j l π= u=0.5三、临界应力()()()2222min22min2r ul EAul EI Aul EI AP lj l j πππσ====——(1)式中: AI r min= ——截面的回转半径λ=rul——压杆的长细比 (1)式可成: 22λπσEjl =12-3 临界应力总图目的: 了解临界应力适应范围 关键是看懂j l σ总图一、临界应力的公式的适用范围(因为挠曲线近似微分方程只在材料服从虎克定律的前提下成立,即在材料不超过比例极限时成立,而j l P 又是通过挠曲线微分方程推倒出来的故p l j σσ≤)P l E jσλπσ≤=22 即: P p EE σπσπλ=≥2 即只有当λ大于或等于极限值p p Eσπλ=时 22λπσEjl *=方成立。
那么j l σ适用的范围总:p λλ≥ 如:钢 100≥p λ 铸铁 80≥p λ 木材 100≥p λ二、超过p σ后压杆的临界应力⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=21c l j λλασσ ——经验公式其中: s σ——材料的屈服极限 α——系数 0.43 Sc Eσπλ57.0=例: S A 钢: cmkgs 2400=σ 26102cm kgE ⨯=20715.02400λσ-=j l三、j l σ总图总图:p l j σσ≤和p l j σσ>的图形, j l σλ-曲线图12-4 压杆稳定计算一、压杆的稳定条件: []σϕσ≤=APjj l l K P P ≤其中j l P 压杆的临界力jl K 稳定安全系数,随λ变化比例强度安全系数K 的实际作用在杆上的应力则: []j jjj j l l l l l K K A P A Pσσσ==*≤=其中σ为实际杆内力[]j l σ为稳定许用应力稳定条件:[]j l σσ≤ []jjj l ll K σσ=,[]Kσσ=[]︒*=∴σσσKK JJJ L LL ,[][]σϕσ= 其中 ϕ 为折减系数,可查表 又[]σϕσ≤=∴AP说明:(1)式中j l σ总小于︒σ,()︒<σσj l ;k K j l > 故ϕ是小于1的。