高三数学一轮复习导学案60 椭圆(一)
- 格式:doc
- 大小:245.00 KB
- 文档页数:8
《椭圆》导学案一、知识点梳理椭圆的标准方程及其简单几何性质条件 2a>2c,a 2=b 2c 2,a>0,b>0,c>0标准方 程及 图形2222x y a b +=1a>b>02222y x a b +=1a>b>0范围 ||≤a;||≤b ||≤b;||≤a 对称性曲线关于___________________________对称曲线关于___________ ________________对称 顶点长轴顶点________短轴顶点________长轴顶点________ 短轴顶点________焦点 ________________焦距 |F 1F 2|=________离心率e= c a ∈________二、范例讲解例1.(2021年高考大纲全国卷)已知椭圆C :222210a x y a b b +=>>()的左、右焦点为1F 、2F ,离心率为33,过2F 的直线交C 于A 、B 两点,若B AF 1∆的周长为34,则C 的方程为( )(A )12322=+y x (B )1y 322=+x (C )181222=+y x (D )141222=+y x例2已知),(01-1F 、)(0,12F 是椭圆C 的两个焦点,过2F 且垂直于轴的直线交C 于A 、B 两点,且3AB =,则C 的方程为( )(A )1y 222=+x (B )12322=+y x (C )13422=+y x (D )14522=+y x是椭圆14522=+y x 上的一点,1F 、2F 是焦点,若01230F PF ∠=,则21PF F ∆的面积等于( ) (A )3316(B ))(3-24(C ))(3216+(D )16三、练习巩固1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )(A )13(B C )12(D2已知椭圆的焦点为),(01-1F 和)(0,12F ,P 是椭圆上的一点,且1212F F PF PF 是与的等差中项,则该椭圆的方程是( )(A )22y 1169x +=(B )2211612x y +=(C )22143x y +=(D )22134x y +=3已知椭圆的方程为2223(0)x y m m +=>,则此椭圆的离心率为( )(A )13(B (C (D )12是以1F 、2F 为焦点的椭圆222210a x y a b b+=>>()上的一点,且120PF PF •=,121tan 2PF F ∠=,则此椭圆的离心率为( )(A B (C )13(D )12(3,-2)且与椭圆22y 194x +=有相同焦点的椭圆的方程为( )(A )22y 11510x +=(B )2212520x y +=(C )2211015x y +=(D )2212015x y +=是椭圆Γ的长轴,点C 在Γ上,4CBA π∠==4,BC =则Γ的两个焦点之间的距离为________。
椭圆复习课(第一课时)学习目标知识与技能:掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).过程与方法:通过例题的研究,进一步掌握椭圆的简单应用.理解数形结合的思想. 情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学过程一、知识梳理1、定义:平面内到两个定点21F F ,的距离之 等于常数( )的点的 轨迹叫椭圆.2、椭圆的标准方程和几何性质标准方程22221(0)x y a b a b +=>> )0(12222>>=+b a b x a y 图 像范围 -a ≤x ≤a -b ≤y ≤b -a ≤x ≤a -b ≤y ≤b对称性 对称轴:坐标轴; 对称中心:原点顶点坐标()0,1a A - ()0,2a A ()b B -,01 ()b B ,01()a A -,01 ()a A ,02 ()0,1b B - ()0,2b B焦点坐标 ()0,1c F - ()0,2c F()c F -,01 ()c F ,02轴长 长轴长2a ,短轴长2b焦距 c F F 221=a,b,c 关系222b a c +=亲,表格中有数处错误,你能一一找出吗?离心率1>=ac e(1)动点P 到两定点A (–2,0),B(2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)若椭圆1ky 4x 22=+的焦距是22,则k=2. ( )三、能力提升考点一 椭圆的定义及其标准方程例1:已知椭圆以坐标轴为对称轴,求分别满足下列条件的椭圆的标准方程.(1)一个焦点为(2,0),离心率为 ;(2)过 ()23,N 1,6M ,),(-两点.直击高考已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,离心率为33,过2F 的直线L 交C 于A ,B 两点,若B AF 1∆的周长为43,则C 的方程为( )A.12y 3x 22=+B. 1y 3x 22=+ C. 18y 12x 22=+ D. 14y 12x 22=+变式提升:设21F F ,分别是椭圆116y 25x 22=+的左、右焦点,P 为椭圆上一点,M 是P F 1的中点,|OM| =3,则P 点到椭圆左焦点的距离为 ( )A.4B.3C.2D.521=e X YPO xyBOA1F1F2F2FM考点二、椭圆的几何性质例2、已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,P 是椭圆短轴的一个端点,且21PF PF ⊥,则椭圆的离心率为 .变式提升椭圆C :1by a x 2222=+(a >b >0)的左、右焦点分别为21F F ,,焦距为2c ,若直线y=3(x+c )与椭圆C 的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .互动探究已知椭圆C: 1by a x 2222=+(a>b>0)的左右焦点为21F F ,,M 为椭圆上一点,021=•M F M F ,则椭圆离心率的范围是 .XYMO1F2FYOXP1F2F探究思考1)本题中若P 点在椭圆内部,其他条件不变,试求之。
高三数学第一轮复习讲义(50)椭 圆一.复习目标:熟练掌握椭圆的定义、标准方程、简单的几何性质及参数方程.二.知识要点:1.椭圆的定义(1)第一定义: .(2)第二定义: .2.标准方程: .3.几何性质: .4.参数方程 .三.课前预习:1.设一动点P 到直线3x =的距离与它到点(1,0)A 的距离之比为3,则动点P 的轨迹方程是 ( )()A 22132x y += ()B 22132x y -= ()C 22(1)132x y ++= ()D 22123x y += 2.曲线192522=+y x 与曲线)9(192522<=-+-k k y k x()A 有相等的长、短轴 ()B ()C 有相等的离心率 ()D 3.已知椭圆的长轴长是短轴长的3方程是 .4.底面直径为12cm 的圆柱被与底面成30该椭圆的长轴长 ,短轴长 5.已知椭圆22221(0)x y a b a b +=>>的离心率为35针方向旋转2π后,所得新椭圆的一条准线方程是 ;新椭圆方程是 .四.例题分析:例1.设,A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例2.已知椭圆22221(0)x y a b a b+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若α=∠21F PF ,β=∠21F PF ,求证:离心率2cos 2cos βαβα-+=e ; (2)若θ221=∠PF F ,求证:21PF F ∆的面积为2tan b θ⋅.例3.设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q,若22||2||QF PF =-2PF 的方程. 五.课后作业: 班级 学号 姓名1.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若1230F PF ∠=,则12F PF ∆的面积等于 ( )()A 3316 ()B )32(4- ()C )32(16+ ()D 16 2.已知椭圆22221(0)x y a b a b+=>>的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB,则椭圆的离心率为 ( )()A ()B ()C 12 ()D 453. 椭圆C 与椭圆14)2(9)3(22=-+-y x ,关于直线0x y +=对称,则椭圆C 的方程是___________________.4.到两定点12(3,0),(9,0)F F 的距离和等于10的点的轨迹方程是 .5.已知椭圆19822=++y a x 的离心率21=e ,则a 的值等于 . 6.如图,PMN ∆中,1tan 2PMN ∠=,tan 2PNM ∠=-,PMN ∆面积为1,建立适当的坐标系,求以M 、N 为焦点,经过点P 的椭圆方程.7.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点, O 是椭圆的中心,求证:OM AB k k ⋅为定值.8.已知椭圆13422=+y x ,能否在此椭圆位于y 轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点12,F F 距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由.M NP经典语录1、最疼的疼是原谅,最黑的黑是背叛。
江苏省灌南高级中学高三数学复习导学案:椭圆高考要求:B 级学习目标:1.掌握椭圆的定义、几何图形、标准方程及简单几何性质. 2. 了解椭圆的实际背景及椭圆的简单应用.3. 理解数形结合的思想. 一、自主梳理1.椭圆的概念平面内到两个定点F 1、F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫______.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数:(1)若______,则集合P 为椭圆;(2)若______,则集合P 为线段;(3)若______,则集合P 为空集. 判断下列点的轨迹是否为椭圆(请在括号内填“是”或“否”) ①平面内到点A (0,2),B (0,-2)距离之和等于2的点的轨迹( ) ②平面内到点A (0,2),B (0,-2)距离之和等于4的点的轨迹( ) ③平面内到点A (0,2),B (0,-2)距离之和等于6的点的轨迹( ) ①否 ②否 ③是2.椭圆的标准方程和几何性质3.思考: (1)若方程Ax 2+By 2=1表示焦点在y 轴上的椭圆,则A 与B 具有什么关系? 提示:A >B 且A >0,B >0.(2)椭圆的离心率的大小与椭圆的扁平程度有怎样的关系?提示:离心率e =ca越接近1,a 与c 就越接近,从而b =a 2-c 2就越小,椭圆就越扁平;同理离心率越接近0,椭圆就越接近于圆. 二、基础检测1.(2011·新课标全国卷改编)椭圆x 216+y 28=1的离心率e =________.答案 22解析 由题意知:a 2=16,b 2=8,c 2=a 2-b 2=16-8=8.∴c =22,∴e =c a =224=22.2.设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则PF 1+PF 2=________.答案 10解析 依椭圆的定义知:PF 1+PF 2=2×5=10.3. 已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于________.解析:椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又∵c =2,∴m -2-(10-m )=22=4.∴m =8.4.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P ()-5,4,则椭圆的方程为______________.答案x 245+y 236=1 解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点(-5,4)代入得25a 2+16b 2=1,又离心率e =c a =55⇒e 2=c 2a2=a 2-b 2a 2=15,解之得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1. 5.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.答案 3解析 由题意知PF 1+PF 2=2a ,PF 1→⊥PF 2→,∴(PF 1)2+(PF 2)2=(F 1F 2)2=4c 2,∴(PF 1+PF 2)2-2PF 1·PF 2=4c 2,∴2PF 1·PF 2=4a 2-4c 2=4b 2.∴PF 1·PF 2=2b 2,∴S △PF 1F 2=12PF 1·PF 2=12×2b 2=b 2=9.∴b =3.6.[2011·课标高考]在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.[答案]x 216+y 28=1[审题视点] 先由△ABF 2的周长确定a 的值,根据离心率求得c ,进一步确定b 值,写出椭圆方程.[解析] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A 、B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a=16,∴a =4.又离心率e =c a =22,∴c =22,∴b 2=a 2-c 2=8.∴椭圆C 的方程为x 216+y 28=1.三、典型例题例1.(1)长轴是短轴的3倍且经过点A (3,0);(2)已知椭圆过(3,0),离心率e =63,求椭圆的标准方程; (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1)、P 2(-3,-2),求椭圆的标准方程.变式: (1)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5、3,过P 且与长轴垂直的直线恰好过椭圆的一个焦点,求椭圆的方程.(2) “m >n >0”是方程“mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件.例2. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的长、短轴端点分别为A 、B ,从椭圆上一点M (在x 轴上方)向x 轴作垂线,恰好通过椭圆的左焦点F 1,AB →∥OM →. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 1、F 2分别是左、右焦点,求∠F 1QF 2的取值范围.变式: 已知椭圆的中心在原点,离心率e=12,左焦点为F 1(-2,0).(1)求椭圆的方程;(2)设P 是椭圆上一点,且点P 与椭圆的两个焦点F 1、F 2构成直角三角形,若PF 1>PF 2,求PF 1PF 2的值.例3已知长轴在x 轴上的椭圆的离心率e =12,且过点⎝ ⎛⎭⎪⎫1,32. (1)求椭圆的标准方程; (2)若P 是椭圆上任意一点,F 1、F 2是椭圆的左、右焦点.①求PF 1·PF 2的最大值;②求PF 1→·PF 2→的取值范围.变式:设A ,B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,⎝ ⎛⎭⎪⎫1,32为椭圆上一点,椭圆长半轴的长等于焦距.(1)求椭圆的方程;(2)设P (4,x )(x ≠0),若直线AP ,BP 分别与椭圆相交异于A ,B 的点M ,N ,求证:∠MBN 为钝角.四、课后练习1.已知ABC ∆中, (3,0),(3,0)B C -,周长为16,则顶点A 的轨迹方程是2.若椭圆22136x y m +=的焦点在x 轴上,离心率为23e =,则m = 3.若椭圆()222210x y a b a b+=>>上存在点P 使得12F PF ∠为直角,求离心率e 的取值范围.4. [2013·金华联考]方程为x 2a 2+y 2b2=1(a >b >0)的椭圆的左顶点为A ,左、右焦点分别为F 1、F 2,D 是它短轴上的一个端点,若3DF 1→=DA →+2DF 2→,则该椭圆的离心率为________.5. [2013·绵阳模拟]在平面直角坐标系xOy 中,椭圆C :x 225+y 29=1的左、右焦点分别是F 1、F 2,P 为椭圆C 上的一点,且PF 1⊥PF 2,则△PF 1F 2的面积为________.6、已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是等腰直角三角形,则这个椭圆的离心率是________.7、如图,A 、B 、C 分别为x 2a 2+y 2b2=1(a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为________.8.若椭圆()222210x y a b a b+=>>上存在点P 使得12F PF ∠为直角,求离心率e 的取值范围.五、课后训练1. [2013·海淀模拟]2<m <6是方程x 2m -2+y 26-m =1表示椭圆的________条件.2. [2013·汕头检测]已知椭圆x 225+y 29=1,F 1、F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N是MF 1的中点,则|ON |的长为________.3.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是________.4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P .若AP →=2PB →,则椭圆的离心率是________.5.(2012·扬州调研一)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点P (3,1),其左、右焦点分别为F 1,F 2,且F 1P →·F 2P →=-6,则椭圆E 的离心率是________.6. 已知椭圆x 24+y 2=1,F 1,F 2为其两焦点,P 为椭圆上任一点.则|PF 1|·|PF 2|的最大值为________.7.[2013·湖南郴州]设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是________.8. [2013·福建调研]若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为________.9、已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a <b >0)的左、右焦点, B 为椭圆短轴的一个端点,BF 1→·BF 2→≥12F 1F 2→2,则椭圆的离心率的取值范围是________.10、已知直线l :y =kx +2(k 为常数)过椭圆x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆x 2+y 2=4截得的弦长为d . (1)若d =23,求k 的值;(2)若d ≥455,求椭圆离心率e 的取值范围.11. [2013·深圳模拟]设A 、B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,(1,32)为椭圆上一点,椭圆长半轴的长等于焦距.(1)求椭圆的方程;(2)设P (4,x )(x ≠0),若直线AP ,BP 分别与椭圆相交异于A ,B 的点M ,N ,求证:∠MBN 为钝角.12、 (2012·安徽卷)如图,点F 1 (-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.。
教学内容椭圆1.椭圆的定义(1)满足以下条件的点的轨迹是椭圆①在平面内;②与两个定点F1、F2的距离之和等于常数;③常数大于|F1F2|.(2)焦点:两定点.(3)焦距:两焦点间的距离.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:x轴、y轴对称中心:(0,0)顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca,e∈(0,1)a,b,c的关系c2=a2-b21.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.[试一试]若直线x-2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为________.1.求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a2,b2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a,b,c的方程组,解出a2,b2,从而写出椭圆的标准方程.2.椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.3.求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1).[练一练]1.已知椭圆x2a2+y2b2=1(a>b>0)与双曲线x2m2-y2n2=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是________.2.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.考点一椭圆的定义及标准方程1.(2014·镇江期末)如图,P为椭圆x225+y216=1上一点,F1,F2分别为其左、右焦点,则△PF1F2的周长为________.2.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2, 3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为________.3.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________.[类题通法]1.椭圆定义的应用主要有两个方面:一是利用定义求椭圆的标准方程;二是利用定义求焦点三角形的周长、面积及弦长、最值和离心率等.2.利用定义和余弦定理可求得|PF 1|·|PF 2|,再结合|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2| 进行转化,可求焦点三角形的周长和面积.3.当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).考点二椭圆的几何性质[典例] (2013·福建高考)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.本例条件变为“过F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”求离心率的取值范围.[类题通法]椭圆几何性质的应用技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形. (2)椭圆的范围或最值问题常常涉及一些不等式.例如-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆的相关量的范围时,要注意应用这些不等关系. [针对训练]1.椭圆x 29+y 24+k =1的离心率为45,则k 的值为________.2.若椭圆上存在点P ,使得点P 到两个焦点的距离之比为2∶1,则此椭圆离心率的取值范围是________.考点三直线与椭圆的位置关系[典例] (2013·常州期中)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (4m,0)(m >0,m为常数),离心率等于0.8,过焦点F ,倾斜角为θ的直线l 交椭圆C 于M ,N 两点.(1)求椭圆C 的标准方程;(2)若θ=90°时,1MF +1NF =529,求实数m 的值;(3)试判断1MF +1NF的值是否与θ的大小无关,并证明你的结论.[课堂练通考点]1.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).2.(2013·广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________.3.(2014·镇江模拟)已知P 是椭圆x 212+y 24=1上的动点,F 1,F 2是椭圆的两个焦点,则1PF ·2PF 的取值范围为________.4.(2014·南京、盐城一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)恒过定点A (1,2),则椭圆的中心到准线的距离的最小值是________.5.(2013·扬州期末)如图,已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为________.6.如图,在平面直角坐标系xOy中,F1,F2分别为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一交点为D.若cos∠F1BF2=725,则直线CD的斜率为________.7.(2013·无锡期末)如图,已知椭圆C:x2a2+y2b2=1的离心率为32,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A,B,直线AB与x轴交于点M,与y轴负半轴交于点N.(1)求椭圆C的方程;(2)若S△PMN=32,求直线AB的方程.8.(2013·泰州质检)如图1,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 1,A 2,上、下顶点分别为B 2,B 1,点P ⎝⎛⎭⎫35a ,m (m >0)是椭圆C 上一点,PO ⊥A 2B 2,直线PO 分别交A 1B 1,A 2B 2于点M ,N . (1)求椭圆的离心率;(2)若MN =4217,求椭圆C 的方程;(3)如图2,在(2)的条件下,设R 是椭圆C 上位于第一象限内的点,F 1,F 2是椭圆C 的左、右焦点,RQ 平分∠F 1RF 2且与y 轴交于点Q ,求点Q 的纵坐标的取值范围.第Ⅱ卷:提能增分卷1.如图,在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),离心率为22,分别过点O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE=EF.(1)求椭圆的方程;(2)求证:直线AC,BD的斜率之和为定值.2.(2014·苏北三市模拟)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点⎝⎛⎭⎫2,62. (1)求椭圆E 的方程.(2)若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点M .①设直线OM 的斜率为k 1,直线BP 的斜率为k 2,求证:k 1k 2为定值;②设过点M 垂直于PB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.。
圆锥曲线方程----椭圆(1)一、 考纲要求二、 学习目标1、理解椭圆的定义,掌握椭圆的标准方程,会求椭圆的标准方程,了解椭圆参数方程;2、能运用椭圆和方程解决一些简单的问题。
三、重点难点1、重点:椭圆的定义及标准方程求法;2、难点:求椭圆标准方程及椭圆方程的应用。
四、知识导学 1、椭圆的定义:第一定义: ; 第二定义: ;2、椭圆标准方程:3、椭圆参数方程 五、课前自学1、已知三角形ABC 中,B (-3,0),C (3,0)若三角形的周长为16,则顶点A 的轨迹方程是________________。
2、已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OFA=23。
则椭圆方程为________________。
3、 已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点与上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率e=_______。
(教材P 119页例1)。
4、椭圆221123x y +=的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么PF 1∶PF 2= .5、已知F 1、F 2是椭圆459522=+y x 的左右焦点,点是此椭圆上的一个动点,)1,1(A 为一个定点,则1PF PA +的最大值为 ,223PF PA +的最小值为 。
六、合作、探究、展示例1.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(4,0)-、(4,0),椭圆上一点到两焦点距离的和等于10; (2)两个焦点的坐标分别是(0,2)-、(0,2),并且椭圆经过点35(,)22-; (3)焦点在轴上,:2:1a b =,c =(4)焦点在轴上,225a b +=,且过点(;(5)焦距为b,1a b -=;(6)椭圆经过两点35(,)22-,。
例2:若中心在原点,对称轴为坐标轴的椭圆与直线x+y=1交于A 、B 两点,M 为AB 的中点,直线OM (O 为原点)的斜率为22,且OA ⊥OB ,求椭圆的方程。
教学目的:1、进一步掌握椭圆的方程,了解椭圆中的一些几何意义。
2、理解参数a 、b 、c 、e 的关系,及利用第二 定义解决问题,关键是注意数形结合,函数与方程的思想,等价转化的运用. 知识要点:1.定义:①平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|,即21212F F a PF PF >=+),这个动点的轨迹叫椭圆(这两个定点叫焦点).②点M 与一个定点的距离和它到一条定直线的距离的比是常数e (0<e<1),则P 点的轨迹是椭圆2.椭圆参数的几何意义,如下图所示:(1)|PF1|+|PF2|=2a ,|PM2|+|PM1|=c a 22,||||11PM PF =||||22PM PF =e ;(2)=11F A c a F A -=22,=21F A ca F A +=12;ca PF c a +≤≤-1(3)|BF2|=|BF1|=a ,|OF1|=|OF2|=c ;(4)|F1K1|=|F2K2|=p=c b 2,21A B A B ==3.标准方程:椭圆标准方程的两种形式12222=+b y a x 和12222=+b x ay )0(>>b a 其中222b a c -= 椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是a ce =,通径的长是a b 22焦准距(焦点到准线的距离)c b p 2=,焦参数2b a (通径长的一半)范围:}{a x a x ≤≤-,}{b y b x ≤≤-,长轴长=a 2,短轴长=2b ,焦距=2c ,焦半径:21()a PF e x a ex c =+=+,22()a PF e x a exc =-=-.4.21F PF ∆中经常利用余弦定理、三角形面积公式12212tan2PF F F PF S b ∆∠=将有关线段1PF 、2PF 、2c ,有关角21PF F ∠(1212F PF F BF ∠≤∠)结合起来,建立1PF +2PF 、1PF ∙2PF 等关系.5.椭圆上的点有时常用到三角换元:⎩⎨⎧θ=θ=sin cos b y a x ;基础训练1.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为________. 2、以椭圆x2a2+y2b2=1(a>b>0)的左焦点F(-c,0)为圆心,c 为半径的圆与椭圆的左准线交于不同的两点,则该椭圆的离心率的取值范围是________.3.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F1,F2在x 轴上,离心率为22,过F1的直线l 交C 于A ,B 两点,且△ABF2的周长为16,那么C 的方程为__________ 4.若点P 是以F1,F2为焦点的椭圆x2a2+y2b2=1(a >b >0)上一点,且PF1→·PF2→=0,tan ∠PF1F2=12,则此椭圆的离心率e =________. 5.设P 是椭圆x29+y24=1上一动点,F1、F2是椭圆的两个焦点,则cos ∠F1PF2的最小值是________6.若椭圆x2a2+y2b2=1的焦点在x 轴上,过点(1,12)作圆x2+y2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是__________.例题精讲【例1】已知A(-12,0),B 是圆:(x -12)2+y2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.【例2】已知F1、F2是椭圆的两个焦点,P 为椭圆上一点,∠F1PF2=60°. (1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【例3】【例4】.设F1、F2分别为椭圆C :x2a2+y2b2=1(a>b>0)的左、右两个焦点.(1)若椭圆C 上的点A(1,32)到F1、F2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点K 是(1)中所得椭圆上的动点,求线段F1K 的中点的轨迹方程;(3)若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为kPM 、kPN 时.求证:kPM·kPN 是与点P 位置无关的定值.()()()()224,02,2125915 24x y A B M MA MB MB MA ++已知,是椭圆=内的两个点,是椭圆上的动点.求:+的最大值和最小值;的最小值.巩固练习1、Rt △ABC 中,AB =AC =1,以点C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 边上,且这个椭圆过A 、B 两点,则这个椭圆的焦距长为________.2.椭圆x24+y23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B.当△FAB 的周长最大时,△FAB 的面积是________.222201200012003.=1()<1221.2x x C y F F P x y y PF PF x xy y C ++已知椭圆:的两焦点为,,点,满足,则+的取值范围为____________,直线+=与椭圆的公共点个数为 _________ 4、设A ,F 分别是椭圆x2a2+y2b2=1(a>b>0)的左顶点与右焦点,若在其右准线上存在点P ,使得线段PA 的垂直平分线恰好经过点F ,则该椭圆的离心 率的取值范围是________.5.椭圆M :x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,P 为椭圆M 上任一点,且12PF PF uuu r uuu r g 最大值的取值范围是[]c2,3c2,其中c =a2-b2,则椭圆M 的离心率e 的取值范围是________.三、课后训练1.椭圆x22+y2=1的弦被点 (12,12)平分,则这条弦所在的直线方程是________.2.过椭圆x2a2+y2b2=1(a>b>0)的左顶点A 作斜率为1的直线,与椭圆的另一个交点为M ,与y轴的交点为B ,若AM =MB ,则该椭圆的离心率为________.3.椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别是A ,B ,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为______.4.已知F1、F2分别为椭圆C :x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x 轴的直线交椭圆C 于A ,B 两点,若△ABF2为钝角三角形,则椭圆C 的离心率e 的取值范围为________.5.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),若椭圆上存在点P使a sin ∠PF1F2=csin ∠PF2F1,则该椭圆的离心率的取值范围为________.6.过点M(-2,0)的直线m 与椭圆x22+y2=1交于P1、P2两点,线段P1P2的中点为P ,设直线m 的斜率为k1(k1≠0),直线OP 的斜率为k2,则k1k2的值为________.9.如图所示,已知△OFQ 的面积为S ,且OF →·FQ →=1.(1)若12<S<2,求向量OF →与FQ →的夹角θ的正切值的取值范围;(2)设|OF →|=c(c≥2),S =34c ,若以O 为中心、F 为焦点的椭圆经过Q ,当|OQ →|取得最小值时,求此椭圆的标准方程.。
高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
学案椭圆(一)
一、课前准备:
【自主梳理】
椭圆的定义:平面内一点与两定点、的距离的和等于常数.即(>).
()若>,则点的轨迹为;
()若,则点的轨迹为;
() 若<,则点的轨迹为.
)平面内点与定点的距离和它到定直线的距离的比是常数的点的轨迹叫做椭圆.定点为椭圆的,定直线为椭圆的.
【自我检测】
1.已知椭圆满足,焦点在轴上,则其方程为.
.已知椭圆的对称轴为坐标轴,离心率为,短轴长为,则椭圆方程为.
.椭圆的长轴长为,短轴长为,顶点坐标为,焦点为,离心率为.
.设椭圆的焦点在轴上,,则的范围为.
.椭圆的焦距是,则,椭圆的离心率,则.
.若是椭圆的两焦点,过做直线与椭圆交于,两点,则的周长为.
二、课堂活动:
【例】填空题:
()两个焦点的坐标分别是,椭圆上一点到两焦点距离的和等于,则椭圆的标准方程是.
()焦点在坐标轴上,且经过和两点的椭圆的标准方程是.
()的两个顶点坐标分别是和,另两边的斜率的乘积是
,则顶点的轨迹方程是.
()一动圆与已知圆外切,圆内切,则这动圆圆心的轨迹方程是.
【例】准备一张纸片(如图)
(其中点表示圆心,点表示圆内除点以外的任意一点。
)
将圆纸片翻折,使翻折上去的圆弧通过点(图),将折痕用笔画上颜色。
继续上述过程,绕圆心一周。
观察看到了什么?想一想为什么?
【例】以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程.。