1以太网业务及组网应用
- 格式:ppt
- 大小:1.42 MB
- 文档页数:36
专业实习题目:SDH网络组网、配置、操作和管理及以太网业务配置实验2016-5-13一、实验目的(1)利用ZXONM E300网管组建传输网络,了解SDH传统业务组网配置和网元的配置(2)创建网元,并完成各网元之间的业务配置(3)完成时钟源和公务配置,修改网元网元状态、下载网元数据(4)掌握以太网业务配置二、实验器材(1)ZXONM E300一台;(2)实验终端电脑一台。
三、实验内容(一)SDH传统组网配置及网元配置(1)按照ZXONM E300配置手册将设备与PC机互联;(2)连接网管①使用交叉网线连接网管计算机和网元A子架接口区的网管接口Qx(此步骤跳过)。
②修改网管计算机IP地址为193.55.1.5、掩码为255.255.255.0、网关为193.55.1.18。
(3)创建网元表6-3 各网元信息表网元A B C D E参数网元名称NET01 NET02 NET03 NET04 NET05 网元标识 1 2 3 4 5 网元地址196.1.1.18 196.1.2.18 196.1.3.18 196.1.4.18 196.1.5.18 系统类型ZXMP S200 ZXMP S325 ZXMP S325 ZXMP S3325 ZXMP S200 设备类型ZXMP S200 ZXMP S325 ZXMP S325 ZXMP S325 ZXMP S200 网元类型ADM® ADM® ADM® ADM® TM 速率等级STM-4 STM-16 STM-16 STM-16 STM-4 在线/离线离线离线离线离线离线自动建链自动建链自动建链自动建链自动建链自动建链配置子架主子架主子架主子架主子架主子架(4)安装单板①在客户端操作窗口中,双击拓扑图中的网元图标,进入单板管理对话框②所有网元单板安装完成保存后,再次双击该网元,各网元的单板管理对话框中的模拟子架应显示所安装单板(5)建立连接1)在客户端操作窗口中,选择所有网元,单击[设备管理→公共管理→网元间连接配置]菜单项2) 按照表6-7所示的单板连接关系建立光连接表6-7 连接配置表序号始端终端连接类型1 NET01 OL4[1-1-5]端口1 NET02 OL4[1-1-8-3]端口1 双向光连接2 NET01 OL4[1-1-6]端口1 NET03 OL4[1-1-6]端口1 双向光连接3 NET01 OL1[1-1-4]端口1 NET05 OL1[1-1-4]端口1 双向光连接4 NET02 OL4[1-1-6]端口1 NET04 OL4[1-1-8-3]端口1 双向光连接5 NET03 OL4[1-1-8-3]端口1 NET04 OL4[1-1-6]端口1 双向光连接3)验证:在客户端操作窗口的拓扑图中,成功建立光连接的网元图标间有绿色连线相连4)选中所有网元,在客户端操作窗口单击[设备管理→公共管理→网元间连接配置]菜单项,弹出如图6-14所示的连接配置对话框,查询光连接(二)SDH传统组网配置及网元配置(1)时钟源配置确保SDH网络只有一个时钟源,且时钟不成环。
以太网的解释以太网(EtherNet)以太网最早由Xerox(施乐)公司创建,在1980年,DEC、lntel和Xerox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术。
它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC 的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。
这个通用的以太网标准于1980年9月30日出台。
当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。
而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。
Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。
受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。
第1章以太网组网实验目前,以太网是最具影响力和应用最广泛的局域网,由于其组网简单、组建造价低廉,因此成为事实上的局域网标准。
计算机组网涉及计算机网络从涉及、建造到维护的全部生存过程,其涉及内容广泛。
本章通过简单的以太网组网实验,让学生了解和掌握计算机组网的基本方法和过程。
1.1以太网结构以太网在逻辑上采用共享总线的拓扑结构(物理上可能是一个星形结构),如图1-1所示。
介质访问控制方式采用带有冲突检测的载波侦听多路访问策略(CSMA/CD)。
在以太网中任何结点都没有可预约的发送时间,各结点随机发送数据。
网络中不存在集中控制结点,所有结点都平等地争用总线,因此,CSMA/CD的介质访问控制方式属于随机争用方式。
结点结点图1-1 以太网结构以太网组网采用的传输介质可以是同轴电缆、双绞线、光缆等,网络速度有10Mbps、100Mbps、1Gbps等。
但是,无论采用何种传输介质和网络速度,以太网都是使用CSMA/CD 的介质访问控制。
表1-1列出了以太网使用的主要技术标准和技术参数。
表1-1 以太网的主要技术标准和技术参数1.2组网设备与器件不同标准的以太网组网需要使用不同的设备和器件,10BASE-T和100BASE-T组网所需的设备和器件主要有:带有RJ45连接头的UTP双绞线电缆、带有RJ45接口的以太网卡、10/100集线器(交换机)等。
1.2.1以太网集线器与交换机1. 以太网集线器集线器处于网络星形拓扑结构的中心,是以太网中最重要、最关键的设备之一,目前已经被交换机所代替,如图1-2所示。
集线器(HUB)也称为多端口中继器,当集线器的一个端口接收到数据帧后,首先要对接收到的信号进行中继,然后向其他每个端口广播发送。
只有通过集线器,以太网中结点之间的通信才能完成。
集线器具有如下主要功能和特性:➢用作以太网的集中连接点。
➢放大接收到的信号。
➢转发数据信号。
➢无过滤功能。
➢无路由检测和交换功能➢不同速率的集线器不能级联。
数字通信世界2023.08DCWTechnology Application技术应用伴随各类新兴业务的高速发展,在政企专线业务加速数字化的背景下,PeOTN的下沉可满足用户对大带宽灵活性和安全性等方面的需求,政企宽带专线业务飞速增长,且伴有智能化需求,现有MSTP/SDH网络无法满足日益增长的需求,传统的OTN网络难以解决大量低速专线业务的承载需求。
PeOTN应运而生,PeOTN技术支持2 Mbps至100 Gbps各种速率,并可兼顾SDH、OTN、分组业务等多种业务种类,具备综合业务承载能力,而且支持SDN智能化管控,是物理隔离、带宽独享要求的宽带政企专线业务的主要承载网,也是MSTP/SDH网络的升级替代网络。
PeOTN被业界称为最新刚性管道的承载技术,它融合了光传输网(OTN)和分组传送网(PTN)的优点,具有环状组网和保护,光传输的容量更大,速率更快,距离更长,传输更可靠。
基于这些优点,PeOTN能灵活应对日渐复杂和庞大的业务规模,也能应对客户核心网络日益丰富的业务类型。
1 PeOTN技术特点分组增强型光传送网PeOTN技术具有以下特点。
(1)PeOTN技术是WDM、OTN、MSTP等多种技术的融合,可对多种客户信号进行封装和透明传输,减少传送设备种类及网络层级,降低网络综合成本并提高维护效率[1]。
(2)支持多种业务颗粒,从2 Mbps至100 Gbps,具备了多种业务的承载能力。
(3)具有统一交叉和灵活调度功能,可完成超高品质互联。
(4)具有丰富的保护机制。
PeOTN网络中各个层面均有相应的网络保护机制,不同层的网络保护机制相互独立。
(5)网络侧基于OTN接口,管理维护简化,具有80×100 Gbps WDM的大容量传送能力实现统一传送的大管道。
PeOTN在本地网中的组网及应用曹晗婷(上海东宽通信工程有限公司,上海 200042)摘要:伴随经济全球化的推进和互联网经济的兴起,通信领域也迎来了新的挑战与机遇,促使本地网进入一个崭新的全光网络时代,随着SDH设备逐步腾退并平滑演进到PeOTN设备,实现了向低碳全光网络架构的转型,打造智慧低碳的光网络。
以太网无源光网络和工业以太网交换机在配电网上混合组网的分析与应用随着信息通信技术的不断发展,以太网已成为现代化配电网系统中不可或缺的技术之一、以太网无源光网络和工业以太网交换机作为两种重要的网络设备,可以在配电网上进行混合组网,提供高效、可靠的通信服务。
本文将对以太网无源光网络和工业以太网交换机在配电网上混合组网的分析与应用进行探讨。
一、以太网无源光网络在配电网上的应用分析以太网无源光网络是一种将以太网协议与光纤传输技术相结合的网络技术。
它通过光模块将电信号转换为光信号进行传输,克服了传统以太网存在的距离限制和干扰问题,提供了高速、稳定的数据传输服务。
在配电网上,以太网无源光网络具有以下应用优势:1.长距离传输能力:利用光纤传输技术,以太网无源光网络可以实现数十甚至数百公里的远距离传输,适用于大规模配电系统跨区域的数据传输需求。
2.高带宽传输:以太网无源光网络支持千兆甚至万兆级别的高速数据传输,能够满足配电网系统大量数据实时传输的需求。
3.抗干扰性优异:光纤传输具有较好的抗干扰性,可以有效降低电磁干扰对数据传输的影响,提高数据传输的可靠性。
4.灵活可扩展:以太网无源光网络可以根据系统需求进行网络拓扑结构的调整和扩展,具有较高的灵活性和扩展性。
基于以上特点,以太网无源光网络在配电网上的应用涵盖了数据传输、远程监测与控制等多个方面。
例如,可以实现配电网状态监测数据的实时传输,配合高性能数据处理系统进行配电网的远程监控和故障诊断;同时,还可以实现对配电设备的远程控制,比如对配电开关的操作与调控,提高配电网的智能化水平。
二、工业以太网交换机在配电网上的应用分析工业以太网交换机是一种专用于工业环境的交换机设备,能够适应高强度、高可靠性、抗干扰等特殊环境要求。
在配电网上,工业以太网交换机的应用主要体现在以下几个方面:1.高可靠性:工业以太网交换机具有较高的可靠性,可以通过冗余环路和冗余电源等技术手段实现对网络的自动切换和备份,提供高可靠性的网络连接。
以太网的解释以太网(EtherNe t)以太网最早由X e rox(施乐)公司创建,在1980年,D EC、lntel和X erox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术。
它很大程度上取代了其他局域网标准,如令牌环、FDDI和AR CNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(RobertMetcalf e)给他PARC的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。
这个通用的以太网标准于1980年9月30日出台。
当时业界有两个流行的非公有网络标准令牌环网和AR CNET,在以太网大潮的冲击下他们很快萎缩并被取代。
而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。
FTTx PON技术及组网应用摘要:为了满足人们对互联网带宽越来越高的要求,FTTx PON技术随之应运而生,FTTx是光纤接入终端用户的一个组网方式,FTTx配合PON技术是目前实现终端用户光纤化的主流技术,也是发展趋势,本文就FTTx PON技术及其目前主要的几种组网应用展开阐述。
关键词:FTTx PON技术引言随着经济和社会的发展,人们对网络带宽提出了新的要求,目前,接入网的“最后一公里”主要由铜线构建,已经无法满足大容量信息传送的要求,FTTx无源光网络(PON,Passive Optical Network)技术的出现为视频、音频和数据“三网合一”提供了一个可行的解决方案。
一、FTTx概念和分类FTTx是新一代的光纤用户接入网,用于连接电信运营商到终端用户,采用光纤媒质代替部分或全程的传统铜线媒质,将光纤从局端位置向用户端延伸,其中,根据光网络单元(ONU,Optical Network Unit)在用户端的位置不同,“x”有多种变体,可以是光纤到大楼(FTTB)、光纤到交接箱(FTTCab)、光纤到路边(FTTC)、光纤到户(FTTH)、光纤到办公室(FTTO)等,如图1.1所示。
FTTx将用户从“电”的时代转入了一个全新的“光”的时代。
下面是四种常用的FTTx接入网。
1.1光纤到交接箱(FTTCab)光纤到交接箱(FTTCab,Fiber To The Cabinet),以光纤替代传统馈线电缆,ONU放置在交接箱处,ONU以下采用铜线或其他介质接入到用户。
1.2光纤到大楼/路边(FTTB/C)光纤到大楼/路边(FTTB/C,Fiber To The Building/Curb), 将ONU放置到路边或楼道内,ONU之后再通过铜线为用户提供语音和互联网接入等服务。
FTTB/C与FTTCab的不同之处在于其ONU的位置更接近用户,光纤化程度更进一步,适合高带宽用户密集区域使用。
1.3光纤到企业(FTTO)光纤到企业(FTTO,Fiber To The Office),ONU设备部署在企业内,仅接入单个企业用户,从ONU直接与企业设备连接。
第 3 章以太网组网技术教学目标通过本章的学习,掌握以太网的组网规则,熟悉组网所需的器件、设备,了解以太网的组网类型和传输速度。
教学内容1、以太网的组网类型和传输速度;2、组网所需的器件、设备和传输介质;3、单一集线器组网配置规则;4、多集线器组网配置规则。
教学的重点和难点1、集线器、网卡等设备的特点、分类、应用。
2、双绞线的通信规则。
3、以太网的组网规则。
学习指导1、学生应该了解以太网的相关标准。
2、学生应该结合市场情况掌握集线器、网卡等设备的特点、分类、应用。
3、学生应该理解双绞线的通信规则和制作方式。
4、学生应该掌握10Base-T和100Base-TX的配置规则。
3.1 以太网的相关标准以太网最早是由 Xerox (施乐)公司创建的,在 1980 年由 DEC 、 Intel 和 Xerox 三家公司联合开发为一个标准。
以太网是应用最为广泛的局域网,包括标准以太网( 10Mbps )、快速以太网( 100Mbps )、千兆以太网( 1000 Mbps )和 10G 以太网,它们都符合 IEEE802.3 系列标准规范。
传输介质:同轴电缆、双绞线、光缆等网络速度: 10Mb/s 、 100Mb/s 、 1000Mb/s介质访问控制方法: CSMA/CD主要技术标准1、 10BASE5粗缆以太网(粗同轴电缆),电缆的两端有 50 欧姆的终端电阻,每网段允许连接 100 个节点,长度是 500 米,最多有 4 个中继器连接 5 段 500 米的网线,最大网络直径是 2500 米。
2、 10BASE2细缆以太网,每段只能连接 30 个节点,每段的最大长度是 185 米,最大的网络直径是 925 米。
3、 10BASE-T3 类以上双绞线以太网,水晶头( RJ-45 头),4 个中继器连接5 个 100 米的网线,最大网络直径是 500 米。
4、 100BASE-TX5 类以上双绞线以太网, 2 个中继器连接 2 个 100 米的网线,,两个中继器之间的距离不超过 5 米。
试论 PTN技术及其组网应用【摘要】随着网络技术的不断发展,PTN技术以其高品质的网络保护、良好的扩展性、以及高效的运行维护机制,已经成为了城域网的主流传输技术之一,受到了各大电信运营商的青睐并得到广泛的应用。
本文主要对PTN技术及其组网应用进行深入研究,以供大家参考。
【关键词】PTN;技术;组网;应用;引言随着网络技术的不断发展,以SDH/MSTP技术为基础的城域传送网业务由TDM为主已经转变为以IP数据业务为主。
为了适应这种变化,移动网络架构已经从2G/3G转向4G/5G发展,因此移动网络全部IP化、宽带化的过程中,对传输网的要求会越来越高。
虽然SDH/MSTP也具备多业务承载能力,但基于TDM的内核使其在承载IP分组业务时效率较低、配置复杂,并且灵活性和扩展性也较差。
而PTN是IP网络和MPLS网络与SDH结合的产物,同时拥有IP网络的灵活性、MPLS网络的标签管理特征、SDH网络的安全可靠性。
传输网为了实现对上层业务的高效承载,使移动业务平滑发展得到保障,从SDH/MSTP演进到PTN已是大势所趋。
一、PTN技术概述PTN技术即分组传送网 (Packet Transport Network)技术,是一种面向分组业务的传送网络和技术,它定位于城域网汇聚接入层,以分组交换为核心并提供多业务支持,既具备数据通信网组网灵活和统计复用传送的特性,又继承了传统光传送网面向连接、快速保护、OAM能力强等优点[1]。
PTN以光传送网络为基础架构,具备端到端业务管理、差异化QoS机制、层次化OAM及电信级保护等,它以承载电信级以太网业务为主,能够兼容TDM、ATM等业务[2]。
PTN的出现在一定程度上颠覆传统光传输产品的许多特性,其保留MSTP的易管理、维护和多种业务保护能力,同时对传统的交叉核心部分进行全面的改造,实现自电路交换机制向分组交换机制的演进。
因此,PTN技术及其组网应用解决方案是城域网传输向全业务IP化承载演进非常重要的手段之一。
以太网业务在SDH中的应用与配置广东省广州市 510000摘要:MSTP(Multi-Service Transport Platform)技术的发展让IP业务(甚至是ATM等)与传统的SDH业务结合起来了,基于SDH平台的以太网业务传送除具有标准SDH节点的所有功能外还同时支持以太网的二层交换和透传,满足了业务承载和专线透传的需求。
基于SDH的以太网业务有四种:实现业务点到点透传的以太网私有专线业务EPL、基于VPN专线的以太网虚拟私有专线业务EVPL、基于二层交换业务,实现多点到多点的以太网私有局域网业务EPLAN和以太网虚拟专用局域网业务EVPLN。
关键字:MSTP、EPL、EVPL、EPLAN、EVPLAN前言随着Internet的高速发展,各种带宽接入和应用也逐渐成熟,同时越来越多的办公地点和场景出现了多元化的需求,需要进行高速互连,而原有的窄带数据通信技术已不能满足带宽的需求。
在此背景下,MSTP(多业务传送平台)技术应运而生,利用MSTP技术可以实现多种类型的以太网业务在SDH平台进行处理和传输。
一、以太网业务在SDH传输的原理1.1以太网单板数据的处理流程以太网数据进入端口后会根据不同的业务形式进行端口业务处理和环路控制,然后进行封装和映射送至SDH交叉连接单元。
其中环路控制的RPR是弹性分组环Resilient Packet Ring的意思,是IEEE 802.17定义用于局域网、城域网和广域网的媒介存取控制(MAC)协议,它采用了现有的物理层规范,逆向双环拓扑结构,外环( Outer Ring )和内环( Inner Ring )都传送数据包和控制包,内环的控制包携带外环数据包的控制信息,反之亦然。
它同时借鉴了SDH的电信级倒换保护的优点和以太网传输高效的特点。
1.2以太网Tag属性具有交换功能的EFS系列单板均可对数据帧中的标签进行处理,而为了区分不同格式的数据帧则是通过Tag属性对信号包进行标示的,Tag是数据帧中如果包含了VLAN ID。
以太网业务及组网应用1. 介绍以太网是一种常见的局域网技术,广泛应用于各个领域。
它是一种基于IEEE 802.3标准的局域网协议,主要用于计算机网络之间的数据传输。
在现代网络中,以太网已经成为一种非常重要的网络技术。
2. 以太网业务以太网可以支持多种不同的业务,并且可以根据用户的需求进行灵活的配置。
以下是一些常见的以太网业务:2.1 数据传输以太网最常见的用途是进行数据传输。
通过以太网,可以传输各种类型的数据,包括文本、图像、音频和视频等。
以太网提供了高带宽和低延迟的特性,使得数据传输变得高效且可靠。
2.2 远程访问以太网还可以用于远程访问。
通过以太网,可以远程连接到其他计算机或网络设备,进行远程管理、维护和监控等操作。
远程访问可以大大提高效率,减少了人工干预的需要。
2.3 云计算云计算是现代计算机领域的一个热门话题,而以太网是实现云计算的基础。
以太网提供了高带宽和可靠性,可以支持大规模的数据传输和处理,满足云计算对网络性能的要求。
3. 以太网组网应用以太网可以用于不同规模的网络组网,从小型办公室网络到大规模的企业网络都可以使用以太网技术。
以下是一些常见的以太网组网应用:3.1 以太网交换机以太网交换机是组网中非常重要的设备,用于连接不同的网络设备。
通过以太网交换机,可以将多个终端设备连接在一起,实现数据的传输和交换。
以太网交换机提供了高速的数据转发和端口的扩展,能够满足网络中的大量数据传输需求。
3.2 局域网(LAN)局域网是以太网最常见的组网形式之一。
通过以太网,可以将多个计算机和网络设备连接在一起,实现数据的共享和通信。
局域网通常用于小型办公室或家庭网络中,提供了高效的数据传输和共享资源的能力。
3.3 广域网(WAN)广域网是以太网组网的另一种应用形式。
通过以太网,可以连接不同地区或不同组织的局域网,实现远程数据传输和通信。
广域网通常用于大型企业或跨地区的网络中,提供了高速和可靠的数据传输能力。