第3讲1地理空间的表达数据模型
- 格式:ppt
- 大小:7.46 MB
- 文档页数:54
地理空间数据的模型构建与管理地理空间数据的模型构建与管理是地理信息系统(GIS)中的核心内容之一。
随着科技的发展和信息时代的到来,地理空间数据的应用范围逐渐扩大,对于不同行业的决策和规划起着重要的作用。
在建立和管理地理空间数据模型时,需要考虑数据的准确性、一致性和可持续性等因素。
一. 地理空间数据模型的分类地理空间数据模型可以分为两大类:矢量数据模型和栅格数据模型。
矢量数据模型使用点、线、面等几何要素来描述地理空间实体,适用于具有明确几何特征的地理现象,如道路、河流等。
而栅格数据模型则是将地理空间划分为一系列的网格,将每个网格单元作为一个地理单位,适用于连续变化的地理现象,如气温、降雨量等。
二. 地理空间数据模型的构建地理空间数据模型的构建过程包括数据收集、数据预处理、数据建模和数据评估等环节。
首先,需要收集相关的地理空间数据,可以通过地面调查、遥感技术等手段获取。
然后,对数据进行预处理,包括数据清洗、数据匹配和数据转换等操作,以确保数据的准确性和一致性。
接下来,根据具体的要求和目标,进行数据建模,选择适当的数据结构和分析方法,构建出合理的地理空间数据模型。
最后,对所建模型进行评估,验证其在实际应用中的有效性和可靠性。
三. 地理空间数据模型的管理地理空间数据模型的管理包括数据输入、数据存储、数据查询和数据更新等方面。
在数据输入方面,需要考虑数据的来源和获取方式,以及数据的质量控制和完整性检查。
数据存储则包括数据的组织和存储结构的选择,可以采用数据库等技术来进行管理。
数据查询则是指按照特定的条件和要求,对地理空间数据进行检索和提取,可以通过地理信息系统的查询功能来实现。
数据更新则是指对已有数据进行更新和维护,以及添加新的数据内容,确保数据的实时性和可靠性。
四. 地理空间数据模型的应用地理空间数据模型的应用广泛涵盖了各个领域,如环境保护、城市规划、交通管理等。
在环境保护方面,可以利用地理空间数据模型来分析土地利用、水资源分布等情况,从而制定合理的保护措施。
地理空间数据模型构建与应用研究地理信息系统(GIS)的发展,使得地理空间数据的获取、存储、管理和应用变得更加高效和便捷。
而地理空间数据模型正是GIS的核心基础,通过对地球表面的事物进行模拟和描述,实现了对地理数据的有机整合和有效分析。
本文将探讨地理空间数据模型的构建与应用研究,旨在进一步推动地理信息科学的发展。
一、地理空间数据模型的构建地理空间数据模型是地理现象和事物在计算机上的抽象和表示方式,它包含了地理空间数据的结构、关系和行为等属性。
地理空间数据模型的构建是基于对空间对象和地理过程的观察和抽象,以及对数据组织和存储的要求。
常见的地理空间数据模型包括:层次模型、关系模型、对象模型和影像模型等。
这些模型从不同的角度描述了地理空间数据的特征和组织方式,满足了不同领域对地理数据的需求。
1. 层次模型层次模型是地理空间数据模型中较早发展的一种形式,它将地理现象和要素以层次结构的方式进行组织和管理。
在层次模型中,地理要素按照其自然特征和地理关系进行划分和分类,形成了一个树状的结构体系。
这种模型的优点是易于理解和操作,但对于复杂的地理现象和关系的表达能力有所不足。
2. 关系模型关系模型是一种基于关系代数和关系理论的地理空间数据模型。
它采用了属性数据和空间数据相结合的方式,将空间要素的几何形状和属性信息进行统一管理和查询。
在关系模型中,地理要素被存储为表格的形式,通过属性和空间关系的连接实现了地理数据的综合分析。
这种模型具有较强的数据一致性和查询能力,但对于地理拓扑关系和复杂空间操作的支持相对不足。
3. 对象模型对象模型是一种基于对象概念和面向对象编程思想的地理空间数据模型。
它将地理现象和要素看作是具有属性和行为的对象,通过对象之间的关系和操作实现了对地理数据的管理和分析。
对象模型将地理要素的几何形状、属性信息和拓扑关系进行了有效的封装和组织,使得地理数据具有更高的可复用性和可扩展性。
这种模型适用于复杂地理问题的建模和分析,但对于大规模数据的处理和查询性能存在一定的挑战。
常见的地理分析模型一空间统计模型:相关分析模型: GIS地理数据库中存储的各种自然和人文地理要素(现象)的数据并不是孤立的,它们相互影响、相互制约,彼此之间存在着一定的联系。
相关分析模型就是用来分析研究各种地理要素数据之间相互关系的一种有效手段。
地理数据库中各种地理要素数据之间的相关关系,通常可以分为参数相关和非参数相关两大类。
其中,参数相关又可分为简单(两要素)线性相关,多要素间的相关模型,非参数相关可以分为顺序(等级)相关和二元分类相关。
趋势面分析模型(主要是回归模型):一元回归模型:我们用多项式方程作为一元回归的基本模型:Y=a0+a1x+a2x2+a3x3+……a m x m+ε式中:Y为因变量,X为自变量,a0,a1,…,a m为回归系数,ε为剩余误差多元线性回归模型多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。
设变量Y与变量X1,X2,…,X m存在着线性回归关系,它的n个样本观测值为Y j,X j1,X j2,…X jm(j=1,2,n),于是多元线性回归的数学模型可以写为:可采用最小二乘法对上式中的待估回归系数β0,β1,…,βm进行估计,求得β值后,即可利用多元线性回归模型进行预测了。
聚类模型:聚类分析是根据多种地学要素对地理实体进行划分类别的方法,对不同的要素划分类别往往反映不同目标的等级序列,如土地分等定级、水土流失强度分级等。
聚类分析的步骤一般是根据实体间的相似程度,逐步合并若干类别,其相似程度由距离或相似系数定义。
进行类别合并的准则是使得类间差异最大,而类内差异最小。
最短距离聚类模型最短距离聚类模型中,定义两类之间的距离用两类间最近样本的距离来表示。
用d ij 表示样本和样本之间的距离,用G1,G2,…表示类,类G p和类G q的距离用D pq表示,则有:具体步骤如下:1、规定样本间的距离,计算样本两两距离的对称表,记作D0,由于每一个样本自成一类,显然D pq=d pq。
地理信息系统中常⽤的空间数据模型有哪些?之前在百度知道上看到了这个问题——“地理信息系统中常⽤的空间数据模型有哪些?”今天就针对这个问题做了⼀些整理,看看能不能帮到⼤家。
空间数据模型是指利⽤特定的数据结构来表达空间对象的空间位置、空间关系和属性信息;是对空间对象的数据描述。
空间数据模型是地理信息系统的基础,它不仅决定了系统数据管理的有效性,⽽且是系统灵活性的关键。
⽬前,与GIS设计有关的空间数据模型主要有⽮量模型,栅格模型,数字⾼程模型,⾯向对象模型,⽮量和栅格的混合数据模型等。
前⾯四种模型属于定向性模型,在模型设计时只包括与应⽤⽬标有关的实体及其相互关系,⽽混合模型的设计则包括所有能够指出的实体及其相互关系。
就⽬前的应⽤现状⽽⾔,⽮量模型、栅格模型、数字⾼程模型相当成熟(⽬前成熟的商业化GIS主要采⽤这三类模型),⽽其它模型,特别是混合模型则处于⼤⼒发展之中。
⼀、⽮量模型(vector model)⽮量模型是利⽤边界或表⾯来表达空间⽬标对象的⾯或体要素,通过记录⽬标的边界,同时采⽤标识符(Identifier)表达它的属性来描述空间对象实体。
⽮量模型能够⽅便地进⾏⽐例尺变换、投影变换以及图形的输⼊和输出。
⽮量模型处理的空间图形实体是点(point)、线(line)、⾯(area)。
⽮量模型的基本类型起源于“Spaghetti”模型。
在Spaghetti模型中,点⽤空间坐标对表⽰,线由⼀串坐标对表⽰,⾯是由线形成的闭合多边形。
CAD等绘图系统⼤多采⽤Spaghetti模型。
GIS的⽮量数据模型与Spaghetti模型的主要区别是,前者通过拓扑结构数据来描述空间⽬标之间的空间关系,⽽后者则没有。
在⽮量模型中,拓扑关系是进⾏空间分析的关键。
在GIS的拓扑数据模型中,与点、线、⾯相对应的空间图形实体主要有结点(node)、弧段(arc)、多边形(polygon),多边形的边界被分割成⼀系列的弧和结点,结点、弧、多边形间的空间关系在数据结构或属性表中加以定义。