RLC串联和并联谐振电路谐振时的特性.
- 格式:ppt
- 大小:481.50 KB
- 文档页数:30
rlc串联并联谐振电路特点串联并联谐振电路特点及其应用串联谐振电路是由电感、电容和电阻元件组成的。
当电感、电容和电阻元件串联形成的电路中谐振频率与输入信号频率相匹配时,电路会表现出特殊的特点。
首先,串联谐振电路具有频率选择性。
当输入信号频率接近谐振频率时,电路中的电感和电容元件形成回路,实现能量的存储与释放,从而增强了电路的响应。
而在其他频率下,电路中的电感和电容元件起到阻抗的作用,导致电压幅度减小,电路的响应则减弱。
其次,串联谐振电路具有阻抗最小的特点。
在谐振频率时,电感和电容元件的阻抗对消,电路中总的阻抗最小。
这导致电路对输入信号的阻抗较低,使得电路能够吸收更多的能量,从而达到最大的电流和电压响应。
另外,串联谐振电路还具有相位特性。
在电路的谐振频率时,电阻元件的电压与电流处于同相位,而电感元件的电压与电流处于相位滞后90度,电容元件的电压与电流处于相位超前90度。
这种相位特性可以被用来滤波和频率选择的应用。
并联谐振电路与串联谐振电路类似,只是电感和电容元件是并联连接的。
并联谐振电路具有的特点与串联谐振电路类似,但其频率选择性与阻抗最小点的位置相反。
在并联谐振电路中,电路在谐振频率时具有最大的阻抗,而在其他频率下阻抗较低。
串联和并联谐振电路在实际应用中具有广泛的用途。
它们可以作为滤波器、频率选择器和信号调节器使用。
谐振电路也常用于无线传输系统、天线系统、音频放大器以及其他需要特定频率响应的电子设备中。
总之,串联和并联谐振电路具有频率选择性、阻抗最小的特点,并且可以应用于多种电子设备中。
通过合理设计和搭建谐振电路,可以实现各种功能的电路响应。
电路分析》实验实验一简单万用表线路计算和校验一、实验目的1.了解万用表电流档、电压档及欧姆档电路的原理与设计方法。
2.了解欧姆档的使用方法。
3.了解校验电表的方法。
二、实验说明万用表是测量工作中最常见的电表之一,用它可以进行电压、电流和电阻等多种物理量的测量,每种测量还有几个不同的量程。
万用表的内部组成从原理上分为两部分:即表头和测量电路。
表头通常是一个直流微安表,它的工作原理可归纳为:“表头指针的偏转角与流过表头的电流成正比”。
在设计电路时,只考虑表头的“满偏电流Im”和“内阻Ri”值就够了。
满偏电流是指表针偏转满刻度时流过表头的电流值,内阻则是表头线圈的铜线电阻。
表头与各种测量电路连接就可以进行多种电量的测量。
通常借助于转换开关可以将表头与这些测量电路分别连接起来,就可以组成一个万用表。
本实验分别研究这些实验。
1.直流电流档多量程的分流器有两种电路。
图1-1的电路是利用转换开关分别接入不同阻值的分流器来改变它的电流量程的。
这种电路计算简单,缺点是可能由于开关接触不太好致使测量不准。
最坏情况(在开关接触不通或带电转换量程时有可能发生)是开关断路,这时全部被测电流都流过表头造成严重过载(甚至损坏)。
因此多量程分流器都采用图1-2的电路,以避免上述缺点。
计算时按表头支路总电阻r0’=2250Ω来设计,其中r’是一个“补足”电阻,数值视r0大小而定。
图1-1 利用转换开关的分流器图1-2 常用的多量程分流器电路图1-3 实验用万用表直流电流档电路给定表头参数:Ω='μ=2250r A 100I 0m , 由图1-3得知:1m 10m R )I I (r I -=' 1110m R I )R r (I =+' 1101m I )R r (R I +'=同理,可推得:2102m I )R r (R I +'=合并上两式1101I )R r (R +'=2102I )R r (R +'将10R r +'消去有:2211R I R I = 现将已知数据代入计算如下:)I I (r I R m 10m 1-'=Ω==-⨯⨯=---250922501010225010100R 4361 2211R I R I =1212R I I R =Ω=⨯=5025051R 2 Ω==Ω=50R r 200r 221,2.直流电压档图1-4为实验用万用表直流电压档线路,给定表头参数同上。
R、L、C串/并联谐振电路的特性分析及应用摘要:本文对RLC串联、RLC并联及RL-C并联三种谐振电路的阻抗Z、谐振频率 、及品质因数Q三种特性进行了分析。
其中品质因数Q是电路在谐振状态下最为重要的电路特性,我们从Q的几种定义出发,着重研究了它对三种最基本的谐振电路的几个重要影响。
同时简单介绍了串/并联谐振电路在生活中的具体应用。
关键词:谐振电路;谐振特性;品质因数目录0 引言: (1)1 RLC串联与RLC并联及RL-C并联电路阻抗及谐振频率 (2)1.1 RLC串联电路的阻抗及谐振频率 (2)1.2 RLC并联电路的阻抗及谐振频率 (2)1.3 RL-C并联电路的阻抗及谐振频率 (3)2 R、L、C串/并联电路的品质因数Q (3)2.1 电路的品质因数Q (3)2.2 谐振电路的品质因数Q的几点重要性 (4)2.2.1 Q对回路中能量交换及能量储存的影响 (4)2.2.2 Q值与谐振电路的选择性 (4)2.2.2.1 Q值与串联谐振电路的选择性 (4)2.2.2.2 Q值与RL-C并联谐振电路的选择性 (6)2.2.2.3 RLC并联谐振回路与RL-C并联谐振回路的品质因数的统一性 (8)3 谐振电路在生活中的应用 (11)0 引言:构成各种复杂电路的基础通常是RLC 串/并联谐振电路,本文就简单介绍了其三种连接方式如图,而了解这些基本电路的频率特性对于理解更复杂的电路甚至实用电路是非常有益的,并且对于深入了解其它重要的相关特性是十分有帮助的。
本文简单阐述了下面三种电路图的Z 、ω及Q 以及一些具体实际的应用。
下面是R 、L 、C 串/并联谐振电路的简图,如图1,图2,图3所示。
•R U•L U+•U•C U图1,串联谐振电路RLC•U— 图2,并联谐振电路RLC图3,并联谐振电路C RL -1 RLC 串联与RLC 并联及RL-C 并联电路阻抗及谐振频率 1.1 RLC 串联电路的阻抗及谐振频率由图1知RLC 串联电路的复阻抗Z 和阻抗z 分别为()()22111CL R z L L j R C jL j R Z ωωωωωω-+=-+=-+=电路中的I 和z 以及U 之间的关系为:()221CL R U zU I ωω-+==(1)由于谐振时01=-C L ωω,故谐振时的电流 R U I I =00为。
RLC并联谐振的谐振曲线和品质因数的研究
摘要:通过对不同阻抗情形下并联谐振频率特性曲线的研究探讨并联谐振的特点以及品质因数受到电阻的影响。
关键词:并联谐振、谐振曲线、品质因数
引言:在实验三中,我们着重研究了RC电路和RL电路的幅频特性以及RLC串联电路的谐振曲线和品质因数,本文就RLC并联谐振的情况下的谐振曲线与品质因数做进一步的探究。
原理:下图所示是电阻R、线圈L和电容器C
并联的电路。
其等效阻抗为:
此时电路呈电阻性,形成并联谐振状态。
此时等效阻抗为Z0=L/RC。
在电源电压一定时,电流将在谐振时达最小值,即I=I0=U/|Z0|
并联谐振频率为:
并联谐振电路的品质因数就是电感线圈(含电阻R)的品质因数,即
实验数据:U=12V;C=3μF;L=1H
1.R=5Ω
2.R=50Ω
3.R=0.5Ω
4.R=500Ω
以lgf为横坐标,以U纵坐标分别作图如下:
数据的分析与讨论:有实验数据会出的图像我们可以明显看出:
● RLC 并联电路达到谐振时支路电流最小接近于零。
● 阻抗越小,曲线越尖锐,电路的选择性越好,即Q 值越大。
结论:实验结果基本与理论一致。
即RLC 并联电路谐振状态下电流值最小且在阻抗越小时越尖锐。
参考文献:《电工学 电工技》、《模拟电子技术基础》。
实验2 LRC 电路谐振特性的研究【实验简介】在力学实验中介绍过弹簧的简谐振动、阻尼振动和强迫振动,阐述过共振现象的一些实际应用。
同样,在电学实验中,由正弦电源与电感、电容和电阻组成的串联电路,也会产生简谐振动、阻尼振动和强迫振动。
当正弦波电源输出频率达到某一频率时,电路的电流达到最大值,即产生谐振现象。
谐振现象有许多应用,如电子技术中电磁波接收器常常用串联谐振电路作为调谐电路,接收某一频率的电磁波信号,收音机就是其中一例。
利用谐振原理制成的传感器,可用于测量液体密度及飞机油箱内液位高度等。
当然在配电网络中,也要避免因电路谐振现象引起电容器或电感器的击穿。
本实验将一个纯电容、一个空心线圈和一个电阻串联接于一个正弦交流电源中,测量电路的谐振曲线,了解电路品质因素Q 的物理意义,掌握串联谐振电路的特性及测量方法。
同时,对收音机输入回路中的RLC 串联电路特性进行测量和研究,深入了解RLC 串联回路特性及应用。
【实验目的】1.研究和测量LRC 串,并联电路的幅频特性;2.掌握幅频特性的测量方法;3.进一步理解回路Q 值的物理意义。
【实验原理及设计】一.LRC 串联谐振电路1.回路中的电流与频率的关系(幅频特性)RLC 串联谐振电路是在无线电接收设备中用来选择接收信号和在电子技术中用来获取高频高压的一种常用电路。
本实验通过测试RLC 串联电路的谐振曲线,从实践中认识RLC 串联电路的谐振特性。
对于一个如图1所示的RLC 串联电路,当外加交流电压(又称激励电压)U的角频率为ω时,各元件上的复阻抗分别为,R Z R = ,L j Z Lω= Cj c Z ω1= 则整个串联电路的总阻抗为:1(R L CZ Z Z Z R j L Z Cωϕω=++=+-=∠(1)图1 RLC 串联电路图2 串联谐振回路中阻抗随频率变化的曲线上式中,Z 为电路阻抗,22)1(cL R Z ωω-+=。
f曲线f 图3I-ϕ为总电压超前电流的相位差角,RC L arctgωωϕ1-=于是串联电路中的复电流I 为:ϕωωj Ie CL j R U Z U I =-+==1( (2)上式中I 为复电流的幅值22)1(CL R U ZU I ωω-+==(3)ϕ为复电流的相角。
串并联谐振公式推导一、串联谐振公式推导。
(一)RLC串联电路。
1. 电路模型与复阻抗。
- 在RLC串联电路中,电阻R、电感L和电容C串联连接,设电路中的电流为i = Isin(ω t)。
- 根据电感和电容的特性,电感的感抗X_L=ω L,电容的容抗X_C = (1)/(ω C)。
- 电路的复阻抗Z = R + j(X_L - X_C)=R + j(ω L-(1)/(ω C))。
2. 串联谐振条件。
- 串联谐振时,电路的复阻抗Z的虚部为零,即X_L - X_C=ω L-(1)/(ω C)=0。
- 解这个方程可得串联谐振角频率ω_0=(1)/(√(LC)),对应的频率f_0=(1)/(2π√(LC))。
3. 串联谐振特性。
- 在串联谐振时,电路中的电流达到最大值。
因为此时Z = R(复阻抗的虚部为零),根据欧姆定律I=(U)/(Z),当电源电压U一定时,I=(U)/(R),电流只受电阻R 的限制。
- 电感和电容上的电压大小相等、方向相反,电感电压U_L =Iω_0L=(U)/(R)ω_0L,电容电压U_C = I(1)/(ω_0C)=(U)/(R)(1)/(ω_0C),并且U_L =U_C,它们的大小可能会比电源电压U大很多,即Q=(U_L)/(U)=(ω_0L)/(R)=(1)/(ω_0CR),这里的Q称为品质因数。
二、并联谐振公式推导。
(一)GLC并联电路(这里用导纳分析比较方便,G=(1)/(R)为电导)1. 电路模型与复导纳。
- 在GLC并联电路中,电导G、电感L和电容C并联连接。
设电压u = Usin(ω t)。
- 电感的感纳B_L=(1)/(ω L),电容的容纳B_C=ω C。
- 电路的复导纳Y = G + j(B_C - B_L)=G + j(ω C-(1)/(ω L))。
2. 并联谐振条件。
- 并联谐振时,复导纳Y的虚部为零,即ω C-(1)/(ω L)=0。
- 解这个方程可得并联谐振角频率ω_0=(1)/(√(LC)),对应的频率f_0=(1)/(2π√(LC))(与串联谐振频率相同)。