RLC电路谐振特性
- 格式:doc
- 大小:59.00 KB
- 文档页数:2
实验三 RLC 串联谐振一、实验目的1、掌握测量谐振频率、品质因数和绘制频率特性曲线的方法。
2、加深对串联谐振电路特性的理解。
3、认识品质因数对电路选择性的影响。
二、实验原理1、串联谐振在RLC 串联电路中,当感抗和容抗相等时,电路的端电压和电流同相位,整个电路呈现电阻性。
即CL ωω1=时,电路处于谐振状态,谐振角频率为LC10=ω,谐振频率为LCf π210=当0ωω<时,电路呈容性,电路电流超前端电压;当0ωω>时,电路呈感性,电路电流滞后端电压。
要使电路发生谐振,可以改变L 、C 或f 来达到,本实验是通过改变电源电压的频率来实现的。
2、 串联谐振的特性(1)由于C L 001ωω=,所以U L 与U C 数值相等,相位相差1800,而U L 或U C 与信号源电压U S 之比为品质因数Q ,即Q =RC LR C R L U U U U S C S L ====001ωω其中LC10=ω。
在C 和L 为定植情况下,Q 值仅取决于回路电阻R 的大小。
电阻R 越大电路的品质因数越小,其谐振曲线越平坦。
(2)由于回路总电抗01000=-=CL X ωω,因此,回路阻抗Z 为最小值;在U S 一定情况下,I=I 0=RU S为最大值;回路相当于一个纯电阻电路,U S 与I 同相位。
三、实验任务与步骤1、按图3-1接线,改变信号源频率,找出谐振频率0f ,一般可采取两种方法: 图3-1(1)电阻电压U R到达最大值的办法确定f0(2)用双踪示波器观察U S和U R的波形,调节信号源频率,当二者波形相同时即为f0。
2、在谐振情况下用晶体管毫伏表测量U S、U L 、U C、U R ,根据测量结果计算Q值并记入下表。
3、测量谐振曲线图I(f)信号源U S保持5V,改变其频率,分别测U R值(以谐振频率为中心两边对称取点,在谐振频率附近可适当多取几点),由I=U S换算出电流值,记录于下表。
电路分析》实验实验一简单万用表线路计算和校验一、实验目的1.了解万用表电流档、电压档及欧姆档电路的原理与设计方法。
2.了解欧姆档的使用方法。
3.了解校验电表的方法。
二、实验说明万用表是测量工作中最常见的电表之一,用它可以进行电压、电流和电阻等多种物理量的测量,每种测量还有几个不同的量程。
万用表的内部组成从原理上分为两部分:即表头和测量电路。
表头通常是一个直流微安表,它的工作原理可归纳为:“表头指针的偏转角与流过表头的电流成正比”。
在设计电路时,只考虑表头的“满偏电流Im”和“内阻Ri”值就够了。
满偏电流是指表针偏转满刻度时流过表头的电流值,内阻则是表头线圈的铜线电阻。
表头与各种测量电路连接就可以进行多种电量的测量。
通常借助于转换开关可以将表头与这些测量电路分别连接起来,就可以组成一个万用表。
本实验分别研究这些实验。
1.直流电流档多量程的分流器有两种电路。
图1-1的电路是利用转换开关分别接入不同阻值的分流器来改变它的电流量程的。
这种电路计算简单,缺点是可能由于开关接触不太好致使测量不准。
最坏情况(在开关接触不通或带电转换量程时有可能发生)是开关断路,这时全部被测电流都流过表头造成严重过载(甚至损坏)。
因此多量程分流器都采用图1-2的电路,以避免上述缺点。
计算时按表头支路总电阻r0’=2250Ω来设计,其中r’是一个“补足”电阻,数值视r0大小而定。
图1-1 利用转换开关的分流器图1-2 常用的多量程分流器电路图1-3 实验用万用表直流电流档电路给定表头参数:Ω='μ=2250r A 100I 0m , 由图1-3得知:1m 10m R )I I (r I -=' 1110m R I )R r (I =+' 1101m I )R r (R I +'=同理,可推得:2102m I )R r (R I +'=合并上两式1101I )R r (R +'=2102I )R r (R +'将10R r +'消去有:2211R I R I = 现将已知数据代入计算如下:)I I (r I R m 10m 1-'=Ω==-⨯⨯=---250922501010225010100R 4361 2211R I R I =1212R I I R =Ω=⨯=5025051R 2 Ω==Ω=50R r 200r 221,2.直流电压档图1-4为实验用万用表直流电压档线路,给定表头参数同上。
C1L ω=ωfC 21πC1ωLC 21πLC1LC实验八 R 、L 、C 串联电路的谐振实验一、实验目的1、研究交流串联电路发生谐振现象的条件。
2、研究交流串联电路发生谐振时电路的特征。
3、研究串联电路参数对谐振特性的影响。
二、实验原理1、R L C 串联电压谐振在具有电阻、 电感和电容元件的电路中,电路两端的电压与电路中的电流一般是不同相的。
如果我们调节电路中电感和电容元件的参数或改变电源的频率就能够使得电路中的电流和电压出现了同相的情况。
电路的这种情况即电路的这种状态称为谐振。
R 、L 、C 串联谐振又称为电压谐振。
在由线性电阻R 、电感L 、电容c 组成的串联电路中,如图8-1所示。
图8-1 R L C 串联电路图当感抗和容抗相等时,电路的电抗等于零即X L = X C ; ; 2πf L= X = L - = 0 则 = arc tg = 0即电源电压u 与电路中电流i 同相,由于是在串联电路中出现的谐振故称为串联谐振。
谐振频率用f 0表示为f = f 0 =谐振时的角频率用表示为==谐振时的周期用T 0表示为T = T 0 = 2串联电路的谐振角频率ω 0频率f 0,周期T 0,完全是由电路本身的有关参数来决定的,它们是电路本身的固有性质,而且每一个R 、L 、C 串联电路,只有一个对应的谐振频f 0和()2CL2X X R -+RU UU U 周期T 0。
因而,对R 、L 、C 串联电路来说只有将外施电压的频率与电路的谐振频率相等时候,电路才会发生谐振。
在实际应用中,往往采用两种方法使电路发生谐振。
一种是当外施电压频率f 固定时,改变电路电感L 或电容C 参数的方法,使电路满足谐振条件。
另一种是当电路电感L 或电容C 参数固定时,可用改变外施电压频率f 的方法,使电路在其谐振频率下达到谐振。
总之,在R 、L 、C 串联电路中,f 、L 、C 三个量,无论改变哪一个量都可以达到谐振条件,使电路发生谐振。
《电路基础》R —L —C 元件的阻抗特性和谐振电路实验一. 实验目的1.通过实验进一步理解R ,L ,C 的阻抗特性,并且练习使用信号发生器和示波器2.了解谐振现象,加深对谐振电路特性的认识3.研究电路参数对串联谐振电路特性的影响4.理解谐振电路的选频特性及应用5.掌握测试通用谐振曲线的方法二. 实验原理与说明1.正弦交流电路中,电感的感抗X L = ωL = 2πfL ,空心电感线圈的电感在一定频率范围内可认为是线性电感,当其电阻值r 较小,有r << X L 时,可以忽略其电阻的影响。
电容器的容抗Xc= 1 / ωC = 1 / 2πfC 。
当电源频率变化时,感抗X L 和容抗Xc 都是频率f 的函数,称之为频率特性(或阻抗特性)。
典型的电感元件和电容元件的阻抗特性如图11-1。
X0 f 0 f(a) 电感的阻抗特性 (b) 电容的阻抗特性图11-1+ L C − 0 0(a) 测量电感阻抗特性的电路 (b) 测量电容阻抗特性的电路图11-22.为了测量电感的感抗和电容的容抗,可以测量电感和电容两端的电压有效值及流过它们的电流有效值。
则感抗X L = U L / I L ,容抗Xc = Uc / Ic 。
当电源频率较高时,用普通的交流电流表测量电流会产生很大的误差,为此可以用电子毫伏表进行间接测量得出电流值。
在图11-2的电感和电容电路中串入一个阻值较准确的取样电阻R 0,先用毫伏表测量取样电阻两端的电压值,再换算成电流值。
如果取样电阻取为1Ω,则毫伏表的读数即为电流的值,这样小的电阻在本次实验中对电路的影响是可以忽略的。
3.在图11-3所示的RLC 串联电路中,当外加角频率为ω的正弦电压U 时,电路中的电流为 )(1'C L j R U Iωω-+= 式中,'R = R + r ,r 为线圈电阻。
当ωL=1/ωC 时,电路发生串联谐振,谐振频率为:f 0 = LCπ21。
rlc并联谐振电路rlc并联谐振电路是一种重要的电路结构,它由电阻(R)、电感(L)和电容(C)三个元件组成,并且这三个元件是并联连接的。
在这篇文章中,我们将详细介绍rlc并联谐振电路的基本原理、特性以及应用。
我们来了解一下rlc并联谐振电路的基本原理。
在电路中,电感元件会产生感抗,电容元件会产生容抗,而电阻元件会产生电阻。
当这三个元件并联连接时,它们共同决定了电路的特性。
当电路中加入交流电源时,rlc并联谐振电路的电阻、电感和电容将产生对电流的不同阻碍。
当频率为特定值时,电路的阻抗将达到最小值,这就是谐振频率。
在谐振频率下,电路中的电感和电容元件将形成一个共振回路,电流将达到最大值。
接下来,我们来讨论一下rlc并联谐振电路的特性。
首先是谐振频率。
谐振频率可以通过以下公式计算得出:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
其次是谐振的带宽。
带宽是指在谐振频率附近,电路的阻抗仍然很小的一段频率范围。
带宽可以通过以下公式计算得出:BW = f2 - f1其中,BW为带宽,f1和f2分别为电路阻抗为谐振阻抗的两个频率。
rlc并联谐振电路还具有选择性增强的特性。
在谐振频率附近,电路对特定频率的信号具有较大增益,而对其他频率的信号则具有较小增益。
这种特性使得rlc并联谐振电路在通信领域中有着重要的应用,例如用于选择性放大特定频率的信号。
除了在通信领域中的应用外,rlc并联谐振电路还广泛应用于许多其他领域。
例如,在音频设备中,它可以用于音频滤波器的设计。
在电力系统中,它可以用于电力因数校正和电力滤波器的设计。
在电子设备中,它可以用于频率选择性放大器的设计。
rlc并联谐振电路是一种重要的电路结构,具有谐振频率、带宽和选择性增强等特性。
它在通信、音频、电力和电子等领域中有着广泛的应用。
通过深入理解rlc并联谐振电路的原理和特性,我们可以更好地应用它,并且为各种应用提供更好的解决方案。
第1篇一、RLC串联谐振电路的基本原理RLC串联谐振电路由电阻R、电感L和电容C三个元件组成。
当电路中电压或电流的频率发生变化时,电路的阻抗Z也会随之变化。
当电路的阻抗Z达到最小值时,电路处于谐振状态,此时的频率称为谐振频率。
二、谐振频率的计算1. 谐振频率的定义谐振频率是指RLC串联电路在谐振状态下,电路的阻抗Z达到最小值时的频率。
在谐振状态下,电路的电流I与电压U之间的相位差为0,即电流和电压同相位。
2. 谐振频率的计算公式RLC串联电路的谐振频率可以通过以下公式计算:\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]其中,\( f_0 \)表示谐振频率,L表示电感,C表示电容。
三、谐振频率的影响因素1. 电感L和电容C谐振频率与电感L和电容C的乘积成反比。
当电感L或电容C增大时,谐振频率会减小;反之,当电感L或电容C减小时,谐振频率会增大。
2. 电阻R电阻R对谐振频率没有直接影响,但会影响电路的品质因数Q。
品质因数Q定义为:\[ Q = \frac{f_0}{\Delta f} \]其中,\( \Delta f \)表示谐振曲线的带宽。
当电阻R增大时,品质因数Q减小,电路的带宽增大,谐振频率基本不变。
四、谐振频率在实际应用中的重要性1. 选择合适的谐振频率在实际应用中,选择合适的谐振频率可以提高电路的性能。
例如,在无线通信、信号传输等领域,通过选择合适的谐振频率,可以减小信号损耗,提高传输效率。
2. 提高电路的稳定性在电路设计和分析过程中,通过调整电感L和电容C的值,可以使电路在特定的频率下达到谐振状态,从而提高电路的稳定性。
3. 优化电路性能通过调整谐振频率,可以优化电路的性能。
例如,在滤波器设计中,通过选择合适的谐振频率,可以实现对特定频率信号的滤波。
五、总结RLC串联谐振电路的谐振频率是电路设计和分析中的一个重要参数。
通过掌握谐振频率的计算方法、影响因素以及在实际应用中的重要性,有助于我们更好地进行电路设计和优化。
课程名称:大学物理实验(二)实验名称:RLC电路谐振特性的研究二、实验原理2.1RLC串联电路的谐振I=UZ =U√R2+(ωL−1ωC)2(2.1)图2.1 RLC串联谐振电路电压与电流的位相差为:ϕ=arctanωL−1ωCR(2.2)图2.2 电流和电源的频率的关系曲线当ωL−1ωC=0,Z有一极小值,I有一极大值,此时的圆频率称为谐振圆频率ω0,且ω0=1√LC(2.3)谐振时:I有一极大值,U L和U C相等,且相位相反定义:品质因数QQ=U LU =U CU=1ω0CR=ω0LR=1R√LC(2.4)Δf=f2−f1=f0Q(2.5)Q因子:在系统的共振频率下,当信号振幅不随时间变化时,系统储存能量和每个周期外界所提供能量的比例Q往往是≥1的,所以U C和U L可以比U大得多,故串联谐振常称为电压谐振,Q越大,带宽越小,谐振曲线越尖锐。
Q 值还标志着电路的频率选择性,即谐振峰的尖锐程度。
图2.3 RLC串联谐振电路的带宽三、实验仪器:1.DH4503型RLC电路实验仪图3.1 DH4503型RLC电路实验仪实物图2.固玮数字示波器图3.2固玮数字示波器实物图四、实验内容及步骤:4.1测定串联电路的谐振曲线注意:(1)共地问题.被测电压的元件必须和电源共地.(2)测量共振频率及共振时的作图时,将这一组数据(f0、U R)插入.图4.1 RLC串联谐振曲线测量电路图4.2串联谐振电路的带宽4.2测定共振频率和共振时的UR、 UC和UL注意:需要将R和C(L)的位置互换以保证共地图4.3 串联谐振特性测量电路4.3实验操作1)将电感、电容调到合适的值,参考值为:L=100mH ,C=4.4×10−8F。
将电阻调到100Ω。
2)从电源负极连线接到电阻,电阻连接到电容,电容连接到电感,电感连接回电源正极。
3)保持电源电压输出为1V。
4)利用示波器对U R进行测量,调节频率旋钮,通过从1600Hz开始以100Hz为幅度上调,记录数据。