电阻率温度系数
- 格式:doc
- 大小:6.21 KB
- 文档页数:2
康铜的电阻率温度系数
康铜(Copper-Konstantanalloy)是一种常用的热电偶材料,由康铜和铬、镍等金属组成。
它的电阻率随温度的变化比较小,但仍然存在一定的温度系数。
康铜的电阻率温度系数与温度的关系是非常重要的,因为它会直接影响到热电偶的测量精度。
康铜的电阻率温度系数是指在温度变化时,康铜电阻率的变化率。
通常情况下,它是一个负值,也就是说随着温度的升高,康铜的电阻率会降低。
康铜的电阻率温度系数一般用α表示,单位是℃^-1。
康
铜的电阻率温度系数在不同的温度范围内有不同的取值,一般情况下,它在室温附近的取值约为4×10^-3℃^-1。
康铜的电阻率温度系数与康铜合金的成分、加工工艺等因素有关。
在实际应用中,我们需要根据具体的情况来选择适合的康铜合金,以确保热电偶的测量精度和稳定性。
同时,我们还需要注意温度系数对测量结果的影响,尽可能减小其影响,提高测量精度。
- 1 -。
半导体电阻率和温度的关系在实际中的应用
半导体的电阻率与温度有一定的关系,通常可以表示为:
ρ = ρ0 * exp(α(T - T0))
其中,ρ为半导体的电阻率,ρ0为常数,α为温度系数,T为
温度,T0为参考温度。
这一关系在实际中有以下应用:
1. 温度传感器:利用半导体的温度系数,可以制作温度传感器,即根据半导体电阻率随温度变化的特性,来测量环境的温度。
例如,根据硅的温度系数制作的热敏电阻和热敏电阻器,常用于温度测量和控制。
2. 温度补偿:半导体器件的性能会随温度的变化而发生变化,使用半导体的温度系数可以进行温度补偿,从而提高器件的稳定性和精度。
例如,在电子电路设计中,通过测量半导体电阻率的变化来进行温度补偿,以确保电路的稳定工作。
3. 热敏元件:半导体的电阻率与温度的关系可以用于制作热敏元件,例如热敏电阻、热敏电流源等。
这些热敏元件可以根据温度的变化来控制电路中的电流、电压等参数。
4. 热管理:半导体电阻率与温度的关系可以用于热管理,即通过监测半导体器件的温度变化,来控制散热风扇、热散片等散热设备的工作状态,以保持器件在安全温度范围内工作。
总之,半导体电阻率与温度的关系在实际中具有广泛的应用,包括温度传感器、温度补偿、热敏元件和热管理等领域。
电阻温度系数(TCR表示电阻当温度改变 1 度时,电阻值的相对变化,当温度每升高1C 时,导体电阻的增加值与原来电阻的比值。
单位为ppm/C(即10E (-6 )「C)。
定义式如下:TCR=dR/R.dT实际应用时,通常采用平均电阻温度系数,定义式如下:TCR(平均)=(R2-R1) /( R1*( T2-T1 )) = (R2-R1) /(R1* △ T)R1--温度为t1时的电阻值,Q;R2--温度为t2时的电阻值,Q。
很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。
1。
镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好) 。
2。
众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。
3 。
不要以为镀金或镀银的板子就好,良好的电路设计和PCB 的设计,比镀金或镀银对电路性能的影响更大。
4。
导电能力银好于铜,铜好于金!现在贴上常见金属的电阻率及其温度系数:物质温度t/C 电阻率电阻温度系数aR/ C-1 银20 1.586 0.0038(20 C ) 铜20 1.678 0.00393(20 C ) 金20 2.40 0.00324(20C ) 铝20 2.6548 0.00429(20 C ) 钙0 3.91 0.00416(0 C ) 铍20 4.0 0.025(20 C ) 镁20 4.45 0.0165(20 C )钼0 5.2 铱20 5.3 0.003925(0 C~100 C) 钨27 5.65 锌20 5.196 0.00419(0 C~100 C) 钴20 6.640.00604(0 C~100 C) 镍20 6.84 0.0069(0 C~100 C) 镉0 6.83 0.0042(0 C~100 C) 铟20 8.37 铁20 9.710.00651(20 C ) 铂20 10.6 0.00374(0 C~60C ) 锡0 11.0 0.0047(0 C~100 C) 铷20 12.5 铬0 12.9 0.003(0C~100 C ) 镓20 17.4 铊0 18.0 铯20 20 铅20 20.684 (0.0037620 C~40C ) 锑0 39.0 钛20 42.0汞50 98.4锰23〜100 185.0电阻的温度系数,是指当温度每升高一度时,电阻增大的百分数。
电阻温度系数电阻温度系数是指导体电阻率随温度的变化率。
正常情况下,无机电阻体的电阻率随温度的升高而增加,因为晶格振动引起载流子的散射增加,电阻率增加。
电阻温度系数的定义当温度变化时,电阻率随温度的变化率与电阻率的比值称为电阻的温度系数,通常用α 表示,其计算公式为:α = 1/R * dR/dT其中,α 为电阻温度系数,R 为电阻率,T 为温度,dR 表示电阻率的变化量,dT 表示温度的变化量。
电阻温度系数的分类根据电阻的温度系数的正负,电阻可以分为正温度系数电阻和负温度系数电阻。
正温度系数电阻(PTC)正温度系数电阻,当温度升高时,电阻值增大。
这种电阻一般使用聚合物材料或半导体材料制造,应用广泛。
负温度系数电阻(NTC)负温度系数电阻,当温度升高时,电阻值减小。
这种电阻一般采用金属、合金或氧化物制造,应用也很广泛。
电阻温度系数的应用电阻温度系数是许多电子元件中重要的参数之一。
在电路设计中,为了准确地控制电路的特性,需要选取适合的电阻温度系数的电阻。
例如,在温度补偿电路中,通过选择合适的电阻温度系数,可以减小温度对电路性能的影响。
此外,电阻温度系数还可以用于温度传感器、温度补偿元件、稳压电源等领域。
结论电阻温度系数是电阻随温度变化的重要指标,对电路性能有着重要的影响。
在实际应用中,根据具体的需要选择适合的电阻温度系数的电阻是非常重要的。
通过深入了解电阻温度系数的原理和应用,可以更好地进行电路设计和选型工作。
希望通过本文的介绍,读者能对电阻温度系数有更深入的理解,并在实际应用中有所帮助。
常见物质的电阻率物质温度t/℃电阻率电阻温度系数aR/℃-1银20 1.586 0.0038(20℃)铜20 1.678 0.00393(20℃)金20 2.40 0.00324(20℃)铝20 2.65480.00429(20℃)钙 0 3.91 0.00416(0℃)铍20 4.00.025(20℃)镁20 4.45 0.0165(20℃)钼 0 5.2铱20 5.3 0.003925(0℃~100℃)钨27 5.65锌20 5.196 0.00419(0℃~100℃)钴20 6.64 0.00604(0℃~100℃)镍20 6.84 0.0069(0℃~100℃)镉0 6.83 0.0042(0℃~100℃)铟208.37铁209.71 0.00651(20℃)铂20 10.6 0.00374(0℃~60℃)锡0 11.0 0.0047(0℃~100℃)铷20 12.5铬0 12.9 0.003(0℃~100℃)镓20 17.4铊0 18.0铯20 20.0铅20 20.684 0.00376 (20℃~40℃)锑0 39.0钛20 42.0汞50 98.4锰23~100 185.0直流叫滞磁回线,不通过零点,与B座标相交叫剩磁、其面积能表达滞磁损耗,。
交流只有一条曲线通过零点。
武钢硅钢标准发布时间:2010-03-12 关键词:武钢,硅钢,标准,冷轧无取向电工钢带(片)1、范围本标准规定了无取向电工钢的牌号、公称厚度、叠装系数、磁特性等技术条件。
本标准适合于武汉钢铁股份有限公司生产的冷轧无取向电工钢带(片)。
2、引用标准下列文件中的条款通过在本标准中的引用而构成本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 228-1987 金属拉伸试验方式GB/T 235-1988 金属反复弯曲试验方法(厚度等于或小于3mm薄板及钢带)GB/T 247-1988 钢板和钢带验收、包装、标志及质量证明的一般规定GB/T 2522-1988 电工钢(带)层间电阻、涂层附着性、叠装系数测试方法GB/T 3076-1982 金属薄板(带)拉伸试验方法GB/T 3655-1992 电工钢片(带)磁、电和物理性能测量方法GB/T 6397-1986 金属拉伸试验试样GB/T 13789-1998 单片面性电工钢片(带)磁性能测量方法3、牌号表示方法为了区别于GB/T2521-1996的同类产品牌号,本标准牌号中的各符号含义表述如下:4、技术要求4.1磁特性4.1.1磁感在5000A/m交变磁场,频率为50HZ时,规定其最小磁感值B5000(峰值)应符合表1的规定。
电缆电阻率随温度变化表达式
电缆电阻率随温度变化表达式是指电缆导体的电阻率随温度的
变化规律。
一般来说,电阻率随温度的升高而增加,这是由于导体内的电子与原子的碰撞增多,电子的平均自由程减小,电阻增加所致。
根据欧姆定律,电阻率随温度的变化可以用以下公式来表示:ρ(T) = ρ0 [1 + α(T - T0)]
其中,ρ(T)表示温度为T时的电阻率,ρ0表示参考温度T0时的电阻率,α为电阻率温度系数。
电阻率温度系数α是指电阻率随温度变化的速率,通常用ppm/℃或%/℃来表示。
在设计电缆时,需要考虑到电阻率随温度的变化,以保证电缆的电性能能够在各种环境条件下保持稳定。
- 1 -。
全系列金属电阻率及其温度系数常用金属导体在20℃时的电阻率材料电阻率(Ω m)(1)银 1.65 ×10-8(2)铜 1.75 ×10-8(3)铝 2.83 ×10-8(4)钨 5.48 ×10-8(5)铁9.78 ×10-8(6)铂 2.22 ×10-7(7)锰铜 4.4 ×10-7(8)汞9.6 × 10-7(9)康铜 5.0 ×10-7(10)镍铬合金 1.0 × 10-6(11)铁铬铝合金1.4 ×10-6(12) 铝镍铁合金1.6 × 10-6(13)石墨(8~13)×10-6金属温度(0℃)ρ αo , 100锌20 ×10-3 ×10-35.9 4.2铝(软)20 2.75 4.2铝(软)–78 1.64阿露美尔合金20 33 1.2锑0 38.7 5.4铱20 6.5 3.9铟0 8.2 5.1殷钢0 75 2锇20 9.5 4.2镉20 7.4 4.2钾20 6.9 5.1①钙20 4.6 3.3金20 2.4 4.0银20 1.62 4.1铬(软)20 17镍铬合金(克露美尔)—70—110 .11—.54 钴a 0 6.37 6.58康铜—50 –.04–1.01锆30 49 4.0黄铜–5—7 1.4–2水银0 94.08 0.99水银20 95.8锡20 11.4 4.5锶0 30.3 3.5青铜–13—18 0.5铯20 21 4.8铋20 120 4.5铊20 19 5钨20 5.5 5.3钨1000 35钨3000 123钨–78 3.2钽20 15 3.5金属温度(0℃)ρ αo , 100杜拉铝(软)— 3.4铁(纯)20 9.8 6.6铁(纯)–78 4.9铁(钢)—10—20 1.5—5铁(铸)—57—114铜(软)20 1.72 4.3铜(软)100 2.28铜(软)–78 1.03铜(软)–183 0.30钍20 18 2.4钠20 4.6 5.5①铅20 21 4.2镍铬合金(不含铁)20 109 .10镍铬合金(含铁)20 95—104 .3—.5镍铬林合金—27—45 .2—.34镍(软)20 7.24 6.7镍(软)–78 3.9铂20 10.6 3.9铂1000 43铂–78 6.7铂铑合金②20 22 1.4钯20 10.8 3.7砷20 35 3.9镍铜锌电阻线—34—41 .25—.32铍(软)20 6.4镁20 4.5 4.0锰铜20 42—48 –03—+.02钼20 5.6 4.4洋银—17—41 .4—.38锂20 9.4 4.6磷青铜—2—6铷20 12.5 5.5铑20 5.1 4.4①0℃和融点间的平均温度系数②铂90%,铑10%*若电阻率单位用欧姆厘米(Ωcm )表示,表中数值应扩大100倍。
温度和电阻大小的关系
金属导体温度越高,电阻越大,温度越低,电阻越小。
超导现象:当温度降低到一定程度时,某些材料电阻消失。
电阻温度换算公式: r2=r1*(t+t2)/(t+t1) r2 。
金属材料在温度不高,温度变化不大的范围内:几乎所有金属的电阻率随温度作线性变化,即ρ与温度t(℃)的关系是ρt=ρ0(1+at),式中ρ1与ρ0分别是t℃和0℃时的电阻率;α是电阻率的温度系数,与材料有关。
锰铜的α约为1×10-1/℃(其数值极小),用其制成的电阻器的电阻值在常温范围下随温度变化极小,适合于作标准电阻。
已知材料的ρ值随温度而变化的规律后,可制成电阻式温度计来测量温度。
同意电阻率温度关系的主要因素就是载流子浓度和迁移率随其温度的变化关系。
在低温下:由于载流子浓度指数式增大(施主或受主杂质不断电离),而迁移率也是增大的(电离杂质散射作用减弱之故),所以这时电阻率随着温度的升高而下降。
在室温下:由于信士或山吉杂质已经全然电离,则载流子浓度维持不变,但迁移率将随着温度的增高而减少(晶格振动激化,引致声子反射进一步增强所致),所以电阻率将随着温度的增高而减小。
在高温下:这时本征激发开始起作用,载流子浓度将指数式地很快增大,虽然这时迁移率仍然随着温度的升高而降低(晶格振动散射散射越来越强),但是这种迁移率降低的作用不如载流子浓度增大的强,所以总的效果是电阻率随着温度的升高而下降。
回路电阻温度换算公式表
回路电阻的温度换算公式通常涉及到电阻随温度变化的规律。
在物理学中,电阻率随温度变化的关系可以表示为:ρ(T)=ρ₀[1+α(T-T₀)]
其中,
ρ(T)是温度为T时的电阻率
ρ₀是参考温度T₀时的电阻率
α是电阻的温度系数
T是当前温度
T₀是参考温度(通常是室温)
电阻R与电阻率ρ和导体的几何形状有关,但通常电阻与电阻率成正比。
因此,电阻R的温度换算公式可以表示为:R(T)=R₀[1+α(T-T₀)]
其中,
R(T)是温度为T时的电阻
R₀是参考温度T₀时的电阻
注意,这里的α是电阻的温度系数,它描述了电阻随温度变化的速率。
对于不同的材料,α的值可能会有所不同。
在实际应用中,电阻的温度系数α可以通过实验测量得到,或者从材料的物理性质中查找到。
此外,具体的换算公式可能还需要考虑导体的几何形状和其他因素。
例如,对于长直导线,电阻的温度换算公式可
能还需要考虑导线的长度和横截面积等因素。
金属电阻率及其温度系数Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】全系列金属电阻率及其温度系数常用金属导体在20℃时的电阻率材料电阻率(Ω m)(1)银× 10-8(2)铜× 10-8(3)铝× 10-8(4)钨× 10-8(5)铁× 10-8(6)铂× 10-7(7) × 10-7(8)汞× 10-7(9) × 10-7(10)镍铬合金× 10-6(11)铁铬铝合金× 10-6(12) 铝镍铁合金× 10-6(13)石墨(8~13)×10-6金属温度(0℃)ρ αo , 100锌20 ×10-3 ×10-3铝(软) 20铝(软)–78阿露美尔合金 20 33锑 0铱 20铟 0殷钢 0 75 2锇 20镉 20钾 20 ①钙 20金 20银 20铬(软) 20 17镍铬合金(克露美尔)— 70—110 .11—.54 钴a 0康铜— 50 –.04–黄铜– 5—7 –2水银 0水银 20锡 20锶 0青铜– 13—18铯 20 21铋 20 120铊 20 19 5钨 20钨 1000 35钨 3000 123钨–78钽 20 15金属温度(0℃)ρ αo , 100杜拉铝(软)—铁(纯) 20铁(纯)–78铁(钢)— 10—20 —5铁(铸)— 57—114铜(软) 20铜(软) 100铜(软)–78铜(软)–183钍 20 18钠 20 ①铅 20 21镍铬合金(不含铁) 20 109 .10镍铬合金(含铁) 20 95—104 .3—.5 镍铬林合金— 27—45 .2—.34镍(软) 20镍(软)–78铂 20铂 1000 43铂–78铂铑合金② 20 22钯 20砷 20 35镍铜锌电阻线— 34—41 .25—.32铍(软) 20镁 20锰铜 20 42—48 –03—+.02钼 20洋银— 17—41 .4—.38磷青铜— 2—6铷 20铑 20①0℃和融点间的平均温度系数②铂90%,铑10%*若电阻率单位用欧姆厘米(Ωcm )表示,表中数值应扩大100倍。
电阻率温度系数
电阻率温度系数是指某一电导体(如金属、半导体等)的电阻率随温度的变化情况。
在制造电子元件以及研究电流传导的过程中,电阻率温度系数起到了非常重要的作用。
本文将详细解释电阻率温度系数的概念,重要性以及影响因素。
一、电阻率温度系数的定义
电阻率温度系数(Temperature Coefficient of Resistance,TCR)指的是在温度变化时,材料电阻率的变化百分数与它原本的电阻值之比。
领域中广泛应用此系数来描述电导体材料在温度变化下的电导能力。
如随温度上升而增加的电阻器,其中电阻率温度系数为正。
二、电阻率温度系数的重要性
电子元件的制造中特别要考虑到元器件的温度系数。
由于在使用某些电子元件时,元器件在它应有的温度附近的电性能够得到稳定的保持。
所以,设计电子电路、开发各种元器件时都需要考虑它们的温度系数。
一些性能恒定的电路,需要元器件拥有一个特定的电阻温度系数,否则它可能无法稳定。
另外对于低噪声的电路,也需要特定的电阻体系。
三、电阻率温度系数的影响因素
电阻率温度系数是由电导体温度变化的原因引起的。
导体中的杂质也会影响电阻率温度系数,一些任何细微的杂质甚至会导致电阻体系温度系数的高达数百倍的减少。
另外,一些元素在不同的晶格结构下具有不同的电阻温度系数,因此也会影响电阻温度系数。
四、温度系数在实践中的应用
当用于元器件制造时,必须根据所需的特性去选择使用改材料在温度变化下的电性能。
电子电路中的所有电阻都要求温度系数相同,从而保证在不同温度下,相同类型的电阻的性能也是一样的。
在位于高海拔(如火星)的电子仪器和设备中,温度系数非常重要。
在这些环境中,由于大气稀薄,导致机器的温度往往不稳定。
综上,电阻率温度系数是电子元器件设计和制造过程中至关重要的因素。
在保证元器件的性能同时,还必须综合考虑成本,以确保元器件的质量。