北京市小学数学“迎春杯”竞赛第二届决赛试题及答案
- 格式:doc
- 大小:114.00 KB
- 文档页数:5
迎春杯历年试题全集学而思在线http://目录北京市第1届迎春杯小学数学竞赛决赛试题 (3)北京市第2届迎春杯小学数学竞赛决赛试题 (7)北京市第3届迎春杯小学数学竞赛决赛试题 (15)北京市第4届迎春杯小学数学竞赛决赛试题 (16)北京市第5届迎春杯小学数学竞赛决赛试题 (18)北京市第6届迎春杯小学数学竞赛决赛试题 (20)北京市第7届迎春杯小学数学竞赛决赛试题 (23)北京市第8届迎春杯小学数学竞赛决赛试题 (25)北京市第9届迎春杯小学数学竞赛决赛试题 (28)北京市第10届迎春杯小学数学竞赛决赛试题 (31)北京市第1届迎春杯决赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
2.计算:3.计算:4.一个五位数与9的和是最小的六位数,这个五位数是____。
5.某数的小数点向右移动一位,比原来的数大18,原来的数是____。
6.甲、乙两数的和是305.8,乙数的小数点向右移动一位就等于甲数,甲数等于____。
7.最大的四位数比最大的两位数多____倍。
8.在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于____。
9.在8个不同约数的自然数中,最小的一个是____。
10.甲数是36,甲乙两数的最小公倍数是288,最大公约数是4,乙数应该是____。
11.一个三位数,个位与百位上的数字的和与积都是4,三个数字相乘的积还是4,这个三位数是____。
12.一个三位数能同时被2、5、7整除,这样的三位数按由小到大的顺序排成一列,中间的一个是____。
13.一个分母是最小质数的真分数,如果这个分数的分子增加了4倍,分母加上8得到一个新的分数,那么这两个分数的和是____。
14.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的____倍。
15.水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原库存量多六分之一,原来库存水果____万斤。
目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
北京市迎春杯小学数学竞赛决赛历年试题全集(下)迎春杯历年试题全集(下)目录北京市第11届迎春杯小学数学竞赛决赛试题 (3)北京市第12届迎春杯决赛试题 (5)北京市第13届迎春杯决赛试题 (7)北京市第14届迎春杯决赛试题 (9)北京市第15届迎春杯决赛试题 (11)北京市第16届迎春杯小学数学竞赛预赛试题 (13)北京市第17届迎春杯科普活动日队际交流邀请赛试题 (14)北京市第18届迎春杯决赛试题 (17)北京市第19届迎春杯数学科普活动日计算机交流题 (19)北京市第20届迎春杯小学生竞赛试题 (21)北京市第21届迎春杯小学数学科普活动日数学解题能力展示初赛试卷 (23)北京市第11届迎春杯小学数学竞赛决赛试题1.计算:0.625×(+)+÷―2.计算:[(-×)-÷3.6]÷3.某单位举行迎春茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩下的苹果重量的和,恰好等于原来一箱的重量。
那么原来每箱苹果重________千克。
4.游泳池有甲、乙、丙三个注水管。
如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池。
那么,单开丙管需要________小时注满水池。
5.如图是由18个大小相同的小正三角形拼成的四边形。
其中某些相邻的小正三角形可以拼成较大的正三角形若干个。
那么,图中包含“*”号的大、小正三角形一共有________个。
6.如图,点D、E、F与点G、H、N分别是三角形ABC与三角形DEF各边的中点。
那么,阴影部分的面积与三角形ABC的面积比是。
7.五个小朋友A、B、C、D、E围坐一圈(如下图)。
老师分别给A、B、C、D、E发2、4、6、8、10个球。
然后,从A开始,按顺时针方向顺序做游戏:如果左邻小朋友的球的个数比自己少,则送给左邻小朋友2个球;如果左邻小朋友的球的个数比自己多或者同样多,就不送了。
六年级迎春杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是方的D. 地球是三角形的2. 以下哪个数学公式是正确的?A. 圆的面积 = 半径× 半径B. 圆的面积 = 半径× π × 半径C. 圆的周长 = 直径× 2D. 圆的周长 = 半径× 2π3. 根据题目所给信息,以下哪个选项是错误的?A. 春天是一年四季之一B. 迎春杯是冬季举行的竞赛C. 迎春杯是为了庆祝春天的到来D. 迎春杯通常在春季举行4. 以下哪个成语与“春天”有关?A. 春暖花开B. 秋高气爽C. 夏日炎炎D. 冬日暖阳5. 以下哪个选项是迎春杯试题的类型?A. 选择题B. 填空题C. 判断题D. 论述题二、填空题(每题2分,共10分)6. 春天是_________、_________、_________和_________四个季节之一。
7. 迎春杯试题的类型包括选择题、填空题、_________和_________。
8. 地球的形状是_________,因为它在自转和公转时表现出的离心力和引力的平衡。
9. 圆的周长公式是_________,其中C代表周长,d代表直径。
10. 成语“春暖花开”常用来形容_________。
三、判断题(每题1分,共5分)11. 迎春杯试题及答案的标题是“六年级迎春杯试题及答案”。
()12. 地球的形状是平的。
()13. 迎春杯试题通常在冬季举行。
()14. 成语“秋高气爽”与春天有关。
()15. 圆的面积公式是πr²,其中r代表半径。
()四、简答题(每题5分,共10分)16. 请简述迎春杯试题的特点。
17. 请解释为什么地球的形状是圆的。
五、论述题(15分)18. 论述春天对人们生活的影响。
参考答案:1. B2. B3. B4. A5. A6. 春、夏、秋、冬7. 判断题、论述题8. 圆的9. C = πd10. 春天的气候温暖,百花盛开的景象11. √12. ×13. ×14. ×15. √16. 迎春杯试题通常包括选择题、填空题、判断题和论述题,旨在考查学生的综合能力。
第二届迎春杯小学数学竞赛试题及答案1.有三个自然数,它们相加或相乘,都得到相同的结果,这三个数中最大的是____。
2.四个人年龄之和是77岁。
最小的10岁,他与最大的年龄之和比另外二人年龄之和大7岁,最大的年龄是______岁。
3.把被减数、减数、差相加得40,被减数是_____。
4.有一幢楼房高17层,相邻两层间都有17个台阶。
某人从一层走到十一层,一共要登_____个台阶。
5.有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,83人懂俄语,既懂英语又懂俄语的有_____人。
6.有一块三角形地,三条边分别为120米、150米、80米,每10米种一棵树,三条边上共种树______棵。
7.从401到1000的所有整数中,被8除余数为1的数有_____个。
8.用一个自然数与它自己相减、相加、相除所得的差、和、商三个数加起来恰好等于101,这个自然数是______。
9.四三班上操正好排成人数相等的三行,小明排在中间一行,从前从后数都是第八个,全班有学生______人。
10.把数字5写到一个三位数的左边,再把得到的四位数加上400,这时,他们的和是这个三位数的55倍,这个三位数是_____。
11.求图43空白部分的面积是正方形的_____。
(几分之几)12.有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16斤,大筐装的是小筐的4倍。
大、中、小三筐共有苹果_____斤。
13.甲乙两个数的和是1986,这两个数的积的首末数字之和最大是_____。
14.一张白纸,若裁成边长是4厘米的正方形,正好裁20块。
若裁面积是4平方厘米的直角三角形,可裁____块。
15.两个数相除商8,余16,被除数、除数、商与余数的和是463,被除数是____。
16.阳历1978年的1月1日是星期日,阳历2000年的1月1日是星期______。
17.在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,并且要求这个数值尽可能小。
迎春杯数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 32. 如果一个圆的半径是5厘米,那么它的周长是多少? - A. 10π厘米- B. 15π厘米- C. 20π厘米- D. 25π厘米3. 一个数的平方根是8,那么这个数是:- A. 16- B. 64- C. 8- D. 无法确定4. 以下哪个表达式的结果不是整数?- A. (-3)^2- B. √16- C. 2^3- D. 1/35. 以下哪个数是完全数?- A. 6- B. 28- C. 496- D. 36二、填空题(每空3分,共15分)1. 如果一个三角形的三个内角分别是50°、60°和______,那么它是一个锐角三角形。
2. 一个数的立方根是2,那么这个数是______。
3. 一个等差数列的前三项分别是2、5、8,那么它的公差是______。
4. 如果一个分数的分子是15,分母是______,那么它的倒数是1/3。
5. 一个圆的直径是14厘米,它的面积是______平方厘米(结果保留π)。
三、解答题(每题10分,共20分)1. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求它的体积。
2. 一个等差数列的前10项之和是110,首项是2,公差是d。
求这个数列的第10项。
四、证明题(每题10分,共10分)证明:对于任意的正整数n,n^3 - n^2 + n - 1 可以被6整除。
答案:一、选择题1. B2. C3. B4. D5. C二、填空题1. 70°2. 83. 34. 455. 39π三、解答题1. 长方体的体积是 3cm * 4cm * 5cm = 60立方厘米。
2. 等差数列的第10项是 2 + (10-1) * d = 2 + 9d,由于前10项之和是110,我们有 10 * (2 + 2 + (10-1) * d) / 2 = 110,解得 d = 3,因此第10项是 2 + 9 * 3 = 29。
迎春杯六年级试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 15B. 23C. 48D. 66答案:B2. 一个长方体的长、宽、高分别是10cm、8cm和6cm,那么它的体积是多少立方厘米?A. 480B. 400C. 320D. 240答案:A3. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 8D. 6答案:A4. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A5. 一个圆的直径是14cm,那么它的半径是多少?B. 14cmC. 21cmD. 28cm答案:A6. 一个数除以5余3,除以7余1,这个数最小是多少?A. 36B. 37C. 38D. 39答案:B7. 一个等腰三角形的底边长为10cm,两腰长为8cm,那么它的周长是多少?A. 26cmB. 28cmD. 32cm答案:A8. 一个数的5倍加上3等于这个数的7倍减去5,这个数是多少?A. 4B. 5C. 6D. 7答案:A9. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,那么它的面积不变,原来的长方形的长和宽分别是多少?A. 长8cm,宽4cmB. 长10cm,宽5cmC. 长12cm,宽6cmD. 长14cm,宽7cm答案:B10. 一个数的1/4加上这个数的1/3等于9,这个数是多少?A. 12B. 18C. 24D. 36答案:C二、填空题(每题4分,共40分)11. 一个数的倒数是1/5,这个数是______。
答案:512. 一个数的1/2加上这个数的1/3等于7,这个数是______。
答案:1213. 一个数的3倍减去2等于这个数的2倍加上3,这个数是______。
答案:514. 一个长方体的长、宽、高分别是a、b、c,那么它的表面积是______。
答案:2(ab + ac + bc)15. 一个数的1/4加上这个数的1/6等于1/2,这个数是______。
北京市小学数学“迎春杯”竞赛第二届决赛试题及答案一、填空1.1986年春节(2月9日)是星期日,再过19881986天是星期______。
2.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆。
每堆中这三种课本的数量分别相等,那么最多可分______堆。
3.两个学生各要买一本同样的书。
甲买这本书缺1分钱,乙买这本书缺0.48元,当他们合买这本书时,钱仍不够,则这本书的价钱是____元。
5.某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是______。
6.四个连续自然数的积为1680,则这四个自然数中最小的是____。
7.下面乘法的算式:则ABCDE是______。
8.计算:9.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天,现在让三个队合修,但中间甲队撤出去到另外工地,结果用了6天才把这条公路修完。
当甲队撤出后,乙丙两队又共同合修了____天才完成。
10.有甲、乙、丙三个人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米,如果三个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么____分钟之后,三个人又可以相聚。
二、选择题:每个题给出几个供选择的答案,其中只有一个正确答案,请将正确答案的序号①、②、③、④用“√”标出来。
1.图49是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长为1厘米的正方体,做成一种玩具,它的表面积是x平方厘米,那么x等于:①114;②120;③126;④132。
的分数之和等于1。
3.用9个钉子钉成相互间隔为1厘米的正方阵(如题后所示)。
如果用一根橡皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数是:①24;②28;③30;④32。
根据以上的规定,10*6应等于:①13;②27;③33;④60。
5.把自然数中的偶数2、4、6、8,…依次排成5列(如下面所示),把最左边的一列叫做第1列,从左到右依次编号,这样,数“1986”出现在第几列?第1列第2列第3列第4列第5列2 4 6 816 14 12 1018 20 22 2432 30 28 26…… … …四、把下列除法算式中的“*”所表示的数字写出来:五、试在15个8之间适当的位置填上适当的运算符号:+、-、×、÷,使运算结果等于1986。
北京市小学数学“迎春杯”竞赛第二届决赛试题及答案
一、填空
1.1986年春节(2月9日)是星期日,再过19881986天是星期______。
2.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆。
每堆中这三种课本的数量分别相等,那么最多可分______堆。
3.两个学生各要买一本同样的书。
甲买这本书缺1分钱,乙买这本书缺0.48元,当他们合买这本书时,钱仍不够,则这本书的价钱是____元。
5.某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是______。
6.四个连续自然数的积为1680,则这四个自然数中最小的是____。
7.下面乘法的算式:
则ABCDE是______。
8.计算:
9.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天,现在让三个队合修,但中间甲队撤出去到另外工地,结果用了6
天才把这条公路修完。
当甲队撤出后,乙丙两队又共同合修了____天才完成。
10.有甲、乙、丙三个人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米,如果三个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么____分钟之后,三个人又可以相聚。
二、选择题:每个题给出几个供选择的答案,其中只有一个正确答案,请将正确答案的序号①、②、③、④用“√”标出来。
1.图49是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长为1厘米的正方体,做成一种玩具,它的表面积是x平方厘米,那么x等于:
①114;②120;
③126;④132。
的分数之和等于1。
3.用9个钉子钉成相互间隔为1厘米的正方阵(如题后所示)。
如果用一根橡皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数是:
①24;②28;③30;④32。
根据以上的规定,10*6应等于:
①13;②27;③33;④60。
5.把自然数中的偶数2、4、6、8,…依次排成5列(如下面所示),把最左边的一列叫做第1列,从左到右依次编号,这样,数“1986”出现在第几列?
第1列第2列第3列第4列第5列
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26
…… … …
四、把下列除法算式中的“*”所表示的数字写出来:
五、试在15个8之间适当的位置填上适当的运算符号:+、-、×、÷,使运算结果等于1986。
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8=1986
六、铁路旁有一条小路,一列长110米的火车以每小时30公里的速度向北缓缓驶去,14时10分追上向北行走的一位工人,15秒钟后离开这个工人,14时16分迎面遇到一个向南走的学生,12秒后离开这个学生,问工人与学生将在何时相遇?
七、某花园的小径如图50所示。
一个人能不能从图中第1个点的位置出发,不重复地走过所有小径?如果能,请标出所经过各点的顺序(如:1→2→3→…→1)。
如果不能,请标出至少必须重复的小径(如1→2,2→3,8→9或11→12等等)。
参考答案
一、填空
1.星期日。
2.14。
3.0.48。
4.336。
5.1。
6.5。
二、选择题
三、2人。
四、如下面的算式:
五、8888÷8+888-88÷8-8÷8-8÷8。
六、14点40分。
七、不能,必须重复3-4,5-6,7-8。
部分解答与提示
一、填空
1.19881986表示1986个1988相乘。
4.把1986分解质因数。
二、选择题
2.把四个答案代入逐个试验。
3.用“分类”的办法考虑。
4.牢记“*”的意义。
5.把题中2,4,6,8,……改为1,2,3,4,……后考虑993的位置。
三、先求出原有女生人数。
六、先求出工人与学生的速度。
七、此为“一笔画”问题,研究图形中的奇点。