高三数学9月联考试题理
- 格式:doc
- 大小:1.03 MB
- 文档页数:9
2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题一、单选题1.已知集合{A x y ==,{}22,B y y x x R ==-+∈,则A B =( )A .(,2]-∞B .[1,2]C .[1,2)D .[1,)+∞【答案】B【解析】转化条件为{}1A x x =≥,{}2B y y =≤,再由集合的交集运算即可得解.【详解】因为{{}1A x y x x ===≥,{}{}22,2B y y x x R y y ==-+∈=≤,所以{}[]121,2A B x x ⋂=≤≤=. 故选:B.【点睛】本题考查了集合的交集运算,考查了运算求解能力,属于基础题. 2.利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C【分析】设3()log 3f x x x =-+,根据当连续函数()f x 满足f (a )f (b )0<时,()f x 在区间(,)a b 上有零点,即方程3log 3x x =-在区间(,)a b 上有解,进而得到答案. 【详解】解:设3()log 3f x x x =-+,当连续函数()f x 满足f (a )f (b )0<时,()f x 在区间(,)a b 上有零点, 即方程3log 3x x =-在区间(,)a b 上有解, 又f (2)3log 210=-<,f (3)3log 33310=-+=>,故f (2)f (3)0<,故方程3log 3x x =-在区间(2,3)上有解,即利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是(2,3). 故选:C . 3.若函数y的定义域为R ,则实数a 的取值范围是( )A .(0,12]B .(0,12) C .[0,12]D .[0,12)【答案】D【分析】根据题意将问题转化为二次型不等式恒成立问题,结合对参数a 的讨论,根据∆即可求得结果.【详解】要满足题意,只需2420ax ax -+>在R 上恒成立即可. 当0a =时,显然满足题意. 当0a >时,只需2Δ1680a a =-<, 解得10,2a ⎛⎫∈ ⎪⎝⎭.综上所述,10,2a ⎡⎫∈⎪⎢⎣⎭故选:D .【点睛】本题考查二次型不等式恒成立求参数范围的问题,属基础题.4.已知公比为q 的等比数列{}n a 前n 项和为n S ,则“1q >”是“{}n S 为递增数列”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要 【答案】D【分析】根据充分条件和必要条件的定义,结合等比数列的性质即可得到结论. 【详解】解:①在等比数列中,若1,2q n >≥时,1n n n S S a --=,当10a <时,110n n a a q -=<,则1n n S S -<,此时{}n S 为递减数列,即充分性不成立; ②若“{}n S 为递增数列”,即2n ≥时,1n n S S ->,则有10n n S S -->,而110n n a a q -=>并不能推得1q >,如111,2a q ==,故必要性不成立, 故“1q >”是“{}n S 为递增数列”的既不充分也不必要条件, 故选:D.5.已知函数()f x 的导函数f x 的图像如图所示,那么函数()f x 的图像最有可能的是( )A .B .C .D .【答案】A【分析】由导函数图象可知原函数的单调区间,从而得到答案.【详解】由导函数图象可知,()f x 在(-∞,-2),(0,+∞)上单调递减, 在(-2,0)上单调递增, 故选:A . 6.函数6()e 1||1xmxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4 C .6 D .与m 值有关【答案】C【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解.【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞,所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.7.函数f (x )的图象与其在点P 处的切线如图所示,则()()11f f -'等于( )A .-2B .0C .2D .4【答案】D【分析】根据图象求出切线斜率和方程,由导数的几何意义和切点在切线上可解. 【详解】由题意,切线经过点(2,0),(0,4),可得切线的斜率为40202k -==--,即()12f '=-,又由切线方程为24y x =-+,令1x =,可得2y =,即()12f =, 所以()()11224f f '-=+=. 故选:D8.若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞【答案】B【分析】求导,导函数在[e,)+∞上恒非负,根据恒成立的问题的办法解决.【详解】()1ln f x x a '=+-,又()f x 在[e,)+∞上单调递增,故()0f x '≥在[e,)+∞上恒成立,而[e,)x ∈+∞时,易见min ()2f x a '=-,只需要20a -≥即可,故2a ≤. 故选:B.9.已知()1xf x e =-(e 为自然对数的底数),()ln 1g x x =+,则()f x 与()g x 的公切线条数( )A .0条B .1条C .2条D .3条【答案】C【分析】设直线l 是()f x 与()g x 的公切线,分别设出切点,分别得出切线方程,根据方程表示同一直线,求出参数即可得到答案.【详解】根据题意,设直线l 与()1xf x e =-相切于点(),1m m e - ,与()g x 相切于点(),ln 1n n +,对于()1x f x e =-,()x f x e '=,则1mk e =则直线l 的方程为()1m my e e x m +-=- ,即(1)1m m y e x e m =+--,对于()ln 1g x x =+,()1g x x'=,则21=k n则直线l 的方程为()()1ln 1y n x n n -+=-,即1ln y x n n=+, 直线l 是()f x 与()g x 的公切线,则()11ln 1m m e n m e n ⎧=⎪⎨⎪-=+⎩, 可得110mm e ,即0m =或1m =则切线方程为:1y ex =- 或y x =,切线有两条. 故选:C10.已知()()11e x f x x -=-,()()21g x x a =++,若存在1x ,2R x ∈,使得()()21f x g x ≥成立,则实数a 的取值范围为( ) A .1,e ∞⎡⎫+⎪⎢⎣⎭B .1,e ∞⎛⎤- ⎥⎝⎦C .()0,eD .1,0e ⎡⎫-⎪⎢⎣⎭【答案】B【分析】原命题等价于max min ()()f x g x ≥,再求max ()f x 和min ()g x 解不等式即得解. 【详解】12R ,x x ∃∈,使得()()21f x g x ≥成立,则max min ()()f x g x ≥,由题得()()111e 1e e x x xf x x x ---=-+-=-',当0x >时,()0f x '<,当0x <时,()0f x '>,所以函数()f x 在(-∞,0)单调递增,在(0,+∞)单调递减, 所以()()max 10ef x f ==,由题得min ()(1)g x g a =-=, ∴1ea ≤故选:B.11.已知函数3,0,()212,0,x x f x x x ⎧≥⎪=⎨-++<⎪⎩若存在唯一的整数..x ,使得03()2x a f x -<-成立,则所有满足条件的整数..a 的取值集合为( ) A .{2,1,0,1,2}-- B .{2,1,0,1}-- C .{1,0,1,2}- D .{1,0,1}-【答案】B【分析】作出()3()g x f x =的图象,由不等式的几何意义:曲线上一点与(),2a 连线的直线斜率小于0,结合图象即可求得a 范围.【详解】令33,0,()3()616,0,x x g x f x x x ⎧≥⎪==⎨-++<⎪⎩作出()g x 的图象如图所示:03()2x a f x -<-等价于()20ax x g --<,表示点()(),x g x 与点(),2a 所在直线的斜率,可得曲线()g x 上只有一个整数点()(),x g x 与(),2a 所在的直线斜率小于0,而点(),2a 在直线2y =上运动,由()20,(1)6,(0)0g g g -=-== 可知当-21a ≤≤-时,只有点()00,满足()20a x x g --<,当01a ≤≤时,只有点()16-,满足()20ax x g --<,当1a >时,至少有()16-,,()13,满足()20ax x g --<,不满足唯一整数点,故舍去, 当2a <-时,至少有()()0020-,,,满足()20ax x g --<,不满足唯一整数点,故舍去, 因为a 为整数,故a 可取2101--,,, 故选:B12.已知6ln1.25a =,0.20.2e b =,13c =,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】A【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1x g x x =--,则()e 1xg x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>, 所以函数()g x 在(),0∞-上递减,在()0,∞+上递增, 所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >, 所以c b >, 综上所述a b c <<. 故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.二、填空题13.已知命题“R x ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为______. 【答案】(,2][2,)-∞-+∞【解析】根据“R x ∀∈,210x ax ++> ”是假命题,得出它的否定命题是真命题,求出实数a 的取值范围.【详解】解:∵命题“R x ∀∈,210x ax ++> ”是假命题, ∴R x ∃∈,210x ax ++≤是真命题, 即R x ∃∈使不等式210x ax ++≤有解; 所以240a ∆=-≥,解得:2a ≤-或2a ≥. ∴实数a 的取值范围是(,2][2,)-∞-+∞. 故答案为:(,2][2,)-∞-+∞.【点睛】本题主要考查根据特称命题与全称命题的真假求参数,考查了一元二次不等式能成立问题,属于基础题.14.已知()f x 为R 上的奇函数,且()()20f x f x +-=,当10x -<<时,()2xf x =,则()22log 5f +的值为______. 【答案】45--0.8【分析】由题设条件可得()f x 的周期为2,应用周期性、奇函数的性质有()2242log 5(log )5f f +=-,根据已知解析式求值即可.【详解】由题设,(2)()()f x f x f x -=-=-,故(2)()f x f x +=,即()f x 的周期为2,所以()22225542log 5(22log )(log )(log )445f f f f +=⨯+==-,且241log 05-<<,所以()24log 5242log 525f +=-=-.故答案为:45-.15.已知函数()1,03,0x x f x x x x ⎧+>⎪=⎨⎪-+≤⎩,若方程()f x a =有三个不同的实数根123,,x x x ,且123x x x <<,则123ax x x +的取值范围是________.【答案】(]1,0-【分析】画出函数图象,数形结合得到a 的取值范围,且23x x a +=,解不等式得到(]11,0x ∈-,从而求出(]11231,0ax x x x =∈-+. 【详解】画出函数()f x 的图象:由函数()f x 的图象可知:10x ≤,23a <≤,令1x a x+=,则210x ax -+=, 所以23x x a +=,令1233x <-+≤,解得:(]11,0x ∈-,所以(]11231,0ax x x x =∈-+. 故答案为:(]1,0-.16.已知函数()()()2log 120kx kf x x k k +=+->,若存在0x >,使得()0f x ≥成立,则k的最大值为______. 【答案】12eln 【分析】由()0f x ≥,可得()()()()121log 1120k x x x k x +++-+≥,同构函数()2log g x x x =,结合函数的单调性,转化为()()2log 11x h x x +=+的最大值问题.【详解】由()()2log 120kx kf x x k +=+-≥,可得()()()()121log 1120k x x x k x +++-+≥ 即()()()()121log 112k x x x k x +++≥+,()()()()11221log 12log 2k x k x x x ++++≥⋅构造函数()2log g x x x =,显然在()1,+∞上单调递增, ∴()112k x x ++≥,即()2log 11x k x +≤+,令()()2log 11x h x x +=+,即求函数的最大值即可,()()()()()222221log 1log log 1ln 211x e x h x x x -+-+'==++, ∴在()1,1e -上单调递增,在()1,e -+∞上单调递减, ∴()h x 的最大值为()11ln 2h e e -= ∴10e 2k ln <≤,即k 的最大值为1e 2ln 故答案为:1e 2ln .三、解答题17.已知(){}23log 212A x x x =-+>,11216x aB x -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.(1)当2a =时,求R A B ⋂;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围. 【答案】(1)R {2A B x x ⋂=<-或46}<≤x (2)0a ≥【分析】(1)先求出,A B ,从而可求R B ,故可求R A B ⋂.(2)根据题设条件可得B A ⊆,从而可求0a ≥.【详解】(1){}2|219{2A x x x x x =-+>=<-或4}x >,当2a =时211{6}216x B x x x -⎧⎫⎪⎪⎛⎫=<=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}R6B x x =≤,所以R {2A B x x ⋂=<-或46}<≤x ,(2)11{4}216x aB x x x a -⎧⎫⎪⎪⎛⎫=<=>+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,由“x A ∈”是“x B ∈”的必要条件得B A ⊆ 所以44+≥a ,解得0a ≥.18.命题p :22430x ax a -+->(0a >),命题q :302x x -<-. (1)当1a =且p q ∧为真,求实数x 的取值范围; (2)若p ⌝ 是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)(2,3) (2)[1,2]【分析】(1)结合已知条件分别化简命题p 和q ,然后由1a =且p q ∧为真即可求解; (2)结合(1)中结论分别求出p ⌝ 和q ⌝,然后利用充分不必要的概念即可求解. 【详解】(1)结合已知条件可知,22430()(3)03x ax a x a x a a x a -+->⇔--<⇔<<, 30(2)(3)0232x x x x x -<⇔--<⇔<<-, 当1a =时,命题p :13x <<,命题q :23x <<, 因为p q ∧为真,所以132323x x x <<⎧⇒<<⎨<<⎩,故求实数x 的取值范围为(2,3).(2)结合(1)中可知,命题p ⌝:x a ≤或3x a ≥,命题q ⌝:2x ≤或3x ≥, 因为p ⌝ 是q ⌝的充分不必要条件,所以{|x x a ≤或3}x a ≥是{|2x x ≤或3}x ≥的真子集,从而0233a a <≤⎧⎨≥⎩且等号不同时成立,解得12a ≤≤,故实数a 的取值范围为[1,2].19.函数()2131log 1x x x f x x x ⎧-≤⎪⎨>⎪⎩+,=,,()2g x x k x =-+-,若对任意的12,R x x ∈,都有()()12f x g x ≤成立.(1)求函数()g x 的最小值; (2)求k 的取值范围. 【答案】(1)|k -2| (2)79,,44⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】(1)根据绝对值的三角不等式,即可得答案.(2)分析可得求max min ()()f x g x ≤即可,根据()f x 解析式,作出图象,结合函数的性质,可得max ()f x ,所以可得|k -2|≥14,根据绝对值不等式的解法,即可得答案. 【详解】(1)因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以min ()2g x k =- (2)对任意的12,R x x ∈,都有()()12f x g x ≤成立,即max min ()()f x g x ≤ 观察f (x )=2131log 1x x x x x ⎧-≤⎪⎨>⎪⎩+,,的图象,结合函数性质可得,当x =12时,函数max 1()4f x = 所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是79,,44⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭20.低碳环保,新能源汽车逐渐走进千家万户.新能源汽车采用非常规的车用燃料作为动力来源,目前比较常见的主要有两种:混合动力汽车、纯电动汽车.为了提高生产质量,有关部门在国道上对某型号纯电动汽车进行测试,国道限速80km/h.经数次测试,得到纯电动汽车每小时耗电量Q (单位:wh )与速度x (单位:km/h )的数据如下表所示: x 0 10 40 60 Q132544007200为了描述该纯电动汽车国道上行驶时每小时耗电量Q 与速度x 的关系,现有以下三种函数模型供选择:①3211()40=++Q x x bx cx ;②22()10003⎛⎫=-+ ⎪⎝⎭xQ x a ;③3()300log a Q x x b =+.(1)当080x ≤≤时,请选出你认为最符合表格中所列数据的函数模型(需说明理由),并求出相应的函数表达式;(2)现有一辆同型号纯电动汽车从A 地行驶到B 地,其中,国道上行驶30km ,高速上行驶200km.假设该电动汽车在国道和高速上均做匀速运动,国道上每小时的耗电量Q 与速度x 的关系满足(1)中的函数表达式;高速路上车速v (单位:km/h )满足[80,120]v ∈,且每小时耗电量N (单位:wh )与速度v (单位:km/h )的关系满足()()221020080120N v v v v =-+≤≤.则当国道和高速上的车速分别为多少时,该车辆的总耗电量最少,最少总耗电量为多少? 【答案】(1)选①,理由见解析;321()215040=-+Q x x x x (2)高速上的行驶速度为80km/h ,在国道上的行驶速度为40km/h ;33800wh【分析】(1)判断③、②不符合题意,故选①,再利用待定系数法求解即可. (2)根据已知条件,结合二次函数的性质,以及对勾函数的性质进行求解. 【详解】(1)解:对于③3()300log a Q x x b =+,当0x =时,它无意义,故不符合题意,对于②,22()1000()3x Q x a =-+,()0220100003Q a ⎛⎫=-+= ⎪⎝⎭,解得999a =-,则22()13x Q x ⎛⎫=- ⎪⎝⎭,当10x =时,()02121013Q ⎛⎫=- ⎪⎝⎭,又100122033<⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝=⎭,所以()021210131Q ⎛⎫=- ⎪⎭<⎝,故不符合题意,故选①3211()40=++Q x x bx cx , 由表中数据,可得323211010101325401404040440040b c b c ⎧⨯+⨯+⨯=⎪⎪⎨⎪⨯+⨯+⨯=⎪⎩,解得2150b c =-⎧⎨=⎩,321()215040Q x x x x ∴=-+. (2)解:高速上行驶200km ,所用时间为200h v, 则所耗电量为2200200100()()(210200)400()2000f v N v v v v v v v=⋅=⋅-+=+-,由对勾函数的性质可知,()f v 在[80,120]上单调递增,min 100()(80)400(80)200030500wh 80f v f ∴==⨯+-=, 国道上行驶30km ,所用时间为30h v, 则所耗电量为322303013()()(2150)604500404g v Q v v v v v v v v =⋅=⋅-+=-+, 080v ≤≤,∴当40v =时,min ()(40)3300wh g x g ==,∴当这辆车在高速上的行驶速度为80km /h ,在国道上的行驶速度为40km/h 时,该车从A 地行驶到B 地的总耗电量最少,最少为30500330033800wh +=. 21.已知函数()ln af x x b x x=--. (1)若函数()f x 在1x =处的切线是10x y +-=,求a b +的值; (2)当1a =时,讨论函数()f x 的零点个数. 【答案】(1)4a b +=(2)当2b ≤时,()f x 在()0,∞+上有且只有1个零点,当2b >时,()f x 在()0,∞+上有3个零点.【分析】(1)利用导数的几何意义即可求解;(2)由(1)知()1ln f x x b x x =--,求导()221x bx f x x -+'=,分类讨论22b -≤≤,2b <-和2b >时,利用导数研究函数的单调性,进而得出函数的零点.【详解】(1)∵切点()()1,1f 也在切线10x y +-=上,∴1110a -+-=,即1a =. 函数()ln a f x x b x x =--,求导()21a bf x x x'=+-, 由题设知()111f a b =+-=-',即3b =, ∴4a b +=.(2)当1a =时,()1ln f x x b x x =--,0x >求导()222111b x bx f x x x x -+'=+-=. ①当22b -≤≤时,二次函数210x bx -+≥恒成立,即()0f x '≥在()0,x ∈+∞上恒成立,()f x 在()0,∞+上单调递增, 又()10f =,故()f x 在()0,∞+上有且只有1个零点.②当2b <-时,方程210x bx -+=有两个不同的根,设12,x x ,此时120x x b +=<,1210x x =>,即10x <,20x <,()0f x '>在()0,x ∈+∞上恒成立,()f x 在()0,∞+上单调递增,故()f x 在()0,∞+上有且只有1个零点.③当2b >时,方程210x bx -+=有两个不同的根,设12,x x , 此时120x x b +=>,1210x x =>,即1201x x <<<, 当10x x <<时,()0f x '>,()f x 在()10,x 上单调递增; 当12x x x <<时,()0f x '<,()f x 在()12,x x 上单调递减; 当2x x >时,()0f x '>,()f x 在()2,x +∞上单调递增. 又()()()1210f x f f x >=>,所以21111e ln e 0e ee e bb bb b bf b b ⎛⎫=--=-+< ⎪⎝⎭在()2,b ∈+∞上恒成立, 所以()f x 在()10,x 上有且只有1个零点.又()10f =,故()f x 在()12,x x 上有且只有1个零点.又()2111e e ln e e 0e e e b bb b b b b f b b f ⎛⎫=--=--=-> ⎪⎝⎭在()2,b ∈+∞上恒成立, 故()f x 在()2,x +∞上有且只有1个零点.综上所述,当2b ≤时,()f x 在()0,∞+上有且只有1个零点,当2b >时,()f x 在()0,∞+上有3个零点.22.已知函数()()2ln 211f x x ax a x a =+-+++,其中R a ∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)设()()g x f x '=,求函数()g x 在区间[]1,2上的最小值 (3)若()f x 在区间[]1,2上的最大值为2ln21-,直接写出a 的值. 【答案】(1)0y = (2)详见解析 (3)ln 2【分析】(1)求导求切线方程;(2)求导,含参讨论求最值;(3)求导判断单调性验证成立即可【详解】(1)()()2ln 211f x x ax a x a =+-+++,则()10f =()()1221f x ax a x'=+-+,则()10k f '== 则曲线()y f x =在点()1,0处的切线方程为0y = (2)()()1()221g x f x ax a x'==+-+,[]1,2x ∈ 则222121()2ax g x a x x-'=-+=,[]1,2x ∈ ①当0a ≤时,2221()0ax g x x -'=<,则()g x 在[]1,2上单调递减,()g x 在[]1,2上的最小值为()11(2)421222g a a a =+-+=-②当108a <≤时,由[]1,2x ∈,可得2281ax a ≤≤,则2221()0ax g x x-'=≤ 则()g x 在[]1,2上单调递减,()g x 在[]1,2上的最小值为1(2)22g a =-③当1182a <<时,222221()a x x ax g x x x ⎛ -⎝⎭⎝⎭'==,[]1,2x ∈当1x ≤<()0g x '<,()g x 单调递减;2x ≤时,()0g x '>,()g x 单调递增则当x =()g x取最小值()2211)1g a a =+=- ④当12a ≥时,由[]1,2x ∈,可得2221ax a ≥≥,则2221()0ax g x x -'=≥则()g x 在[]1,2上单调递增,()g x 在[]1,2上的最小值为(1)0g = (3)ln 2a =,理由如下:此时,函数()()2ln 211ln 2ln 2ln 2f x x x x =+-+++,[]1,2x ∈则()()()ln 21(1)ln 2ln 221221x f x x x xx '-+--=+= 由[]1,2x ∈,可得ln 2ln 2ln 4122x ≥=>,10x -≥,0x > 则()()ln 21(120)x f x x x--'=≥,则()f x 在[]1,2单调递增.则()f x 在[]1,2上的最大值为()()ln 2ln 2ln 2ln 212ln2422112f =-+++=-+。
湖南省“湘豫联考”2025届高三9月联考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知x,y∈R,i为虚数单位,则“x=−1,y=2”是“x+yi=(2+i)i”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知双曲线C:x29−y2m=1的离心率为3,则m的值为( )A. 18B. 32C. 27D. 233.数据7,3,6,5,10,14,9,8,12的第60百分位数为( )A. 14B. 9.5C. 8D. 94.已知函数f(x)={log2x,x>0,(x+1)2,x<0,g(x)=f(−x)+1,则g(x)的图象大致是( )A. B.C. D.5.在等比数列{a n}中,记其前n项和为S n,已知a3=−a2+2a1,则S8S4的值为( )A. 2B. 17C. 2或8D. 2或176.在一个不透明箱子中装有10个大小、质地完全相同的球,其中白球7个,黑球3个.现从中不放回地依次随机摸出两个球,已知第二次摸出的是黑球,则第一次摸出的是白球的概率为( )A. 710B. 79C. 23D. 567.已知关于x 的不等式(x−2a)[x 2−(2a +1)x +1]≥0对任意x ∈(0,+∞)恒成立,则实数a 的取值范围是( )A. [−32,0]B. [−32,12]C. (−∞,0]D. (−∞,−32)8.在平面直角坐标系中,点P 的坐标为(0,52),圆C:(x−5)2+(y−52)2=1,点T(t,0)为x 轴上一动点.现由点P 向点T 发射一道粗细不计的光线,光线经x 轴反射后与圆C 有交点,则t 的取值范围为( )A. [158,103]B. [74,103]C. [74,278]D. [158,278]二、多选题:本题共3小题,共15分。
在每小题给出的选项中,有多项符合题目要求。
数学试卷(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{13},{(2)(4)0}A xx B x x x =≤≤=--<∣∣,则A B = ()A.(2,3] B.[1,2)C.(,4)-∞ D.[1,4)【答案】A 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{(2)(4)0}{24}B xx x x x =--<=<<∣∣,而{|13}A x x =≤≤,则(2,3]A B ⋂=.故选:A.2.已知命题2:,10p z z ∃∈+<C ,则p 的否定是()A.2,10z z ∀∈+<CB.2,10z z ∀∈+≥C C.2,10z z ∃∈+<C D.2,10z z ∃∈+≥C 【答案】B 【解析】【分析】根据存在量词命题的否定形式可得.【详解】由存在量词命题的否定形式可知:2:,10p z z ∃∈+<C 的否定为2,10z z ∀∈+≥C .故选:B3.正项等差数列{}n a 的公差为d ,已知14a =,且135,2,a a a -三项成等比数列,则d =()A.7B.5C.3D.1【答案】C【解析】【分析】由等比中项的性质再结合等差数列性质列方程计算即可;【详解】由题意可得()23152a a a -=,又正项等差数列{}n a 的公差为d ,已知14a =,所以()()2111224a d a a d +-=+,即()()222444d d +=+,解得3d =或1-(舍去),故选:C.4.若sin160m ︒=,则︒=sin 40()A.2m -B.2-C.2-D.2【答案】D 【解析】【分析】利用诱导公式求出sin 20︒,然后结合平方公式和二倍角公式可得.【详解】因为()sin160sin 18020sin 20m ︒=︒-︒=︒=,所以cos 20︒==,所以sin 402sin 20cos 202︒=︒︒=故选:D5.已知向量(1,2),||a a b =+= ,若(2)b b a ⊥- ,则cos ,a b 〈〉=()A.5-B.10-C.10D.5【答案】C 【解析】【分析】联立||a b += 和(2)0b b a ⋅-=求出,b a b ⋅ 即可得解.【详解】因为(1,2)a = ,所以a =,所以222||27a b a b a b +=++⋅=,整理得222b a b +⋅=①,又(2)b b a ⊥- ,所以2(2)20b b a b a b ⋅-=-⋅=②,联立①②求解得11,2b a b =⋅= ,所以12cos ,10a b a b a b⋅〈〉=== .故选:C 6.函数)()ln f x kx =是奇函数且在R 上单调递增,则k 的取值集合为()A.{}1-B.{0}C.{1}D.{1,1}-【答案】C 【解析】【分析】根据奇函数的定义得()))()222()ln lnln 10f x f x kx kx x k x -+=-+=+-=得1k =±,即可验证单调性求解.【详解】)()lnf x kx =+是奇函数,故()))()222()ln ln ln 10f x f x kx kx x k x -+=-+=+-=,则22211x k x +-=,210k -=,解得1k =±,当1k =-时,)()lnf x x ==,由于y x =在0,+∞为单调递增函数,故()lnf x =0,+∞单调递减,不符合题意,当1k =时,)()lnf x x =+,由于y x =在0,+∞为单调递增函数且()00f =,故)()ln f x x =为0,+∞单调递增,根据奇函数的性质可得)()ln f x x =+在上单调递增,符合题意,故1k =,故选:C7.函数π()3sin ,06f x x ωω⎛⎫=+> ⎪⎝⎭,若()(2π)f x f ≤对x ∈R 恒成立,且()f x 在π13π,66⎡⎤⎢⎣⎦上有3条对称轴,则ω=()A.16 B.76C.136D.16或76【答案】B【解析】【分析】根据()2π3,2π2f T T =≤<求解即可.【详解】由题知,当2πx =时()f x 取得最大值,即π(2π)3sin 2π36f ω⎛⎫=+= ⎪⎝⎭,所以ππ2π2π,Z 62k k ω+=+∈,即1,Z 6k k ω=+∈,又()f x 在π13π,66⎡⎤⎢⎥⎣⎦上有3条对称轴,所以13ππ2π266T T ≤-=<,所以2π12T ω≤=<,所以76ω=.故选:B8.设椭圆2222:1(0)x y E a b a b +=>>的右焦点为F ,过坐标原点O 的直线与E 交于A ,B 两点,点C 满足23AF FC = ,若0,0AB OC AC BF ⋅=⋅=,则E 的离心率为()A.9B.7C.5D.3【答案】D 【解析】【分析】设(),A m n ,表示出,,,OA OC AF BF,根据0,0AB OC AC BF ⋅=⋅= 列方程,用c 表示出,m n ,然后代入椭圆方程构造齐次式求解可得.【详解】设(),A m n ,则()(),,,0B m n F c --,则()()(),,,,,OA m n AF c m n BF c m n ==--=+,因为23AF FC = ,所以()555,222n AC AF c m ⎛⎫==-- ⎪⎝⎭,所以()()55533,,,22222n c n OC OA AC m n c m m ⎛⎫⎛⎫=+=+--=-- ⎪ ⎪⎝⎭⎝⎭ ,因为0,0AB OC AC BF ⋅=⋅=,所以222253302220c OA OC m m n AF BF c m n ⎧⎛⎫⋅=--=⎪ ⎪⎝⎭⎨⎪⋅=--=⎩ ,得34,55m c n c ==,又(),A m n 在椭圆上,所以222291625251c ca b+=,即()()222222229162525c a c a c a a c -+=-,整理得4224255090a a c c -+=,即42950250e e -+=,解得259e =或25e =(舍去),所以3e =.故选:D【点睛】关键点睛:根据在于利用向量关系找到点A 坐标与c 的关系,然后代入椭圆方程构造齐次式求解.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.数列{}n a 的前n 项和为n S ,已知22()n S kn n k =-∈R ,则下列结论正确的是()A.{}n a 为等差数列B.{}n a 不可能为常数列C.若{}n a 为递增数列,则0k >D.若{}n S 为递增数列,则1k >【答案】AC 【解析】【分析】根据,n n a S 的关系求出通项n a ,然后根据公差即可判断ABC ;利用数列的函数性,分析对应二次函数的开口方向和对称轴位置即可判断D .【详解】当1n =时,112a S k ==-,当2n ≥时,()()()221212122n n n a S S kn n k n n kn k -⎡⎤=-=-----=-+⎣⎦,显然1n =时,上式也成立,所以()22n a kn k =-+.对A ,因为()()()1222122n n a a kn k k n k k -⎡⎤-=-+---+=⎣⎦,所以是以2k 为公差的等差数列,A 正确;对B ,由上可知,当0k =时,为常数列,B 错误;对C ,若为递增数列,则公差20k >,即0k >,C 正确;对D ,若{}n S 为递增数列,由函数性质可知02322k k >⎧⎪⎨<⎪⎩,解得23k >,D 错误.故选:AC10.甲、乙两班各有50位同学参加某科目考试(满分100分),考后分别以110.820y x =+、220.7525y x =+的方式赋分,其中12,x x 分别表示甲、乙两班原始考分,12,y y 分别表示甲、乙两班考后赋分.已知赋分后两班的平均分均为60分,标准差分别为16分和15分,则()A.甲班原始分数的平均数比乙班原始分数的平均数高B.甲班原始分数的标准差比乙班原始分数的标准差高C.甲班每位同学赋分后的分数不低于原始分数D.若甲班王同学赋分后的分数比乙班李同学赋分后的分数高,则王同学的原始分数比李同学的原始分数高【答案】ACD 【解析】【分析】根据期望和标准差的性质求出赋分前的期望和标准差即可判断AB ;作差比较,结合自变量范围即可判断C ;作出函数0.820,0.7525y x y x =+=+的图象,结合图象可判断D .【详解】对AB ,由题知()()1215E y E y ====,因为110.820y x =+,220.7525y x =+,所以()()120.82060,0.752515E x E x +=+===,解得()()1250,20E x E x =≈==,所以()()12E x E x >=,故A 正确,B 错误;对C ,因为111200.2y x x -=-,[]10,100x ∈,所以10200.220x ≤-≤,即110y x -≥,所以C 正确;对D ,作出函数0.820,0.7525y x y x =+=+的图象,如图所示:由图可知,当12100y y =<时,有21x x <,又因为0.820y x =+单调递增,所以当12y y >时必有12x x >,D 正确.故选:ACD11.已知函数()f x 及其导函数()f x '的定义域为R ,若(1)f x +与()f x '均为偶函数,且(1)(1)2f f -+=,则下列结论正确的是()A.(1)0f '=B.4是()f x '的一个周期C.(2024)0f =D.()f x 的图象关于点(2,1)对称【答案】ABD 【解析】【分析】注意到()f x '为偶函数则()()2f x f x -+=,由()(1)1f x f x -+=+两边求导,令0x =可判断A ;()()11f x f x --='+'结合导函数的奇偶性可判断B ;利用()f x 的周期性和奇偶性可判断C ;根据()()2f x f x -+=和()(1)1f x f x -+=+可判断D .【详解】因为()f x '为偶函数,所以()()f x f x -'=',即()()f x f x c --=+,而(1)(1)2f f -+=,故2c =-,故()()2f x f x +-=,又(1)f x +为偶函数,所以()(1)1f x f x -+=+,即()()2f x f x =-,所以()2()2f x f x -+-=,故()(2)2f x f x ++=即()2(4)2f x f x +++=,()()4f x f x =+,所以4是()f x 的周期,故B 正确.对A ,由()(1)1f x f x -+=+两边求导得()()11f x f x --='+',令0x =得()()11f f -'=',解得()10f '=,A 正确;对C ,由上知()()2f x f x +-=,所以()01f =,所以()()(2024)450601f f f =⨯==,C 错误;对D ,因为()()2f x f x +-=,()()2f x f x =-,故()2(2)2f x f x -++=,故()f x 的图象关于2,1对称,故选:ABD【点睛】关键点睛:本题解答关键在于原函数与导数数的奇偶性关系,以及对()(1)1f x f x -+=+两边求导,通过代换求导函数的周期.三、填空题(本大题共3小题,每小题5分,共15分)12.曲线()e xf x x =-在0x =处的切线方程为______.【答案】1y =##10y -=【解析】【分析】求出函数的导函数,利用导数的几何意义求出切线的斜率,即可求出切线方程.【详解】因为()e xf x x =-,则()01f =,又()e 1xf x '=-,所以()00f '=,所以曲线()e xf x x =-在0x =处的切线方程为1y =.故答案为:1y =13.若复数cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭在复平面内对应的点位于直线y x =上,则λ的最大值为__________.【答案】1-##1-+【解析】【分析】根据复数对应的点cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭在y x =得212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,即可利用二倍角公式以及基本不等式求解.【详解】cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭对应的点为cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,故cos 21sin sin 2θλθθ⎛⎫+-= ⎪⎝⎭,故212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,由于()0,πθ∈,故sin 0θ>,则2sin 1111sin sin sin 122sin θλθθθθ==≤++++,当且仅当1sin 2sin θθ=,即2sin 2θ=,解得π3π,44θθ==时等号成立,114.过抛物线2:3C y x =的焦点作直线l 交C 于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于M ,N 两点,若||12AB =,则||MN =__________.【答案】【解析】【分析】联立直线与抛物线方程,得韦达定理,根据焦点弦的公式可得223332122k AB k +=+=,解得213k =,即可求解()111:AM y x x y k=--+得11M x ky x =+,即可代入求解.【详解】2:3C y x =0,根据题意可知直线l 有斜率,且斜率不为0,根据对称性不设直线方程为34y k x ⎛⎫=-⎪⎝⎭,联立直线34y k x ⎛⎫=-⎪⎝⎭与23y x =可得22223930216k x k x k ⎛⎫-++= ⎪⎝⎭,设()()1122,,,A x y B x y ,故2121223392,16k x x x x k ++==,故21223332122k AB x x p k +=++=+=,解得213k =,直线()111:AM y x x y k=--+,令0y =,则11M x ky x =+,同理可得22N x ky x =+,如下图,故()()()211221212121M N MN x x ky x ky x k y y x x k x x =-=+--=-+-=+-,()()22221212233192141483316k MN k x x x x k ⎛⎫+ ⎪⎛⎫=++-=+-⨯= ⎪ ⎪⎝⎭ ⎪⎝⎭故答案为:83四、解答题(本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos 0a b c A -+=.(1)求角C ;(2)若AB 边上的高为1,ABC V 的面积为33,求ABC V 的周长.【答案】(1)π3C =;(2)23.【解析】【分析】(1)利用余弦定理角化边,整理后代入余弦定理即可得解;(2)利用面积公式求出c ,然后由面积公式结合余弦定理联立求解可得a b +,可得周长.【小问1详解】由余弦定理角化边得,2222202b c a a b c bc +--+⨯=,整理得222a b c ab +-=,所以2221cos 222a b c ab C ab ab +-===,因为()0,πC ∈,所以π3C =.【小问2详解】由题知,13123c ⨯=,即233c =,由三角形面积公式得1πsin 233ab =,所以43ab =,由余弦定理得()222π42cos 333a b ab a b ab +-=+-=,所以()2416433a b +=+=,所以3a b +=,所以ABC V 的周长为33a b c ++=+=16.如图,PC 是圆台12O O 的一条母线,ABC V 是圆2O 的内接三角形,AB 为圆2O 的直径,4,AB AC ==.(1)证明:AB PC ⊥;(2)若圆台12O O 的高为3,体积为7π,求直线AB 与平面PBC 夹角的正弦值.【答案】(1)证明见详解;(2)19.【解析】【分析】(1)转化为证明AB ⊥平面12O O CP ,利用圆台性质即可证明;(2)先利用圆台体积求出上底面的半径,建立空间坐标系,利用空间向量求线面角即可.【小问1详解】由题知,因为AB 为圆2O 的直径,所以AC BC ⊥,又4,AB AC ==AB ==,因为2O 为AB 的中点,所以2O C AB ⊥,由圆台性质可知,12O O ⊥平面ABC ,且12,,,O O P C 四点共面,因为AB ⊂平面ABC ,所以12O O AB ⊥,因为122,O O O C 是平面12O O CP 内的两条相交直线,所以AB ⊥平面12O O CP ,因为PC ⊂平面12O O CP ,所以AB PC ⊥.【小问2详解】圆台12O O的体积(2211ππ237π3V r =⋅+⋅⨯=,其中11r PO =,解得11r =或13r =-(舍去).由(1)知122,,O O AB O C 两两垂直,分别以2221,,O B O C O O 为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则(2,0,0),(2,0,0),(0,2,0),(0,1,3)A B C P -,所以(4,0,0),(2,1,3),(2,2,0)AB BP BC ==-=-.设平面PBC 的一个法向量为(,,)n x y z =,则230,220,n BP x y z n BC x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩解得,3,x y x z =⎧⎨=⎩于是可取(3,3,1)n =.设直线AB 与平面PBC 的夹角为θ,则sin cos ,19AB n θ===,故所求正弦值为19.17.已知函数()ln f x x ax =+.(1)若()0f x ≤在(0,)x ∈+∞恒成立,求a 的取值范围;(2)若()1,()e()xa g x f f x ==-,证明:()g x 存在唯一极小值点01,12x⎛⎫∈ ⎪⎝⎭,且()02g x >.【答案】(1)1,e⎛⎤-∞- ⎥⎝⎦;(2)证明见解析.【解析】【分析】(1)参变分离,构造函数()ln xh x x=-,利用导数求最值即可;(2121内,利用零点方程代入()0g x ,使用放缩法即可得证.【小问1详解】()0f x ≤在(0,)x ∈+∞恒成立,等价于ln xa x≤-在(0,)+∞上恒成立,记()ln x h x x =-,则()2ln 1x h x x='-,当0e x <<时,ℎ′<0,当e x >时,ℎ′>0,所以ℎ在()0,e 上单调递减,在()e,∞+上单调递增,所以当e x =时,ℎ取得最小值()ln e 1e e eh =-=-,所以1a e≤-,即a 的取值范围1,e ∞⎛⎤-- ⎥⎝⎦.【小问2详解】当1a =时,()()e()eln ,0xxg x f f x x x =-=->,则1()e x g x x'=-,因为1e ,xy y x==-在(0,)+∞上均为增函数,所以()g x '在(0,)+∞单调递增,又()121e 20,1e 102g g ⎛⎫=-''=- ⎪⎝⎭,1存在0x ,使得当∈0,0时,()0g x '<,当∈0,+∞时,()0g x '>,所以()g x 在()00,x 上单调递减,在()0,x ∞+上单调递增,所以()g x 存在唯一极小值点01,12x ⎛⎫∈⎪⎝⎭.因为01e 0x x -=,即00ln x x =-,所以00000()e ln =e x x g x x x =-+,因为01,12x ⎛⎫∈⎪⎝⎭,且=e x y x+1上单调递增,所以012001()=e e 2x g x x +>+,又9e 4>,所以123e 2>,所以00031()=e 222xg x x +>+=.18.动点(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于34,且|||y x <.记点M 的轨迹方程为Γ.(1)求Γ的方程;(2)过Γ上的点P 作圆22:(4)1Q x y +-=的切线PT ,T 为切点,求||PT 的最小值;(3)已知点40,3G ⎛⎫⎪⎝⎭,直线:2(0)l y kx k =+>交Γ于点A ,B ,Γ上是否存在点C 满足0GA GB GC ++= ?若存在,求出点C 的坐标;若不存在,说明理由.【答案】(1)2213y x -=(2)2(3)3,44C ⎛⎫-- ⎪ ⎪⎝⎭【解析】【分析】(1)根据点到直线距离公式,即可代入化简求解,(2)由相切,利用勾股定理,结合点到点的距离公式可得PT =,即可由二次函数的性质求解,(3)联立直线与双曲线方程得到韦达定理,进而根据向量的坐标关系可得()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,将其代入双曲线方程即可求解.【小问1详解】根据(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于3434=,化简得2233x y -=,由于|||y x <,故2233x y -=,即2213y x -=.【小问2详解】设(,)P x y,PT ====故当3y =时,PT 最小值为2【小问3详解】联立:2(0)l y kx k =+>与2233x y -=可得()223470k x kx ---=,设()()()112200,,,,,A x y B x y C x y ,则12122247,33k x x x x k k-+==--,故()212122444,3k y y k x x k+=++=+-设存在点C 满足0GA GB GC ++= ,则1201200433x x x y y y ++=⎧⎪⎨++=⨯⎪⎩,故()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,由于()00,C x y 在2233x y -=,故22222443333k k k k ⎛⎫-⎛⎫--= ⎪⎪--⎝⎭⎝⎭,化简得421966270k k -+=,即()()2231990k k --=,解得2919k =或23k =(舍去),由于()22Δ162830k k =+->,解得27k<且23k ≠,故2919k =符合题意,由于0k >,故31919k =,故022024,344334k x k k y k ⎧=-=-⎪⎪-⎨-⎪==-⎪-⎩,故3,44C ⎛⎫-- ⎪ ⎪⎝⎭,故存在3,44C ⎛⎫-- ⎪ ⎪⎝⎭,使得0GA GB GC ++= 19.设n ∈N ,数对(),n n a b 按如下方式生成:()00,(0,0)a b =,抛掷一枚均匀的硬币,当硬币的正面朝上时,若n n a b >,则()()11,1,1n n n n a b a b ++=++,否则()()11,1,n n n n a b a b ++=+;当硬币的反面朝上时,若n n b a >,则()()11,1,1n n n n a b a b ++=++,否则()()11,,1n n n n a b a b ++=+.抛掷n 次硬币后,记n n a b =的概率为n P .(1)写出()22,a b 的所有可能情况,并求12,P P ;(2)证明:13n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求n P ;(3)设抛掷n 次硬币后n a 的期望为n E ,求n E .【答案】(1)答案见详解;(2)证明见详解,1111332n n P -⎛⎫=-⨯- ⎪⎝⎭;(3)21113929nn E n ⎛⎫=+--⎪⎝⎭【解析】【分析】(1)列出所有()11,a b 和()22,a b 的情况,再利用古典概型公式计算即可;(2)构造得1111323n n P P +⎛⎫-=-- ⎪⎝⎭,再利用等比数列公式即可;(3)由(2)得()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,再分n n a b >,n n a b =和n n a b <讨论即可.【小问1详解】当抛掷一次硬币结果为正时,()()11,1,0a b =;当抛掷一次硬币结果为反时,()()11,0,1a b =.当抛掷两次硬币结果为(正,正)时,()()22,2,1a b =;当抛掷两次硬币结果为(正,反)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,正)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,反)时,()()22,1,2a b =.所以,12210,42P P ===.【小问2详解】由题知,1n n a b -≤,当n n a b >,且掷出反面时,有()()11,,1n n n n a b a b ++=+,此时11n n a b ++=,当n n a b <,且掷出正面时,有()()11,1,n n n n a b a b ++=+,此时11n n a b ++=,所以()()()()()1111112222n n n n n n n n n n P P a b P a b P a b P a b P +⎡⎤=>+<=>+<=-⎣⎦,所以1111323n n P P +⎛⎫-=-- ⎪⎝⎭,所以13n P ⎧⎫-⎨⎬⎩⎭是以11133P -=-为首项,12-为公比的等比数列,所以1111332n n P -⎛⎫-=-⨯- ⎪⎝⎭,所以1111332n n P -⎛⎫=-⨯- ⎪⎝⎭.【小问3详解】设n n a b >与n n a b <的概率均为n Q ,由(2)知,()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥⎪⎝⎭⎢⎥⎣⎦显然,111110222E =⨯+⨯=.若n n a b >,则1n n a b =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b =,则当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b <,则1n n b a =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,11n n a a +=+.所以1n n a a +=时,期望不变,概率为111122262nn n Q P ⎡⎤⎛⎫+=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;11n n a a +=+时,期望加1,概率为1111111124226262n nn n Q P ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+=-+-=--⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.所以()11111112144626262nn nn nn n E E E E +⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯+-++⨯--=+--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故12112111111444626262n n n n n n E E E -----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+--=+--+--⎢⎥⎢⎥⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=1111111446262n E -⎡⎤⎡⎤⎛⎫⎛⎫=+--++--⎢⎥⎢⎥⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦011111111444626262n -⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+--++--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 111241612n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦21113929nn ⎛⎫=+-- ⎪⎝⎭.经检验,当1n =时也成立.21113929nn E n ⎛⎫∴=+-- ⎪⎝⎭.【点睛】关键点点睛:本题第三问的关键是分1n n a a +=和11n n a a +=+时讨论,最后再化简n E 的表达式即可.。
辽宁省沈阳市郊联体2024年9月高三联考数学本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|24xA x =<,13log 1B x x =>−,则A B = ( ) A .()0,2B .(),2−∞C .(),3−∞D .02.命题“()0,x ∃∈+∞,ln 85x x =+”的否定是( ) A .()0,x ∃∈+∞,ln 85x x ≠+ B .()0,x ∀∈+∞,ln 85x x ≠+ C .()0,x ∃∉+∞,ln 85x x =+D .()0,x ∀∉+∞,ln 85x x =+3.已知{}n a 是无穷数列,13a =“对任意的*,m n ∈N ”,都有m nm n a a a +=+”是“{}n a 是等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.函数()sin 2f x x =的图象向左平移4π个单位长度,再把横坐标缩短为原来的一半,得到()g x 的图象,则()g x =( ) A .cos 4xB .cos x −C .cos 4x −D .sin x −5.通常用声强来度量声音的强弱,假设讲话瞬间发出声音的声强为0W ,则经过t 秒后这段声音的声强变为()10W t W e τ−=,其中τ是一个常数.定义声音的声强衰减到原来的310−所需的时间为R T ,则R T 约为( ) 附:ln 20.7≈,ln 5 1.6≈. A .148τB .6.9τC .13.8τD .6.72τ6.已知数列{}n a 的前n 项和为n S .若125n n a a n ++=+,11a =,则8S =( ) A .48B .50C .52D .547.已知函数()f x ,对任意的,x y ∈R 都有()()()22xyf x y f y f x +=+,且()12f =,则下列说法不正..确.的是( ) A .()00f =B .()2xf x 是奇函数 C .()y f x =是R 上的增函数D .()()*2nf n n n =⋅∈N8.若函数()e ln 2xf x x x x a =−−+−有两个零点,则实数a 的取值范围是( ) A .(),1−∞B .()1,+∞C .[)1,+∞D .(],1−∞二、选择题:本题共3小题,每小题6分,共18分。
2024~2025学年安徽省县中联盟高三9月联考数学试题(答案在最后)考生注意:1.满分150分,芳试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}3|278,|23,A x x B x x x =-<<=-≤∈Z ,则A B = ()A.{}1,0- B.{}0,1 C.{}1,0,1- D.{}0,1,2【答案】C 【解析】【分析】根据题意,求得集合{32}A xx =-<<∣,{}1,0,1,2,3,4,5B =-,结合集合交集的运算法则,即可求解.【详解】由题意得,集合{}3|278{32}A x x xx =-<<=-<<∣,{}{}|23,1,0,1,2,3,4,5B x x x =-≤∈=-Z ,根据集合交集的运算法则,可得{}1,0,1A B ⋂=-.故选:C.2.若2i12z z -=+,则z =()A.23i +B.23i- C.32i+ D.32i-【答案】D 【解析】【分析】利用待定系数法,结合复数相等的充要条件可得2421a bb a -=⎧⎨=+⎩,即可求解.【详解】设复数()i ,z a b a b =+∈R ,则i z a b =-.因为2i 12z z -=+,所以i 2ii 12a b a b +-=-+,故()242i 1i a b b a -+=++,整理得2421a b b a -=⎧⎨=+⎩,所以3,2a b ==,所以32i z =+所以32i z =-故选:D.3.已知向量(a = ,若()3a b a -⊥ ,则b 在a上的投影向量为()A.1,33⎛⎫ ⎪ ⎪⎝⎭B.1,33⎛⎫-- ⎪ ⎪⎝⎭C.2,33⎛⎫-- ⎪ ⎪⎝⎭D.2,33⎛ ⎝⎭【答案】A 【解析】【分析】由()3a b a -⊥ 得到43a b ⋅= ,再结合投影向量的定义,从而可求解.【详解】因为()3a b a -⊥ ,所以230a a b -⋅= .又因为(a = ,所以43a b ⋅= ,故b 在a上的投影向量为13,333a b a a a a⎛⋅== ⎝⎭,故A 正确.故选:A.4.若()()13cos cos cos ,tan sin m βαββαββ+=+=,则cos2α=()A.2321m - B.2161m- C.241m- D.221m-【答案】A 【解析】【分析】由()3cos tan sin βαββ+=可得()tan tan 3αββ+=,从而可得()3sin sin mαββ+=,可求出4cos mα=,再结合余弦二倍角公式即可求解.【详解】由()3cos tan sin βαββ+=,得()tan tan 3αββ+=,即()()sin sin 3cos cos αββαββ+=+,所以()3sin sin mαββ+=,所以()()()4cos cos cos cos sin sin mααββαββαββ⎡⎤=+-=+++=⎣⎦,所以2232cos22cos 11m αα=-=-,故A 正确.故选:A.5.已知圆柱和圆锥的底面半径均为2,且它们的表面积相等,圆柱和圆锥的体积之比为3:高为()A.2B. C.4D.【答案】D 【解析】【分析】根据题意分别设出圆柱高1h ,圆锥高2h ,结合表面积相等S S =圆柱圆锥及体积比:3:V V =圆柱圆锥列出相应等式,从而可求解.【详解】设圆柱高为1h ,圆锥高为2h ,圆锥母线长为l ,底面半径均为2,则1124π4π,8π4π,3V h S h V h ==+=圆柱圆柱圆锥,4π2π,S l l =+=圆锥.因为S S =圆柱圆锥,所以122h +=①;又因为:3:V V =圆柱圆锥,所以21h =②.由①②得122,h h ==,故D 正确.故选:D.6.已知函数()()2237,22log 1,2x ax x a x f x x x -⎧--+≤⎪=⎨-->⎪⎩,在R 上单调递减,则a 的取值范围是()A.30,4⎛⎤ ⎥⎝⎦B.3,4⎡⎫+∞⎪⎢⎣⎭C.30,4⎡⎤⎢⎣⎦D.{}30,4∞⎡⎫⋃+⎪⎢⎣⎭【答案】C 【解析】【分析】根据题意,利用二次函数,指数函数与对数函数的单调性,结合分段函数单调性的判定方法,列出不等式组,即可求解.【详解】当2x >时,函数()()22log 1xf x x -=--单调递减,因为()f x 在R 上单调递减,分情况讨论:当0a =时,()()237,22log 1,2x x x f x x x --+≤⎧=⎨-->⎩,此时()223272log 21--⨯+>--,符合题意;当0a >时,需满足()223224672log 21a a a --⎧-≥⎪⎨⎪--+≥--⎩,解得304a <≤,综上,实数a 的取值范围为3[0,]4.故选:C.7.已知函数()πsin 2π6f x x ⎛⎫=-⎪⎝⎭,当[]0,20x ∈时,把()f x 的图象与直线12y =的所有交点的横坐标依次记为123,,,,n a a a a ,记它们的和为n S ,则n S =()A.11803B.5803C.20D.5903【答案】A 【解析】【分析】根据三角函数性质可得π1sin 2π62x ⎛⎫-= ⎪⎝⎭时求得16x k =+或1,2k k +∈Z ,从而再利用分组并项及等差数列求和公式从而可求解.【详解】由π1sin 2π62x ⎛⎫-= ⎪⎝⎭,则ππ2π2π66x k -=+或52ππ,6k k +∈Z ,解得16x k =+或1,2k k +∈Z ,所以123439401117131111,,1,1,,1919,1919,6266226622a a a a a a ===+==+==+==+= 所以40111120192019171311351662219196666222222S ⎛⎫⎛⎫⨯+⨯+ ⎪ ⎪⎝⎭⎝⎭=+++++++++=+ 111801019102033⎛⎫=⨯+⨯= ⎪⎝⎭,故A 正确.故选:A.8.已知()f x 的定义域为()()()(),3f x y f x y f x f y ++-=R ,且()113f =,则20251()k f k ==∑()A.13-B.23-C.13D.23【答案】B 【解析】【分析】根据题意,利用赋值法,求得()()6f x f x +=,得到()f x 的一个周期是6,再根据函数的周期性和奇偶性,求得()()()()()()1,2,3,4,5,6f f f f f f 的值,进而得到答案.【详解】由题意知,函数()f x 的定义域为()()()(),3f x y f x y f x f y ++-=R ,且()113f =,令1,0x y ==,得()()()()1010310f f f f ++-=,所以()203f =;令0x =,得()()()()0030f y f y f f y ++-=,所以()()f y f y -=,所以()f x 是偶函数,令1y =,得()()()()()1131f x f x f x f f x ++-==①,所以()()()21f x f x f x ++=+②,由①②知()()210f x f x ++-=,所以()()()()30,3f x f x f x f x ++=+=-,所以()()()63f x f x f x +=-+=,所以()f x 的一个周期是6,由②得()()()201f f f +=,所以()123f =-,同理()()()312f f f +=,所以()233f =-,又由周期性和偶函数可得:()()()()()()()()112422,511,60,333f f f f f f f f =-==-=-====所以()()()()12360f f f f ++++= ,所以20256112()337()(1)(2)(3)3k k f k f k f f f ===+++=-∑∑.故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.为了解某品牌纯净水实际生产容量(单位:mL )情况,某中学研究小组抽取样本,得到该品牌纯净水的实际容量的样本均值为600x =,样本方差2 2.25s =,假设该品牌纯净水的实际容量X 服从正态分布()2N x s ,则()(若随机变量X 服从正态分布()2,N μσ,则()()0.683,220.955P X P X μσμσμσμσ-≤≤+≈-≤≤+≈)A.()5970.02P X ≤>B.()6030.04P X ≥>C.()597598.50.13P X ≤≤<D.()598.56030.83P X ≤≤<【答案】AD 【解析】【分析】由正态分布的对称性和3σ原则进行求解相关概率,得到答案.【详解】AB 选项,因为2600, 2.25x s ==,所以()2600,1.5X N ~,因为()6002 1.56002 1.50.955P X -⨯≤≤+⨯≈,故()()10.9555976030.02252P X P X -≤=≥≈=,故A 正确,B 错误;C 选项,()0.9555976000.47752P X ≤≤≈=,又因为()600 1.5600 1.50.683P X -≤≤+≈,所以()0.683598.56000.34152P X ≤≤≈≈,所以()597598.50.47750.34150.136P Y ≤≤≈-=,故C 错误;D 选项,()6006030.4775P X ≤≤≈,所以()598.56030.34150.47750.819P X ≤≤≈+=,故D 正确.故选:AD.10.“∞”可以看作数学上的无穷符号,也可以用来表示数学上特殊的曲线.如图所示的曲线C 过坐标原点,O C 上的点到两定点()()12,0,,0(0)F a F a a ->的距离之积为定值.则下列说法正确的是()(参考数2.236≈)A.若1212F F =,则C 的方程为()()2222272x y x y +=-B.若C 上的点到两定点12F F 、的距离之积为16,则点()4,0-在C 上C.若3a =,点()03,y 在C 上,则2023y <<D.当3a =时,C 上第一象限内的点P 满足12PF F 的面积为92,则2212PF PF -=【答案】ACD 【解析】【分析】A 选项,设(),x y 为C 上任意一点,根据212OF OF a ⋅=,得到方程,化简后,结合1212F F =,得到6a =,代入后得到A 正确;B 选项,计算出4a =,代入到A 中所求方程,得到轨迹方法,检验()4,0-不在此曲线上;C 选项,由题意得到9,化简得到2018 2.124y =≈;D 选项,根据三角形面积和3a =,得到1212sin 1,90F PF F PF ∠=∠=,故点P 是曲线()()22222:18C x yx y+=-和以12F F 为直径的圆229x y +=在第一象限内的交点,求出3,22P ⎛⎫⎪ ⎪⎝⎭,从而得到2212PF PF -=.【详解】A 选项,已知原点O 在C 上,则212OF OF a ⋅=,设(),T x y 为C 上任意一点,则有2a =,整理得()()2222222x ya x y +=-.若1212F F =,则6a =,C 的方程为()()2222272x y x y +=-,故A 正确;B 选项,若1216OF OF ⋅=,则4a =,将4a =代入方程得()()2222232x y x y +=-,显然点()4,0-不在此曲线上,故B 错误;C 选项,若3a =,点()03,y 在C 9,整理得()22018405y +=,所以218 2.124y =≈,故C 正确;D 选项,因为12PF F 的面积121219sin 22PF PF F PF ∠==,又3a =,故129PF PF =,则1212sin 1,90F PF F PF ∠=∠=,所以点P 是曲线()()22222:18C x y x y +=-和以12F F 为直径的圆229x y +=在第一象限内的交点,联立方程组解得3,22x y ==,故3,22P ⎛⎫ ⎪ ⎪⎝⎭,又()()12,,,0330F F -,故22133931824PF ⎛⎫=++=+ ⎪ ⎪⎝⎭22233931824PF ⎛⎫-+=- ⎪ =⎪⎝⎭所以2212PF PF -=,故D 正确.故选:ACD.【点睛】关键点点睛:由于原点O 在C 上,则212OF OF a ⋅=,设(),T x y 为C 上任意一点,则有212TF TF a ⋅=,从而得到轨迹方程,结合平面几何知识进行求解.11.设函数()()33f x x mx m =-+∈R ,则()A.若()f x 有三个不同的零点123,,x x x ,则1230x x x ++=B.存在,m n ,使得x n =为曲线()y f x =的对称轴C.存在m ,使得点()()2,2g --为函数()()2323g x f x mx mx =++的对称中心D.若曲线()y f x =上有且仅有四点能构成一个正方形,则m =【答案】ACD 【解析】【分析】由31232()()()x ax x x x x x x -+=---,化简后即可求解A ;由()()2f x f n x =-以及()()()422g x g x g +--=-即可代入化简即可判断BC ;对于D ,由函数关系式可得()f x 的图象关于点(0,3)对称,则正方形的中心为(0,3),不妨设正方形的4个顶点分别为A 、B 、C ,D ,设出AC 的方程,与曲线联立结合弦长公式可求出||AC ,同理可得||BD ,则22||||AC BD =可得a 与k 的关系,表示出a ,再构造函数可得答案.【详解】因为()f x 有三个不同的零点123,,x x x ,所以()()()31233x mx x x x x x x -+=---,所以()()3321231223311233x mx x x x x x x x x x x x x x x x -+=-+++++-,所以1230x x x ++=,所以A 正确;对于B ,假设存在这样的,m n ,使得x n =为()f x 的对称轴,即存在这样的,m n 使得()()2f x f n x =-,即()333(2)23x mx n x m n x -+=---+,根据二项式定理,等式右边3(2)n x -展开式含有3x 的项为3x -,于是等式左右两边3x 的系数不相等,原等式不可能成立,于是不存在这样的,m n ,使得x n =为()f x 的对称轴,B 错误;对于C ,假设存在m ,使得点()()2,2g --为函数()()2323g x f x mx mx =++的对称中心,则()()()()3232329,434249g x x mx g x x m x =++--=--+--+,故()()()()()323243293424922g x g x x mx x m x g +--=+++--+--+=-,化简可得()()()2949490m x m x m -+-+-=,故90m -=得9m =时,()()2,2g --是()g x 的对称中心,故C 正确;对于D ,由()()33f x x mx a =-+∈R ,得()23f x x m ='-,当0m ≤时,′≥0,所以()f x 在上单调递增,所以曲线=上不存在4个点能构成正方形,所以0m >,由于3y x mx =-为奇函数,故其图象关于()0,0对此,故()f x 的图象关于点0,3对称,所以此正方形的中心为0,3,不妨设正方形的4个顶点分别为,,,A B C D ,其中一条对角线AC 的方程为3(0)y kx k=+>,则333x mx kx -+=+,解得x =,所以AC =,同理可得BD =,由22||||AC BD =,得()()221111km k m k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭,化简得()23110,k m k k-++=根据题意可知方程()23110k m k k-++=只有一个正解,因为1k =时上式不成立,所以1k ≠,所以232221112121111k k k k k k m k k k k k k k k k ⎛⎫-+++ ⎪⎝⎭-====-----,因为0m >,所以10k k-<,得01k <<,设1t k k =-,则0t <,令()2g t t t=+,由题意可知,只需要直线y m =-与函数()2g t t t=+的图象只有唯一的公共点即可,结合对勾函数图象可知-m =-,得m =,所以D 正确.故选:ACD.【点睛】关键点点睛:由()f x 的图象关于点0,3对称,判断正方形的中心为0,3,根据333x mx kx -+=+,求解AC =,BD =,由22||||AC BD =化简求解.三、填空题:本题共3小题,每小题5分,共15分.12.某中学举行数学解题比赛,其中7人的比赛成绩分别为:70,97,85,90,98,73,95,则这7人成绩的上四分位数与极差之和是__________.【答案】125【解析】【分析】根据百分位数以及极差的计算公式即可求解.【详解】将7个数据从小到大排列为70,73,85,90,95,97,98,因为775% 5.25⨯=,所以这7人成绩的上四分位数是97.极差为987028-=,故上四分位数与极差之和是9728125+=.故答案为:12513.若曲线()2e5x f x x -=+在点()2,7处的切线l 与曲线()3ln g x x ax =+在(),m b 处相切,则m =__________.【答案】43e【解析】【分析】根据题意利用导数求出()23f '=,可进一步求出切线:31l y x =+,再列出关于,m b 的方程组,从而可求解.【详解】由题得()22ee x xf x x --+'=,所以()222222e e 3f --=+=',所以切线():732l y x -=-,即31y x =+.因为()3ln g x x ax =+,所以()3g x a x'=+,所以()333ln 31g m a m b m am b m ⎧=+=⎪⎪=+⎨=+'⎪⎪⎩,解得43e m =.故答案为:43e .14.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是12,F F .过右焦点2F 作x 轴的垂线l ,过双曲线左支上一点M 作l 的垂线,垂足为N ,若存在点M 使得223MF MN =,则双曲线C 的离心率e 的取值范围为__________.【答案】3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】设(),M m n ,且MN d =()32m c =-+,整理得转化为()222222224510540ba m a cm a c ab -+--=在(],m a ∞∈--上有解,结合二次函数的性质,求得22450b a ->,进而求得其离心率e 的取值范围.【详解】设(),M m n ,其中m a ≤-,则22221m n a b-=,再设MN d =,由题意得()2,0F c,可得2,d m c MF =-+=,因为223MF MN =()32m c =-+,两边平方得2229()()4m c n m c -+=-,整理得225()4n m c =-,又由22221m n a b -=,所以2222225()4a b m m c a b --=,变形得到()222222224510540b ama cm a c ab -+--=在(],m a ∞∈--上有解,其中4222222222222221004(45)(54)16(545)1440a c b a a c a b a b c b a a b ∆=----=+-=>,令()()22222222451054f m b ama cm a c ab =-+--,则()22220540f ac a b =--<,()()22232222432245105451050,f a b a a a c a c a b a a c a c -=----=---<当22450b a ->时,显然在(],a ∞--上方程()0f m =有一个解,满足题意,可得2224()50c a a -->,所以2249c a >,可得2294c a >,解得32c a >,即32e >;当22045b a -<时,此时对称轴的方程为22210045a cm b a-=>-,此时函数()f m 在(],a ∞--与x 轴没有公共点,方程()0f m =在(],a ∞--没有实数解,不符合题意,(舍去);当22045b a -=时,此时()0f m =,可得2222205410a c a b m a c+=>,显然方程()0f m =在(],a ∞--没有实数解,不符合题意,(舍去);综上,离心率e 的取值范围是3,2∞⎛⎫+ ⎪⎝⎭.故答案为:3,2∞⎛⎫+⎪⎝⎭.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程或不等式,然后转化为关于e 的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.记ABC V 的内角A B C 、、的对边分别为,,a b c,已知22sin c a A B C -=+=.(1)若b B =,求a 的值;(2)在(1)的条件下,求ABC V 的面积.【答案】(1)4(2)6+【解析】【分析】(1)根据正弦定理边角互化得2a c =,即可求解b =,1cos 2B =,由余弦定理即可求解,(2)由三角形面积公式即可代入求解.【小问1详解】由sin 2sin A B C +=和正弦定理可得2a c +=,又2c a -=,则b =.又因为(),0,πb B B =∈,所以1cos 2B =,由余弦定理得,(22222212cos ,2222a a a c b B a ac a ⎛++- +-⎝⎭===⎛+ ⎝整理得231204a -=,解得4a =.【小问2详解】由4a =及2c a -=,得2c =+因为()1cos ,0,π2B B =∈,所以sin 2B =,所以(11sin 426222ABC S ac B ==⨯⨯+⨯=+ .16.已知椭圆2222:1(0)x y C a b a b +=>>上有两点()0,4A 和163,5B ⎛⎫- ⎪⎝⎭.(1)求椭圆C 的焦距;(2)试探究是否存在过点()0,5-,且与椭圆C 交于不同的两点,M N ,并满足AM AN =的直线l ?若不存在,说明理由;若存在,求出直线l 的方程.【答案】(1)6(2)不存在,理由见解析【解析】【分析】(1)代入两点坐标,得到222516a b ⎧=⎨=⎩,求出c ,得到焦距;(2)假设存在该直线l ,分情况讨论:直线l 的斜率不存在时不成立,当直线l 的斜率存在时,设直线():50l y kx k =-≠,联立椭圆方程,得到两根之和,进而求MN 中点2212580,16251625k Q k k ⎛⎫- ⎪++⎝⎭,若AM AN =,则AQ MN ⊥,即1AQ MN k k ⋅=-,但计算出219100k =-,k 的值不存在,得到结论【小问1详解】由题意得2221619256125ba b ⎧=⎪⎪⎨⎪+=⎪⎩,解得222516a b ⎧=⎨=⎩,所以3c ==,所以椭圆C 的焦距为6.【小问2详解】假设存在该直线l ,分情况讨论:当直线l 的斜率不存在时,显然AM AN =不成立;当直线l 的斜率存在时,设直线():50,l y kx k =-≠联立22125165x y y kx ⎧+=⎪⎨⎪=-⎩得()2216252502250,k x kx +-+=令()22Δ(250)422516250k k=-⨯⨯+>,得2925k>.所以()2222250250160,1010162516251625M N M N M N k k x x y y k x x k k k+=+=+-=-=-+++,取MN 的中点Q ,则2212580,16251625k Q k k ⎛⎫-⎪++⎝⎭,若AM AN =,则AQ MN ⊥,即1AQ MN k k ⋅=-,所以22804162511251625k k k k--+⋅=-+,解得219100k =-,k 的值不存在.综上,不存在满足题意的直线.17.如图,四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 为菱形,60,2,,BAD AB PC M N ∠=== 分别为,PD PB 的中点.(1)证明:MN ⊥平面PAC ;(2)求二面角C PB D --的正弦值.【答案】(1)证明见解析(2)427【解析】【分析】(1)连接,BD AC 交于点O ,根据题意再结合线面垂直判定得到BD ⊥平面PAC ,再结合//MN BD ,从而可求解;(2)建立空间直角坐标系,再利用空间向量法分别求出平面PBC 和平面PBD 的一个法向量,再利用空间向量面面夹角求法,从而可求解.【小问1详解】证明:连接,BD AC 交于点O ,因为PC ⊥平面ABCD ,而BD ⊂平面ABCD ,所以BD PC ⊥.因为底面ABCD 为菱形,所以BD AC ⊥.因为,,PC AC C PC AC ⋂=⊂平面PAC ,所以BD ⊥平面PAC .因为,M N 分别为,PD PB 的中点,所以//MN BD ,所以MN ⊥平面PAC .【小问2详解】取PA 的中点E ,连接OE ,由题得//OE PC ,所以OE ⊥平面ABCD ,以O 为坐标原点,,,OA OB OE 所在直线分别为,,x y z 轴建立空间直角坐标系.因为底面ABCD 为菱形,60,2BAD AB PC ∠=== ,所以1,1OB OA OE ===,则()()()()0,1,0,,2,0,1,0B C P D -.所以()()()1,2,0,2,0,0,0,2BP BD PC =-=-=-.设平面PBD 的一个法向量()111,,m x y z =,则11112020m BP y z m BD y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令12x =,得1z =,则(m = .设平面PBC 的一个法向量 =s s ,则2020n PC z n BP y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,令1x =,得y =,则()1,n = .设二面角C PB D --的大小为θ,所以cos cos ,7m nm n m n θ⋅===.所以sin 7θ==,所以二面角C PB D --的正弦值为7.18.已知函数()()()()1e 1ln 1,xf x x m x m x m =---+++∈R .(1)讨论()f x 的单调性;(2)若0m >且()f x 有2个不同的极值点,p q ,求证:()()()42ln3f p f q p q +++<.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求出导函数,分别讨论1m ≤-,10m -<<,0m =和>0四种情况讨论,结合()f x '的正负情况,从而可求解单调性;(2)把原不等式转化为()()()()()41ln 1e 212ln 3mf p f q p q m m m +++=++-+-<,然后构造函数()()()1ln 1e 21m h m m m m =++-+-,求出导函数,利用导函数求出单调性区间,然后利用函数单调性求出最值进行比较大小即可.【小问1详解】()f x 的定义域为()1,∞-+,由题可得()()()11e 1e 11xx m f x x m x m x x +⎛⎫=--+=--+' ⎪+⎝⎭,设()1e 1xg x x =-+,则()g x 在()1,∞-+上单调递增,且()00g =,若1m ≤-,则()0,1,0x m x ->∈-时,()()0,f x f x '<单调递减,∈0,+∞时,()()0,f x f x '>单调递增;若10m -<<,则(),0x m ∈时,()()0,f x f x '<单调递减,()1,x m ∈-,∈0,+∞时,()()0,f x f x '>单调递增;若0m =,则()()0,f x f x '≥在()1,∞-+上单调递增;若0m >,则()0,x m ∈时,()()0,f x f x '<单调递减,()1,0x ∈-,(),x m ∞∈+时,()()0,f x f x '>单调递增.综上,当1m ≤-时,()f x 在()1,0-上单调递减,在0,+∞上单调递增;当10m -<<时,()f x 在(),0m 上单调递减,在()()1,,0,m ∞-+上单调递增;当0m =时,()f x 在()1,∞-+上单调递增;当0m >时,()f x 在0,上单调递减,在()()1,0,,m ∞-+上单调递增.【小问2详解】由(1)知0m >时,()f x 恒有2个极值点,p q ,令p q <,则0,p q m ==,所以()()()()()()()4041ln 1e 21mf p f q p q f f m m m m m +++=++=++-+-,设()()()1ln 1e 21mh m m m m =++-+-,则()()ln 1e 3,mh m m =+-+'设()()m h m ϕ=',则()1e ,1m m m ϕ=-+'()m ϕ'在0,+∞上单调递减,()()00m ϕϕ''<=,所以()h m '在0,+∞上单调递减,又()()21ln2e 30,2ln3e 30h h ''=-+>=-+<,所以存在()01,2m ∈,使得()()000ln 1e30m h m m =+-+=',即()00e ln 13m m =++,当()00,m m ∈时,()()0,h m h m '>单调递增;当()0,m m ∞∈+时,()()0,h m h m '<单调递减,所以()()()()()()()0000000001ln 1e211ln 1ln 1321m h m h m m m m m m m m ≤=++-+-=++-+-+-()000ln 124m m m =++-,易知函数()ln 124y x x x =++-在()1,2上单调递增,所以()()000ln 1242ln 212242ln3m m m ++-<++⨯-=,所以()()()42ln3f p f q p q +++<.【点睛】方法点睛:(1)导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理;(2)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用;(3)证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.19.拿破仑排兵布阵是十分厉害的,有一次他让士兵站成一排,解散以后马上再重新站成一排,并要求这些士兵不能站在自己原来的位置上.(1)如果只有3个士兵,那么重新站成一排有多少种站法?4个呢?(2)假设原来有n 个士兵,解散以后不能站在自己原来位置上的站法为n D 种,写出1n D +和()1,2n n D D n -≥之间的递推关系,并证明:数列{}()12n n D nD n --≥是等比数列;(3)假设让站好的一排n 个士兵解散后立即随机站成一排,记这些士兵都没有站到原位的概率为n P ,证明:当n 无穷大时,n P 趋近于1e .(参考公式:23e 12!3!!nxx x x x n =++++++ ….).【答案】(1)2种;9种(2)()11,2n n n D n D D n +-=+≥,证明见解析(3)证明见解析【解析】【分析】(1)根据题意第一个士兵再选位置的人第二个去选,依次类推再结合乘法原理即可求解;(2)根据题意分别求出1n +个人排队时()11,2n n n D n D D n +-=+≥,从而可求证{}1,2n n D nD n --≥为等比数列;(3)由(2)可求得()()11!1!!nn n D D n n n ---=-,从而可得()1111111!2!3!4!5!!nn n D P n n -==-+-+-++ ,从而可求解.【小问1详解】当有3个士兵时,重新站成一排有2种站法;当有4个士兵时,假设先安排甲,有3种站法,比如甲站到乙的位置,那就再安排乙,也有3种站法,剩下的两个人都只有1种站法,由乘法原理可得有33119⨯⨯⨯=种站法.【小问2详解】易知120,1D D ==.如果有1n +个人,解散后都不站原来的位置可以分两个步骤:第一步:先让其中一个士兵甲去选位置,有n 种选法;第二步:重排其余n 个人,根据第一步,可以分为两类:第一类:若甲站到乙的位置上,但乙没有站到甲的位置,这样的站法有n D 种;第二类:若甲站到乙的位置上,乙同时站到甲的位置,这样的站法有1n D -种.所以()11,2n n n D n D D n +-=+≥,又2121D D -=,所以()()()111111111n nn n nn n n n n n n n D n D n D D n D D nD D nD D nD D nD +------++-+-+===----.所以数列{}1,2n n D nD n --≥是首项为1,公比为1-的等比数列.【小问3详解】证明:由题意可知!nn D P n =,由(2)可得:()()()1111!1!!nnn n n n D D D nD n n n ----=-⇒-=-.所以()()()()()()()121122321(1)(1)(1)1,,,,!1!!1!2!1!2!3!2!2!1!2!n n n n n n n n n D D D D D D D D n n n n n n n n n -----------=-=-=-=------- 以上各式相加,可得:11111(1),!1!2!3!4!5!!nn D D n n --=-+-++ 所以1111(1)!2!3!4!5!!nn D n n -=-+-++.所以()()111111111111!2!3!4!5!!2!3!4!5!!n nn nD P n n n --==-+-++=-+--++ ,当n 无穷大时,11111(1)111e 2!3!4!5!!enn P n --=-+-+-+++== .【点睛】关键点点睛:本题主要根据题意找到()11,2n n n D n D D n +-=+≥,通过构造得到{}1,2n n D nD n --≥为等比数列,从而求出()()11!1!!nn n D D n n n ---=-,从而可求解.。
2025年普通高等学校招生全国统一考试9月调研测试卷 数学数学测试卷共4页,满分150分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的准考证号、姓名、班级填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B.C. D.2.函数的最小值为( )A.1B.2C.4D.83.已知为虚数单位,若,则( )A. B.C.D.4.已知向量满足,且,则( )A. B. C. D.5.已知,则( )A.B. C.3 D.46.某池塘中饲养了A 、B 两种不同品种的观赏鱼,假设鱼群在池塘里是均匀分布的.在池塘的东、南、西三个采样点捕捞得到如下数据(单位:尾),若在采样点北捕捞到20尾鱼,则品种A 约有( )采样点品种A 品种B 东209{}{}22,2,1,0,1,2,3A xx x B =->=--∣A B ⋂={}2,1--{}0,1{}2,3-{}1,2()221f x x x =+i ()1i 1i z -=+z =2i +2i -2i -+2i--,a b1,2a b == ()0a a b ⋅+= ,a b = 60 90 120 150()11cos ,cos cos 43αβαβ+==tan tan αβ=1413南73西178A.6尾B.10尾C.13尾D.17尾7.若函数在上单调递减,则( )A.B.C.D.8.已知直角的斜边长为2,若沿其直角边所在直线为轴,在空间中旋转形成一个圆锥,则该圆锥体积的最大值为( )二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错得0分.9.在实际生产中,通常认为服从正态分布的随机变量只取中的值,这在统计学中称为原则,若在外,可以认为生产线是不正常的,已知.某生产线上生产的零件长度服从正态分布(单位:厘米),则( )A.B.C.若抽检的10个样本的长度均在内,可以认为生产线正常D.若抽检的10个样本中有一个零件的长度为0.95,应对生产线进行检修10.已知曲线,则( )A.将向右平移个单位,可以得到B.将向左平移个单位,可以得到C.与在有2个公共点D.在原点处的切线也是的切线11.已知为坐标原点,是抛物线的焦点,是上两点,且,则()()()()ln ln 1f x x a x =---()1,∞+1a >1a …1a <0a …ABC V BC AB π()2,N μσX []3,3μσμσ-+3σX []3,3μσμσ-+()330.9973P X μσμσ-+≈……X ()1,0.0001N ()112P X ==()(0.99) 1.01P X P X <=…[]0.99,1.0212π:sin2,:sin 23C y x C y x ⎛⎫==-⎪⎝⎭1C π62C 1C 2π32C 1C 2C []0,π1C 2C O F 2:2(0)E y px p =>,A B E AF FB λ=A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.已知等差数列中,,则__________.13.已知直线和平面与存在位置关系M .若“且M ”是“”的充分条件,则M 可以是__________.14.有一个4行4列的表格,在每一个格中分别填入数字0或1,使得4行中所填数字之和恰好是各一个,4列中所填数字之和恰好也是1,2,3,4各一个(如图为其中一种填法),则符合要求的不同填法共有__________种.0001001101111111四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在中,内角的对边分别为,其面积.(1)若,求;(2)若,求的最大值,并判断此时的形状.16.(15分)如图,三棱锥中,平面是棱上一点,且.0,2AB p λ∀>…1120,AF BF pλ∀>+=0,sin AFO λ∠∃>=0,cos 0AOB λ∠∃>…{}n a 1233,0a a a =-+=4a =,a b ,b γγa γ⊥a b ⊥1,2,3,4ABC V ,,A B C ,,a b c 22c S =π,13A b ==c a b >222a b c ab++ABC V P ABC -PA ⊥,,15,20.ABC AB AC AB AC M ⊥==BC 12AM =(1)证明:平面;(2)若,求与平面所成角的正弦值.17.(15分)甲、乙两名围机手对弈,比赛实行五局三胜制,第一局通过猜子确定甲执黑先行,其后每局交换先行者,直至比赛结束.己甲先行时他赢下该局的概率为0.6,乙先行时他赢下该局的概率为0.5.(1)求比赛只进行了三局就结束的概率:(2)己知甲胜了第一局,求比赛进行局数的期望.18.(17分)已知椭圆,直线与椭圆相交于两点,为线段的中点.(1)设直线的斜率为,已知,求证:(2)直线不与坐标轴重合且经过的左焦点,直线与椭圆相交于两点,且,求直线的方程.19.(17分)已知数列.(1)证明:是等比数列;(2)已知数列.①求的最大值;②对任意的正整数,证明:.BC ⊥PAM 10PA =PA PBC 22Γ:12x y +=l Γ,A B M AB l k ()1,(0)M m m >k <l Γ1F OM Γ,C D AM BM CM DM ⋅=⋅l {}1126:2,1n n n n a a a a a ++==+32n n a a ⎧⎫-⎨⎬+⎩⎭{}2:n n n b b a =n b ()2k k (211)(21)k i kib k b -=>-∑2025年普通高等学校招生全国统一考试9月调研测试卷 数学参考答案一、单选题1CBBC ACCD8题提示:由题意,设内角所对的边为,则有,则该圆锥的体积,设,则在上单调递增,在上单调递减,所以.二、多选题9.BCD10.AC11.ABC11题提示:由可知,三点共线,所以直线是过焦点的直线,设其倾斜角为,,所以焦点弦,A 正确,,,所以,B 正确,,故,C 正确,,所以,D 错误.三、填空题12.313.或14.57614题提示:显然在符合要求的填法中,应该填入6个数字0和10个数字1,按照下面的顺序填入这6个数字0.(1)先找到一行并填入3个数字0,选出这样1行共有4种选法,而从该行的4格中选出3个填入数字8-ABC V ,,A B C ,,a b c 224c b +=()2211ππ433V b c c c =⋅⋅=⋅-⋅()()24f x x x =⋅-()()243,f x x f x =-'⎛ ⎝2⎫⎪⎪⎭max 14π4π33V ⎛⎫=⋅-= ⎪⎝⎭AF FB λ=,,A F B AB F α()()1122,,,A x y B x y 12222sin p AB x x p p α=++=≥1cos pAF α=-1cos p BF α=+112AF BF p +=()(]sin sin πsin 0,1AFO ∠αα=-=∈0,sin AFO λ∠∃>=2222120,||||20AO BO AB x x p λ∀>+-=--<cos 0AOB ∠<b γ⊂b ∥γ0,也有种填法.因此这一步共有种不同的填法.(2)选出一列填入3个数字0,以图为例,可知这一列必为前三列(否则就没有一列的数字之和为4)中的某一列,从而选出这一列共有3种选法.而该列中已经填入了一个数字0,所以填入另外两个数字0有种填法.这一步共有种不同的填法.(3)当完成前面两步后,最后一个数字0只有4个位置可以选择.因此,符合要求的不同填法共有种.四、解答题15.(13分)解:(1)由,得.(2)由得,所以得最大值为,此时,所以(舍去)或,从而,故是以为直角顶点的等腰直角三角形.16.(15分)解:(1)因为,所以,因为,所以因为平面所以又平面,所以平面.(2)由条件,两两垂直,以方向为轴正方向建系如图,则34C 4=4416⨯=23C 3=339⨯=1694576⨯⨯=211sin 22S bc A c==sin 1c b A ===211sin 22ab C C =2sin cab C=22222222π2cos 2sin 4a b c a b c c C C C ab ab ab +++-⎛⎫=+=+=+ ⎪⎝⎭222a b c ab++2222π,,4C a b c c =++==()2200,a b b b b ⎛⎫+=⇒-== ⎪ ⎪⎝⎭b =c =ABC V A ,15,20AB AC AB AC ⊥==25BC =300AM BC AB AC ⋅=⋅=,AM BC ⊥PA ⊥,ABC ,PA BC ⊥,AM PA ⊂PAM BC ⊥PAM ,,AB AC AP ,,AB AC AP,,x y z ()()()()()()15,0,0,0,20,0,0,0,10,15,20,0,15,0,10,0,0,10B C P BC BP AP =-=-=设平面的法向量为,则,即,取,故与平面.17.(15分)解:(1)比赛只进行三场,则都是甲赢或都是乙赢,所以概率为.(2)可取值为时,则前三场都是甲赢,时,则可能的情况是甲乙甲乙乙胜甲乙乙乙甲胜甲甲乙甲甲胜甲乙甲甲故.18.(17分)解:(1)设,PBC (),,n x y z =BC n BP n ⎧⋅=⎪⎨⋅=⎪⎩ 340320x y x z -+=⎧⎨-+=⎩()4,3,6n = cos ,n AP ===PA PBC 0.60.50.60.40.50.40.180.080.26⨯⨯+⨯⨯=+=X 3,4,53X =()30.50.60.3P X ==⨯=4X =()()()513410.30.350.35P X P X P X ==-=-==--=()30.340.3550.35 4.05E X =⨯+⨯+⨯=()()1122,,,A x y B x y由,得,变形得,即,故,又,解得,故(2)由题意,直线不与轴重合,设直线的方程为,联立,得.设,则,可得,则弦的中点的坐标为,故的方程为.联立,得,由对称性,不妨设,则,其中.可得由题意,且,故,即代入,得,221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩2222121202x x y y -+-=1212121212y y y y x x x x -+⋅=--+12km =-12k m =-2112m m >⎧⎪⎨+<⎪⎩0m <<k <l x l 1x my =-22112x my x y =-⎧⎪⎨+=⎪⎩()222210m y my +--=()()1122,,,A x y B x y 12122221,22m y y y y m m +==-++AB ===()2121222242222m x x m y y m m -+=+-=-=++AB M 222,22m m m -⎛⎫ ⎪++⎝⎭CD 2m y x =-22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩2242x m =+()()0000,,,C x y D x y --20242x m =+00x >0CD x ===11,22OC OD CD AM BM AB ====1122AM BM CM DM CD OM CD OM ⎛⎫⎛⎫==+-⎪⎪⎝⎭⎝⎭222||||||44AB CD OM =-222||4||,AB CD OM =-,,AB CD OM ()()()()()222222222228144442222m m m m m m m ⎡⎤++⎢⎥=-+⎢⎥++++⎣⎦解得,故直线的方程为.19.(17分)解:(1)由可得,两式相除可得,又,故是首项为公比为的等比数列.(2)由(1)可知,,解得,故.①,故随的增大而减小,即时的值最大,且最大值.②.,当且仅当时取等;,其中,当且仅当时取等;,其中,故,当且仅当时取等;故,当且仅当时取等;由此.任意恒成立,即原不等式成立.m =l 1x =-1261n n n a a a ++=+11263264833,221111n n n n n n n n n n a a a a a a a a a a +++-+++-=-=+=+=++++11333124842n n n n n n a a a a a a ++--+-==-⋅+++113124a a -=-+32n n a a ⎧⎫-⎨⎬+⎩⎭1,4-14-3124nn n a a -⎛⎫=- ⎪+⎝⎭3(4)2(4)1n n n a ⋅-+=--23162161n n n nba ⋅+==-()3161553161161n nn nb ⋅-+==+--n b n 1n =nb 1110333b =+=()21212111(21)22k k ki ki kk i k i k i i i b k bb bkb b b k b ---===>-⇔+>⇔+>⋅∑∑∑22231623162161161i k i i k ii k ib b ---⋅+⋅++=+≥--i k =()()()22231623162916616164ik ik i k i --⋅+⋅+=⋅+++216162216i k i k -+≥=⋅i k =()()()2221611611616161ik ik i k i ----=-++21616216i k i k -+≥=⋅()()()222161161162161161i k i k k k ---≤-⋅+=-i k =2316222161k i k i k k b b b -⋅++≥=⋅=-i k =()212kik iki b b k b -=+>⋅∑2k ≥。
2024-2025学年北师大二附中高三数学上学期9月统练试卷全卷满分150分,考试时间120分钟一、单选题:本题共10小题,共40分.1.已知全集{}2,1,0,1,2,3U =--,集合{Z |2}A x x =∈<,则U C A =()A .{}1,0,1-B .{}2,2,3-C .{}2,1,2--D .{}2,0,3-2.若i(1)1z -=,则z z +=()A .2-B .1-C .1D .23.如果0a b >>,那么下列不等式一定成立的是()A .a b<B .11a b>C .1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .ln ln a b>4.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A .15B .13C .25D .235.“空气质量指数(AQI )”是定量描述空气质量状况的无量纲指数.当AQI 大于200时,表示空气重度污染,不宜开展户外活动.某地某天0~24时的空气质量指数y 随时间t 变化的趋势由函数10290,01224,1224t t y t -+≤≤⎧⎪=⎨<≤⎪⎩描述,则该天适宜开展户外活动的时长至多为()A .5小时B .6小时C .7小时D .8小时6.已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪,在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A .0.8B .0.4C .0.2D .0.18.有12个砝码,总质量为45g ,它们的质量从大到小依次构成等差数列,且最重的3个砝码质量之和是最轻的3个砝码质量之和的4倍.用这些砝码称一个质量为30g 的物体,则需要的砝码个数至少为()A .4B .5C .6D .79.已知函数2()3log 2(1)f x x x =--,则不等式()0f x >的解集是()A .(1,4)B .(,1)(4,)-∞+∞C .(0,1)(4,)∞⋃+D .(0,4)10.设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->二、填空题:本题共5小题,每小题6分,共30分.11.函数1()21x f x =-的定义域是.12.在等差数列{}n a 中,公差d 不为0,19a =,且145,,a a a 成等比数列,则d =;当n =时,数列{}n a 的前n 项和n S 有最大值.13.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是.14.设函数2,(),x x a f x x x x a-≥⎧=⎨-+<⎩,当2a =时,()f x 的单调递增区间为,若x ∃∈R 且0x ≠,使得12f x ⎛⎫+= ⎪⎝⎭12f x ⎛⎫- ⎪⎝⎭成立,则实数a 的取值范围为.15.对于非空实数集合A ,记*{|,}A y x A y x =∀∈≤,设非空实数集合P 满足条件“若<1,则x P ∉”且M P ⊆,给出下列命题:①若全集为实数集,对于任意非空实数集合A ,必有*R A A =ð;②对于任意给定符合题设条件的集合M ,P ,必有**P M ⊆;③存在符合题设条件的集合M ,P ,使得*M P ⋂=∅;④存在符合题设条件的集合M ,P ,使得*M P ⋂≠∅.其中所有正确命题的序号是.三、解答题:本题共2小题,共30分.16.“稻草很轻,但是他迎着风仍然坚韧,这就是生命的力量,意志的力量”“当你为未来付出踏踏实实努力的时候,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现”……当读到这些话时,你会切身体会到读书破万卷给予我们的力量.为了解某普通高中学生的阅读时间,从该校随机抽取了800名学生进行调查,得到了这800名学生一周的平均阅读时间(单位:小时),并将样本数据分成九组,绘制成如图所示的频率分布直方图.(1)求a 的值;(2)为进一步了解这800名学生阅读时间的分配情况,从周平均阅读时间在(]12,14,(]14,16,(]16,18三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人,记周平均阅读时间在(]14,16内的学生人数为X ,求X 的分布列和数学期望;(3)以样本的频率估计概率,从该校所有学生中随机抽取20名学生,用()P k 表示这20名学生中恰有k 名学生周平均阅读时间在(]8,12内的概率,其中0,1,2,,20k =⋅⋅⋅.当()P k 最大时,写出k 的值.17.已知函数()ln sin f x x x =+.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求函数()f x 在区间[1,e]上的最小值;(3)证明函数()f x 只有一个零点.1.B【分析】由补集的运算即可求解.【详解】解:{}{Z |2}1,0,1A x x =∈<=-,{}2,2,3U C A ∴=-,故选:B .2.D【分析】利用复数的除法可求z ,从而可求z z +.【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D3.D【分析】根据不等式的性质判断A 、B ,再根据指数函数的性质判断C ,根据对数函数的性质判断D ;【详解】解:因为0a b >>,所以0a b >>,故A 错误;因为0a b >>,所以11a b<,故B 错误;因为0a b >>,且12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为0a b >>,且ln y x =在定义域()0,∞+上单调递增,所以ln ln a b >,故D 正确;故选:D4.C【分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】[方法一]:【最优解】无序从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.[方法二]:有序从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为122305=.故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解;方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;5.C 【分析】当AQI 大于200时,表示空气重度污染,不宜开展户外活动,即200y ≤时适合开展户外活动,根据分段函数的解析式,分情况讨论求出不等式解集,再求出区间长度即可.【详解】解:由题知,当AQI 大于200时,表示空气重度污染,不宜开展户外活动,即当AQI 小于等于200时,适宜开展户外活动,即200y ≤,因为10290,01224,1224t t y t -+≤≤⎧⎪=⎨-<≤⎪⎩,所以当012t ≤≤时,只需10290200t -+≤,解得:912t ≤≤,当1224t <≤时,只需24200≤,解得:1216t <≤,综上:适宜开展户外活动的时间段为916t ≤≤,共计7个小时.故选:C 6.C【详解】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4+S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.A【分析】根据题意,设某人爱好滑冰为事件A ,某人爱好滑雪为事件B ,由古典概型公式求出()P A 和()P AB ,进而由条件概率公式计算可得答案.【详解】根据题意,在该地的中学生中随机调查一位同学,设选出的同学爱好滑冰为事件A ,选出的同学爱好滑雪为事件B ,由于中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪,则()0.5P B =,而同时爱好两个项目的占50%60%70%40%+-=,即()0.4P AB =,则该同学爱好滑该同学也爱好滑冰的概率为()0.4(|)0.8()0.5P AB P A B P B ===.故选:A .8.C【分析】设12个砝码的质量从大到小构成的等差数列为,公差为d ,<0,112n ≤≤,*N n ∈,由题意得到基本量的方程求解,然后由等差数列的前n 项和公式得到不等式求解即可.【详解】设12个砝码的质量从大到小构成的等差数列为,公差为d ,<0,112n ≤≤,*N n ∈,由题意可得()1231011124a a a a a a ++=++,12310111245a a a a a a ++++++= ,即()11334330a d a d +=⨯+,1126645a d +=,解得1132a =,12d =-,则()()211113127··22224n n n n n n n S na d n ---+⎛⎫=+=+-= ⎪⎝⎭,令227304n n nS -+=≥,又112n ≤≤,*N n ∈,解得612n ≤≤,*N n ∈,故需要的砝码个数至少为6.故选:C 9.A【分析】将不等式问题转化为函数图象问题,结合图象求得正确答案.【详解】依题意()2()3log 210f x x x =-->,()22log 13x x >-,由()2log 213y xy x =⎧⎪⎨=-⎪⎩解得1110x y =⎧⎨=⎩或2242x y =⎧⎨=⎩画出()22log ,13y x y x ==-的图象如下图所示,由图可知,不等式()0f x >的解集是(1,4).故选:A10.A【解析】若数列{}为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【详解】若数列{}为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+=选项A :12b =时,2112n n a a +=+,2102x x -+=,1210∆=-=-<,故此时{}不为常数列,222112(22n n n n a a a +=+=+ ,且2211122a a =+≥,792(2)42a a ∴≥≥21091610a a >≥>,故选项A 正确;选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =,即当12a =时,数列{}为常数列,12n a =,则101102a =<,故选项B 错误;选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为1172x ±=,同理可知,此时的常数列{}也不能使1010a >,则选项D 错误.故选:A.【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.11.{1x x ≥-且}0x ≠【分析】根据题意得到21010x x ⎧-≠⎨+≥⎩求解即可.【详解】由题知:210110x x x ⎧-≠⇒≥-⎨+≥⎩且0x ≠.故答案为:{1x x ≥-且}0x ≠.12.2-5【分析】根据等比数列得到2415a a a =,解得2d =-,再计算510a =>,610a =-<,得到答案.【详解】145,,a a a 成等比数列,故2415a a a =,即()()293994d d +=⨯+,解得2d =-或0d =(舍).()921112n a n n =--=-,190a =>,510a =>,610a =-<,故5n =时,n S 有最大值.故答案为:2-;513.②③【解析】根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故①不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.故答案为:②③.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.14.1,2⎛⎤-∞⎥⎝⎦(1,)-+∞【分析】当2a =时,作出函数()f x 的图象,利用图象求出函数()f x 的递增区间;由12f x ⎛⎫+= ⎪⎝⎭12f x ⎛⎫- ⎪⎝⎭得()f x 关于12x =对称,结合二次函数的对称性及方程有解判断范围.【详解】当2a =时,2,2(),2x x f x x x x -≥⎧=⎨-+<⎩,其图象如下图:由图知,函数()f x 的单调递增区间为1,2⎛⎤-∞ ⎥⎝⎦;()2f x x x =-+,其图象关于12x =对称,显然当12a >时,由二次函数对称知x ∃∈R 且0x ≠,使得12f x ⎛⎫+= ⎪⎝⎭12f x ⎛⎫- ⎪⎝⎭成立,符合题意;则12a ≤时,当x a <时,y x =-关于12x =对称的曲线为1y x =-,联立21y x y x x =-⎧⎨=-+⎩,得12x y =-⎧⎨=-⎩或10x y =⎧⎨=⎩(舍去),所以当112a -<≤时,满足()()122f f -==-,即13312222f f ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,符合题意;当1a ≤-时,曲线2y x x =-+,x a <与曲线1y x =-无公共点,不符合题意;综上,实数a 的取值范围为(1,)-+∞.故答案为:1,2⎛⎤-∞ ⎥⎝⎦;(1,)-+∞15.②③④【分析】根据新定义运算、补集、子集、交集和空集等知识对命题进行分析,从而确定正确答案.【详解】由于非空实数集A ,记*{|,}A y x A y x =∀∈≤,则*A 中元素为不大于A 中所有值的数,即不大于A 中最小元素的数组成的集合.①当A 集合下边界趋向负无穷大时,如(]()*R ,2,2,,A A A =-∞=+∞=∅ð,故①错误;②由于M P ⊆,假设M 中最小值为m ,P 最小值为p ,那么.m p ≥因此*M 表示不大于m 所有数组成的集合,*P 表示所有不大于p 的数组成的集合,则**P M ⊆,故②正确;③令3{|1}2M P x x ==<<,则*{|1}M x x =≤,故*M P ⋂=∅,故③正确;④令{|23}M P x x ==≤<,则*{|2}P x x =≤,故*{|2}M P x x ⋂==≠∅,故④正确;故答案为:②③④【点睛】思路点睛:解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.16.(1)0.1a =(2)分布列见解析;数学期望()65E X =(3)10k =【分析】(1)根据频率和为1,可构造方程求得a 的值;(2)根据分层抽样原则可确定10人中,周平均阅读时间在(]12,14,(]14,16,(]16,18的人数,则可确定X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;根据数学期望公式可求得期望值;(3)根据频率分布直方图可求得周平均阅读时间在(]8,12内的概率,利用二项分布概率公式可表示出()P k ,由此可确定结果.【详解】(1)()0.020.030.050.050.150.050.040.0121a ++++++++⨯= ,0.1a ∴=.(2)由频率分布直方图可得:周平均阅读时间在(]12,14,(]14,16,(]16,18三组的频率之比为0.05:0.04:0.015:4:1=,10∴人中,周平均阅读时间在(]12,14的人数为510510⨯=人;在(]14,16的人数为410410⨯=人;在(]16,18的人数为110110⨯=人;则X 所有可能的取值为0,1,2,3,()36310C 2010C 1206P X ∴====;()2164310C C 6011C 1202P X ====;()1264310C C 3632C 12010P X ====;()34310C 413C 12030P X ====;X ∴的分布列为:X123P1612310130∴数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.(3)用频率估计概率,从该校所有学生中随机抽取1名学生,周平均阅读时间在(]8,12内的概率()10.150.120.52p =+⨯==;则()()202020202020C 11C 1C 222k kk kk k k P k p p --=-=⨯⨯=,若()P k 最大,则20C k最大,∴当10k =时,()P k 取得最大值.17.(1)()1cos11sin1cos10x y +--+-=(2)()1sin1f =(3)见解析【分析】(1)对()f x 求导,求出()()1sin1,11cos1f f =+'=,由点斜式方程即可求出答案;(2)令()1()cos g x f x x x ==+',()21sin g x x x-'=-,得出()g x 在[1,e]的单调性,结合零点存在性定理可得()f x 在()1,x α∈上单调递增,在(),e x α∈上单调递减,再比较()()1,e f f 的大小,即可得出答案.(3)利用导数判断函数的单调性,借助零点存在性定理,讨论01x <≤,1x π<≤和x π>时,()f x 的正负,即可得出证明.【详解】(1)()ln sin f x x x =+的定义域为()0,∞+,故1()cos f x x x'=+,()()1sin1,11cos1f f =+'=,所以曲线()y f x =在点(1,(1))f 处的切线方程为:()()sin11cos11y x -=+-,化简得:()1cos11sin1cos10x y +--+-=(2)令()1()cos g x f x x x ==+',()21sin g x x x -'=-,当[]1,e x ∈时,()21sin 0g x x x '=--<,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()11211e cos e<cos 0e e 3e 2g π=++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的α,使()()0g f αα'==又当()1,x α∈时,()()0g x f x '=>;当(),e x α∈时,()()0g x f x ='<;所以()f x 在()1,x α∈上单调递增,在(),e x α∈上单调递减,又因为()()()1ln1sin1sin1,e ln e sin e 1sin e 1,f f f =+==+=+>所以函数()f x 在区间[1,e]上的最小值为()1sin1f =.11(3)()ln sin f x x x =+,()0,x ∈+∞,若01x <≤,1()cos 0f x x x+'=>,所以()f x 在区间(]0,1上单调递增,又()1sin10f =>,111sin 0e e f ⎛⎫=-+< ⎪⎝⎭,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1x π<≤,则ln 0,sin 0x x >≥,则()0f x >,若x π>,因为ln ln 1sin x x π>>≥-,所以()0f x >,综上,函数()f x 在()0,∞+有且仅有一个零点.【点睛】利用导数研究函数的零点,一方面利用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题,转化为函数图象的交点问题,利用数形结合判断.。
2024—2025学年度上学期2022级9月月考数学试卷考试时间:2024年9月25日一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.集合,若,则集合可以为()A. B. C. D.2.若复数,则( )AB.C. 1D. 23.已知,若与的夹角为,则在上的投影向量为( )A .B .C .D .4.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量、放电时间和放电电流之间关系的经验公式:,其中为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为时,放电时间为;当放电电流为时,放电时间为,则该蓄电池的Peukert 常数约为(参考数据:,)( )A .1.12B .1.13C.1.14D .1.155.已知,且,,则( ) A . B . C . D .6.已知函数恒成立,则实数的最小值为( )A .B .C .D .7.函数与函数的图象交点个数为( )A .6B .7C .8D .98.斐波拉契数列因数学家斐波拉契以兔子繁殖为例而引入,又称“兔子数列”. 这一数列如下定义:设为斐波拉契数列,,其通项公式为.{}215=∈<N M x x {}05⋃=≤<M N x x N {}4{}45≤<x x {}05<<x x {}5<x x 232022202320241i i i i +i i z =-+-++- z =2b a = a b 60︒2a b - b 12br 12b- 32b- 32b C t I C I t λ=λ7.5A 60h 25A 15h λlg 20.301≈lg 30.477≈,(0,π)αβ∈cos α=sin()αβ+=αβ-=4π34π4π-34π-2()()ln 0f x x ax b x =++≥a 2-1-12()ln 1f x x =-()πsin 2g x x ={}n a ()*12121,1,3,N n n n a a a a a n n --===+≥∈,设是的正整数解,则的最大值为( )A .5B .6C .7D .8二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.给出下列命题,其中正确命题为( )A .已知数据,满足:,若去掉后组成一组新数据,则新数据的方差为168B .随机变量服从正态分布,若,则C .一组数据的线性回归方程为,若,则D .对于独立性检验,随机变量的值越大,则推断“两变量有关系”犯错误的概率越小10.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有( ) A .动点B .与不可能垂直C .三棱锥体积的最小值为D .当三棱锥的体积最大时,其外接球的表面积为11.已知抛物线的焦点为,准线交轴于点,直线经过且与交于两点,其中点A 在第一象限,线段的中点在轴上的射影为点.若,则( )A .B .是锐角三角形C .四边形D .三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12.若“使”为假命题,则实数的取值范围为___________.13.在中,,∠,D 为线段AB 靠近点的三等分点,E 为线段CD 的中点,若,则的最大值为________.14.将这七个数随机地排成一个数列,记第i 项为,若,n nn a ⎤⎥=-⎥⎦n 2log 1(14(x x x ⎡⎤⎣⎦-<+n 12310x x x x 、、、、()12210i i x x i --=≤≤110x x 、X ()21,,( 1.5)0.34N P x σ>=()0.34P x a <=0.5a =()(),1,2,3,4,5,6i i x y i = 23y x =+6130i i x ==∑6163i i y ==∑2χ1111ABCD A B C D -E 1DD F 11C CDD 1//B F 1A BE F 1B F 1A B 11B D EF -1311B D DF -25π22:2(0)C y px p =>F x D l F C ,A B AF M y N MN NF =l ABD △MNDF 22||BF FA FD ⋅>[]01,4x ∃∈20040x ax -+>a ABC ∆BC =3A π=A 14BF BC =AE AF ⋅ 1,2,3,4,5,6,7()1,2,,7i a i = 47a =,则这样的数列共有个.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知的内角,,的对边分别为,,,若.(1)求的值;(2)若,求周长的取值范围.16.已知正项数列的前项和为,且.(1)求数列的通项公式;(2)设,若数列满足,且数列的前n 项和为,若恒成立,求的取值范围.17.如图所示,半圆柱与四棱锥拼接而成的组合体中,是半圆弧上(不含)的动点,为圆柱的一条母线,点在半圆柱下底面所在平面内,.(1)求证:;(2)若平面,求平面与平面夹角的余弦值;(3)求点到直线距离的最大值.123567a a a a a a ++<++ABC △A B C a b c ()4sin sin sin -=-A b B c A B a ABC△ABC △{}n a n n S 222n n n a a n S +-={}n a 21na nb =-{}nc 11n n n n b c b b ++=⋅{}n c n T ()12n T n λ-+≤λ1OO A BCDE -F BC ,B C FG A 122,OB OO AB AC ====CG BF ⊥//DF ABE FOD GOD G OD18.已知双曲线的中心为坐标原点,渐近线方程为,点在双曲线上. 互相垂直的两条直线均过点,且,直线交于两点,直线交于两点,分别为弦和的中点.(1)求的方程;(2)若直线交轴于点,设.①求;②记,,求.19.如果函数 F (x )的导数为,可记为 ,若 ,则表示曲线 y =f (x ),直线 以及轴围成的“曲边梯形”的面积. 如:,其中 为常数; ,则表及轴围成图形面积为4.(1)若 ,求 的表达式;(2)求曲线 与直线 所围成图形的面积;(3)若 ,其中 ,对 ,若,都满足,求 的取值范围.E y =(2,1)-E 12,l l ()(,0n n P p p )*n ∈N 1l E ,A B 2l E ,C D ,M N AB CD E MN x ()()*,0n Q t n ∈N 2nn p =n t n a PQ =()*21n b n n =-∈N 211(1)nkk k k k b b a +=⎡⎤--⎣⎦∑()()F x f x '=()()d f x x F x ⎰=()0f x ≥()()()baf x dx F b F a =-⎰x a x b ==,x 22d x x x C ⎰=+C ()()222204xdx C C =+-+=⎰0,1,2x x y x ===x ()()()e 1d 02xf x x f =⎰+=,()f x 2y x =6y x =-+()[)e 120,xf x mx x ∞=--∈+,R m ∈[)0,a b ∞∀∈+,a b >()()0d d a bf x x f x x >⎰⎰m()()32024+1232022022022024241i 1i ()1+1i 1i 1i 11i i iiiii z i =-+----⨯-+====--+-+++()0f x ≥2()g x x ax b =++1x >()0g x ≥01x <<()0g x <(1)0(0)0g g =⎧⎨≤1010a b a b b ++=⇒=--⎧⎨≤1a ≥-1.C2.C 【详解】6.B 【详解】∵恒成立,设,则当时,时,∴,即,∴4x ≥()()ln 1ln 31f x x g x =-≥>≥24x <<()ln 1ln10f x x g =-≥=>2x =()ln 1ln10sin πf x x =-===①当时,点,②当时,③当时,,02p F ⎛⎫ ⎪⎝⎭x 11,,0,242x y p M N ⎛⎫⎛+ ⎪ ⎝⎭⎝MNF V MN l 11.ABD 【详解】由题意可知:抛物线的焦点为,准线为则可知为等边三角形,即且∥x 轴,可知直线[5,)+∞00040x ax -+>[]1,4x ∀∈240x ax -+≤4≥+a x x[]1,4()4f x x x=+[]1,2[]2,4()()145f f ==()max 5f x =5a ≥a [5,)+∞11812345621+++++=310S ≤333310360A A ⨯⨯=4=at ()0>t ABC △2sin =⋅a R A 2sinB =⋅b R 2sin =⋅c R C ()22sin sin sin sin -=-t A B C A B ABC △()sin sin =+C A B ()()22sin sin sin sin -=+-t A B A B A B ()()()221sin sin cos2cos2sin sin 2+-=--=-A B A B A B A B 2222sin sin sin sin -=-t A B A B 1=t 4=a 12. 【详解】因为“使”为假命题,所以“,”为真命题,其等价于在上恒成立,又因为对勾函数在上单调递减,在上单调递增,而,所以,所以,即实数的取值范围为.13.14.360【解析】∵,∴,列举可知:①(1,2,3)……(1,2,6)有4个;②(1,3,4),……,(1,3,6)有3个;③(1,4,5)有1个;④(2,3,4),(2,3,5) 有2个;故共有10个组合,∴共计有个这样的数列。
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则(){}{}2230,1,2,3,4A x x x B =-->=∣A B ⋂=A.B.C.D.{}1,2{}1,2,3{}3,4{}42.下列函数在其定义域内单调递增的是()A.B.1y x =-2ln y x=C. D.32y x =e xy x =3.已知等差数列满足,则(){}n a 376432,6a a a a +=-=1a =A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为A ()2:20C y px p =>A A x 4,则( )p =A.1或2 B.2或4 C.2或8 D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“()23f x -[]2,3()f x (),21x A f -B ”是“”的( )x A ∈x B ∈A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x 是奇函数,则的最小值为()()h x ()f x A. B.C.D.e2e7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为()51x ⎫+⎪⎭A. B. C. D.253513238.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径221:220C x y x y +--=x y M N 2C为,且与圆相外切,则的最大值为()1C22C M C N ⋅A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )X ,m n X 20242025Pm nA. B.服从两点分布1m n +=X C.D.()20242025E X <<()D X mn=10.已知函数,下列说法正确的是( )()()214log 21f x ax ax =-+A.的定义域为,当且仅当()f x R 01a <<B.的值域为,当且仅当()f x R 1a C.的最大值为2,当且仅当()f x 1516a =D.有极值,当且仅当()f x 1a <11.设定义在上的可导函数和的导函数分别为和,满足R ()f x ()g x ()f x '()g x ',且为奇函数,则下列说法正确的是()()()()()11,3g x f x f x g x --=''=+()1g x +A.B.的图象关于直线对称()00f =()g x 2x =C.的一个周期是4 D.()f x 20251()0k g k ==∑三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.()0,0(0x y a a =>1)a ≠13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩ 123,,x x x 123x x x <<()()()123f x f x f x ==则的最大值为__________.()()()112233x f x x f x x f x ++四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形n n n a 中实心区域的面积为.nb (1)写出数列和的通项公式;{}n a {}n b (2)设,证明.121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,111A B C ABC -111A B C ABC 为线段的中点,为线段上的点.111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC HBC (1)若点为线段的中点,求证:平面;H BC 1A B ∥1C GH (2)若平面分三棱台所成两部分几何体的体积比为,求二面角1C GH 111A B C ABC -2:5的正弦值.11C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点()2222:10,0x y M a b a b -=>>2222:12x y N m m -=M 的焦距为.()2,2,N (1)分别求和的方程;M N (2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D ,,判断l M ,A B N C ABCD=直线与圆的位置关系.l 222:O x y a +=18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分[)[)[)[)[]0,20,20,40,40,60,60,80,80,100布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠22⨯0.01α=产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;P (ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人P 注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.X ()E X ()P X k =k参考公式:(其中为样本容量)()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.3sin33sin 4sinθθθ=-3cos34cos 3cos θθθ=-根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.()323f x x ax a =-+123,,x x x 123x x x <<(i )求的取值范围;a (ii )若,证明:.1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=2.对于A 选项,的定义域为,该函数在和上单调递增,在定义1y x =-()(),00,∞∞-⋃+(),0∞-()0,∞+域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在2ln y x =()(),00,∞∞-⋃+(),0∞-上单调递增,在定义域内不单调;对于C 选项,的定义域为,该函数在定()0,∞+32y x==[)0,∞+义域上单调递增;对于D 选项,的定义域为,当时,;当e x y x =().1e xy x =+'R (),1x ∞∈--0y '<时,,在上单调递减,在上单调递增,因此该函数在定()1,x ∞∈-+0y '>xe y x ∴=(),1∞--()1,∞-+义域内不单调,故选C.3.,故选B.53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= 4.设点,则整理得,解得或,故选C.()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =5.的定义域为.当时,的定义域为,()23f x - []2,323x ()1233,x f x -∴ []1,3即.令,解得的定义域为,即.[]1,3A =1213x- ()12,21x x f ∴- []1,2[]1,2B =“”是“”的必要不充分条件,故选B.,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x x f x -=+,当且仅当,即时,等号成立,()3e2e xxf x -=+3e 2e x x -=12ln 23x =C.min ()f x ∴=7.设的二项展开式的通项公式为,51x ⎫+⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有3,4,50,2,4k =1,3,5k =理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.223326C C 2C 5+=8.由题,,即圆心为,且,为的221:(1)(1)2C x y -+-=()11,1C()()2,0,0,2M N MN 1C 直径.与相外切,由中线关系,有1C 2C 12C C ∴==,当且()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=仅当时,等号成立,所以的最大值为20,故选A.22C M C N=22C M C N⋅二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 对于D 选项,令,则服从两点分布,,2024Y X =-Y ()()1D Y n n mn=-=,正确,故选ACD.()()()2024D X D Y D Y mn∴=+==10.令,对于A 选项,的定义域为或()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R ,故A 错误;对于B 选项,的值域为在定义域内的值域为0,01Δ0a a >⎧⇔<⎨<⎩ ()f x ()g x ⇔R ,故B 正确;对于C 选项,的最大值为在定义域内的最小值()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩ ()f x ()2g x ⇔为,故C 正确;对于D 选项,有极值在定义域内有极值()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔且,故D 选项错误,故选BC.()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠11.对于A 选项,因为为奇函数,所以,又由,可得()1g x +()10g =()()11g x f x --=,故A 错误;对于B 选项,由可得()()()101,01g f f -==-()()3f x g x '=+'为常数,又由,可得,则()()3,f x g x C C=++()()11g x f x --=()()11g x f x --=,令,得,所以,所以()()131g x g x C --+-=1x =-()()221g g C --=1C =-的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,()()()13,g x g x g x -=+2x =()1g x +所以,所以,所以()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=是一个周期为4的周期函数,,()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以()f x ()1g x +,又,又是周期为4的周期函数,所以()()()()10,204g g g g ==-=-()()310g g ==()g x ,故D 正确,故选BCD.20251()(1)0k g k g ===∑三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案e14433e 6-【解析】12.设切点坐标为切线方程为.将代入得,可得(),,ln ,txt a y a a ='∴ ln xy a a x =⋅(),tt a ln t ta a t a ⋅=切点纵坐标为.1log e,ln a t a ==∴elog e t a a a==13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其22A 13C 余元素共有种排法,故共有种不同的方案.44A 214234A C A 144⋅⋅=14.设,由的函数图象知,,又,()()()123f x f x f x t===()f x 23t < 1232,ln x x x t +=-=.令()()()3112233e ,2e t tx x f x x f x x f x t t =∴++=-+在上单调递增,则()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴ (]2,3,的最大值为.()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;{}n a 11133n n n a --=⨯=数列是首项为1,公比为的等比数列,因此,.{}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭(2)证明:由(1)可得1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-因为,2114314411334n n n nn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,所以.413n n c a <43n n na c a < 16.(本小题满分15分)(1)证明:如图1,连接,设,连接,1A C 11A C C G O⋂=1,HO A G三棱台,则,又,111A B C ABC -11A C ∥AC 122CG AC ==四边形为平行四边形,∴11A C CG 则.1CO OA =点是的中点,H BC .1BA ∴∥OH 又平面平面,OH ⊂11,C HG A B ⊄1C HG 平面.1A B ∴∥1C HG (2)解:因为平面分三棱台所成两部分几何体的体积比为,1C GH 111A B C ABC -2:5所以,11127C GHC AB V V B C ABC-=-即,()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅++⋅ 化简得,12GHC ABC S S =此时点与点重合.H B ,1190C CA BCC ∠∠== 且都在平面,则平面,11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC 又为等腰直角三角形,则.ABC BG AC ⊥又由(1)知,则平面,1A G ∥1CC 1A G ⊥ABC 建立如图2所示的坐标系,G xyz -则,()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --设平面的法向量,1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 则令,解得,220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 设平面的法向量,1B GH ()()1,,,1,1,2m a b c GB ==- 则令,解得.20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 设二面角的平面角为,11C GH B --θ,cos cos ,m n m n m n θ⋅=<>=== 所以,sin θ==所以二面角.11C GH B --17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为N =解得,即双曲线.21m =22:12y N x -=因为双曲线与双曲线的离心率相同,M N 不妨设双曲线的方程为,M 222y x λ-=因为双曲线经过点,所以,解得,M ()2,242λ-=2λ=则双曲线的方程为.M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为l l ,()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+联立消去并整理得22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=此时可得,()()222222Δ44220,20,2k t k t t k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <当时,由韦达定理得;2λ=212122224,22kt t x x x x k k --+==--当时,由韦达定理得,1λ=234342222,22kt t x x x x k k --+==--则,ABCD====化简可得,222t k +=由(1)可知圆,22:2O x y +=则圆心到直线的距离,Ol d ====所以直线与圆相切或相交.l O 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);[)0,200.00252020010⨯⨯=在)内有(只);[20,400.006252020025⨯⨯=在)内有(只);[40,600.008752020035⨯⨯=在)内有(只);[60,800.025********⨯⨯=在内有(只)[]80,1000.00752020030⨯⨯=由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),10253570++=所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.0H 根据列联表中数据,得.220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.0.01α=(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”A =B =,事件“小白鼠注射2次疫苗后产生抗体”.C =记事件发生的概率分别为,则,,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====.()1P C =-()()10.20.50.9P A P B =-⨯=所以一只小白鼠注射2次疫苗后产生抗体的概率.0.9P =(ii )由题意,知随机变量,()100,0.9X B ~所以.()1000.990E X np ==⨯=又,设时,最大,()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =所以00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩解得,因为是整数,所以.089.990.9k 0k 090k =19.(本小题满分17分)(1)若选①,证明如下:()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-若选②,证明如下:()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--.()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,()233f x x a =-'当时,恒成立,所以在上单调递增,至多有一个零点;0a ()0f x ' ()f x (),∞∞-+当时,令,得;令,得0a >()0f x '=x =()0f x '<x <<令,得()0f x '>x <x>所以在上单调递减,在上单调递增.()f x ((),,∞∞-+有三个零点,则即解得,()fx (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<当时,,04a <<4a +>且,()()()()32224(4)3445160f a a a a a a a a a+=+-++=++++>所以在上有唯一一个零点,()fx )4a +同理()2220,g a -<-=-=-<所以在上有唯一一个零点.()f x (-又在上有唯一一个零点,所以有三个零点,()f x (()f x 综上可知的取值范围为.a ()0,4(ii )证明:设,()()()()321233f x x ax a x x x x x x =-+=---则.()212301f a x x x ==-=又,所以.04a <<1a =此时,()()()()210,130,110,230f f f f -=-<-=>=-<=>方程的三个根均在内,3310x x -+=()2,2-方程变形为,3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭令,则由三倍角公式.ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=因为,所以.3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==所以222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
黄冈市2024年高三年级9月调研考试数学本试卷共4页,19题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号,考场号,座位号填写在试卷和答题卡上,并将准考证 号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在 试卷,草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷,草稿纸和 答题卡上的非答题区域均无效.4.考试结束后,请将答题卡上交.一 、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合 题目要求的.1. 若集合A={x|x²-2x-8<0,x ∈Z},B={yly=√x,x ∈R}, 则A∩B=( )A.{0,1,2,3}B.{1,2,3} c.{0,1} D.{0}2.复数则 z 的虚部为( )B. C.3.则sin 2α=( )B. 士C.D.4.若向量a=(2,0),b=(3,1),则向量a 在向量b 上的投影向量为( )D.(5,1)5 . 若m>0,n>0, 且 3m+2n-1=0, 则的最小值为( )A.20B.12C.16D.25A A口6. 已知△ABC 的内角A,B,C 所对的边分别为a,b,c, ,b=3, 下面可使得△ABC 有两组解的a 的值为( )A. B.3 C.4 D.e7.设h(x),g(x) 是定义在R上的两个函数,若Vx,x₂∈R,x≠x₂, 有n(x;)-h(x₂)≥|s(x₁)-g(x₂) 恒成立,下列四个命题正确的是( )A.若h(x)是奇函数,则g(x) 也一定是奇函数B.若g(x)是偶函数,则h(x)也一定是偶函数C. 若h(x)是周期函数,则g(x) 也一定是周期函数D. 若h(x)是R上的增函数,则H(x)=h(x)-g(x) 在R上一定是减函数8. 已知向量al=|5|=4,a.b=-8,,且|i-d=1, 则n与c夹角的最大值为( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9. 已知c<0<b<a, 则( )A.ac+b<bc+aB.b³+c³<a³10. 已知函数的图象过点A(0,1)和B(x,-2)(x₀>0), 且满足|AB= √13,则下列结论正确的是( )A.C. 当时,函数f(x)值域为[0,1]日D. 函数y=x-f(x) 有三个零点11.已知f(x)=2x³-3x²+(1-a)x+b,则下列结论正确的是( )A.当a=1时,若f(x)有三个零点,则b的取值范围是(0,1)B.当a=1且x∈(0,π)时,f(sinx)<f(sin²x)C. 若f(x) 满足f(1-x)=2-f(x), 则a-2b=2D. 若f(x) 存在极值点x, 且f(x,)=f(x), 其中x₀≠x, 则三、填空题:本题共3小题,每小题5分,共15分.12.已知集合A={x|log₂x<m},, 若“x∈A” 是“x∈B” 的充分不必要条件,则实数m 的取值范围是13.已知f(x) 是定义在R上的奇函数,f(x+2) 为偶函数.当0<x<2 时,f(x)=log₂(x+1), 则f(101)=14.已知函数f(x)=sinx-x+1,若关于x的不等式f(axe')+f(-ae*-x+2)>2的解集中有且仅有2个正整数,则实数a 的取值范围为四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15 . (本小题13分)设S,为数列{a,}的前n项和,满足S,=1-a,(neN").(1)求证:(2)记T=S²+S²+…+S²,求T,.16.(本小题15分)函数f(x)=sin ox coscox+cos²ax,w>0,函数f(x) 的最小正周期为π.(1)求函数f(x)的单调递增区间以及对称中心;(2)将函数f(x)的图象先向右平移个单位,再向下平程个单位,得到函数g(x)的图象,在函数g(x)图象上从左到右依次取点A,A₂,..,A₂024, 该点列的横坐标依次为x,x₂,..,X2024, 其中求g(x)+g(x₂)+.+g(x2024)17. (本小题15分)已知函(1)若曲线y=f(x)在点(1,f(1))处的切线方程为f(x)=-x+b, 求a和b的值:(2)讨论f(x) 的单调性.18. (本小题17分)在△ABC 中,角A,B,C 所对的边分别为a,b,c(1)证明:( 2 ) 若a,b,c 成等比数列.(i) 设求g 的取值范围;(ii) 求的取值范围.19. (本小题17分)已知定义在(0,+0c)的两个函数,(1)证明:|sinx|<x(x>0):(2)若h(x)=sinx-x⁴. 证明:当a>1 时,存在x∈(0,1), 使得h(x)>0;(3)若f(x)<g(x)恒成立,求a的取值范围.A2024年9月高三起点联考数学答案一、单选题:本题共8小题,每小题5分,共40分.1.A2.B3.C4.B5.D6.D7.C8.A二、选择题:本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选结的得0分.9.ABD 10.AD 11.ABD11.解析:A.a=1时,f(x)=6x²-6x=6x(x-1),f(x)在(-o.0)递增,(0,1)递减,(1,+0o)递增。
广东省茂名市五校2018届高三数学9月联考试题 理第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合(){}2,3M x y y x ==,(){},5N x y y x ==,则MN 中的元素的个数为( )A .0B .1C .2D .32.已知,a b R Î,i 为虚数单位,()()2137a i i bi ++=-+,则a b -=( ) A .9 B .9- C .24 D .34-3.已知幂函数()a f x x =的图象过点13,3骣琪琪桫,则函数()()()21g x x f x =-在区间1,22轾犏犏臌上的最小值是( )A .1-B .0C .2-D .324.已知0.34a =,138b=,log 0.3c=,这三个数的大小关系为( )A .b a c <<B .a b c << C.c a b << D .c b a << 5.设等比数列{}n a 的前n 项和为n S ,且422a a =,则84S S =( ) A .4 B .5 C.8 D .96.设,x y 满足约束条件01030y x y x y ì³ïï-+?íï+-?ïî,则3z x y =-的最大值为( )A .3B .5- C.1 D .1- 7.已知函数()()()cos 10,0,0f x A x A w jw w p =++>><<的最大值为3,()y f x =的图象的相邻两条对称轴间的距离为2,与y 轴的交点的纵坐标为1,则13f 骣琪=琪桫( )A .1B .1-.0 8.执行如图所示的程序框图,若输入32n =,则输出的结果为( )A .80B .84 C.88 D .929.在长方体1111ABCD A B C D -中,1AD =,2AB =,12AA =,点M 在平面1ACB 内运动,则线段BM 的最小值为( )A .3 10.若关于x 的不等式34log 2x a x -?在10,2x 纟çÎúçú棼上恒成立,则实数a 的取值范围是( ) A .3,14轹÷ê÷ê滕 B .30,4纟çúçú棼 C.10,4纟çúçú棼 D .1,14轹÷ê÷ê滕11.已知双曲线()222210,0x y a b a b-=>>的虚轴上、下端点分别为,A B ,右顶点为C ,右焦点为F ,延长BC 与AF 交于点P ,若,,,O C P A 四个点共圆,O 为坐标原点,则该双曲线的离心率为( )A B D12.已知函数()213ln 2f x x x a x 骣琪=-+-琪桫在区间()1,3上有最大值,则实数a 的取值范围是( )A .1,52骣琪-琪桫B .111,22骣琪-琪桫 C.111,22骣琪琪桫 D .1,52骣琪琪桫第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()6,2a =-,()1,b m =,且a b ^,则2a b -= . 14.已知集合U R =,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为 .15.若函数()()()x f x x m e m R =+?的图象在点()()1,1f 处的切线斜率为2e ,则函数()f x 的极小值是 .16.若函数()28216a f x x x =--+至少有3个零点,则实数a 的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数()f x A ,0m >,函数()()230x g x x m -=<?的值域为B .(1)当2m =时,求()R C A B ;(2)是否存在实数m ,使得A B =?若存在,求出m 的值;若不存在,请说明理由. 18.已知函数()cos24f x ax x b p=-+的图象在点,44f p p 骣骣琪琪琪琪桫桫处的切线方程为54y x p=-. (1)求,a b 的值;(2)求函数()f x 在,42p p 轾-犏犏臌上的值域. 19.如图,在多面体ABCDFE 中,四边形ADFE 是正方形,在等腰梯形ABCD 中,AD BC ∥,1AB CD AD ===,2BC =,平面ADFE ^平面ADCB .(1)证明:AC BE ^;(2)求二面角A FC B --的余弦值.20.已知函数()()22sin ,x x f x e e ax b x a b R -=-++?. (1)当0b =时,()f x 为R 上的增函数,求a 的最小值;(2)若1a >-,23b <<,()()10f ax f x a -+-<,求x 的取值范围. 21.已知0m >,函数()ln xf xmx =,()g x(1)若()()f x g x <恒成立,求m 的取值范围;(2)证明:不论m 取何正值,总存在正数0x ,使得当()0,x x ??时,恒有()12f x <.22.已知直线l的参数方程为3x y t ì=ïíïî(t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为2cos 2sin 50r q r q +--=. (1)求直线l 的普通方程和曲线C 的直角坐标方程(化为标准方程); (2)设直线l 与曲线C 交于,A B 两点,求OA OB -. 23.已知函数()()111f x x a x a a =-++>-+. (1)证明:()1f x ³;(2)若()12f <,求a 的取值范围.茂名市五大联盟学校9月份联考 数学试卷(理科)参考答案一、选择题1-5:CABCB 6-10:ADACD 11、12:CB 二、填空题13. 14.[]5,1- 15.1e- 16.(]4,5 三、解答题17.解:(1)由0.39102291log 022x x ì->ïïí骣ï琪-?ï琪桫î,解得1193x <?,即11,93A 纟ç=úçú棼. 当2m =时,因为02x <?,所以21319x -<?,即1,19B 纟ç=úçú棼. 所以()1,13R C A B 纟ç=úçú棼. (2)因为21,39m B -纟ç=úçú棼,若存在实数m ,使A B =,则必有2133m -=,解得1m =. 故存在实数1m =,使得A B =.18.解:(1)因为()cos24f x ax x b p=-+,所以()'2sin 2f x a x =+.又'254f a p 骣琪=+=琪桫,544444f a b p p p p p骣琪=+=?琪桫. 解得3,1a b ==.(2)由(1)知()3cos24f x x x p=-+. 因为()'32sin 2320f x x =+?>,所以函数()f x 在,42p p 轾-犏犏臌上递增, 因为304442f p p p p 骣琪-=--+=-琪桫,37412244f p p p p 骣+琪=++=琪桫. 所以函数()f x 在,42p p 轾-犏犏臌上的值域为74,24p p 轾+-犏犏臌. 19.(1)证明:如图,取BC 的中点G ,连接,DG AG ,因为AD GC =,AD GC ∥, 所以四边形ADCG 为平行四边形,又AD CD =,所以四边形ADCG 为菱形,从而AC DG ^. 同理可证AB DG ∥,因此AC AB ^.由于四边形ADFE 为正方形,且平面ADFE ^平面ABCD ,平面ADFE 平面ABCD AD =,故EA ^平面ADCB ,从而EA AC ^, 又EAAB A =,故AC ^平面ABE ,即AC BE ^.(2)解:由(1)知可建立如图所示的空间直角坐标系A xyz -. 则()0,0,0A ,()1,0,0B,()C ,()0,0,1E,12F 骣琪-琪桫. 故()1,0,1BE =-,()BC =-,设()111,,m x y z =为平面EFCB 的一个法向量,故00m BE m BC ì?ïíï?î,即111100x z x ì-+=ïíï-=î,故可取()3,3,3m =.又12AF 骣琪=-琪桫,()AC =,设()222,,n x y z =为平面AFC 的一个法向量, 故00n AF n AC ì?ïíï?î,即22221020x y z ìï-+=ïíï=ïî,故可取()2,0,1n =.故3105cos ,m n m n m n×<>==易知二面角A FC B --为锐角,则二面角A FC B --. 20.解:(1)当0b =时,()22x x f x e e ax -=-+.由()f x 为R 上的增函数可得()'220x x f x e e a -=++?对x R Î恒成立, 则()min220x x e e a-++?,∵224x x e e a a a -++炒=+,∴40a +?,∴4a ?,则a 的最小值为4-.(2)()'22cos x x f x e e a b x -=+++, ∵1a >-,∴2243x x e e a a -++?>,∵23b <<,[]cos ,b x b b ?,∴3cos 3b x -<<,∴()'22cos 0x x f x e e a b x -=+++>,∴()f x 为R 上的增函数,又()()f x f x -=-,∴()f x 为奇函数,由()()10f ax f x a -+-<得()()()1f ax f x a f a x -<--=-, ∵()f x 为R 上的增函数,∴1ax a x -<-,∴()11a x a +<+,∵1a >-,∴10a +>,∴1x <. 故x 的取值范围为(),1-?.21.解:(1)函数()f x ,()g x 的定义域均为()0,+?.因为0m >,0x >,所以()()f x g x <m<,令()F x()'F x =由()'0F x =得2x e =,所以,当()20,x e Î,()'0g x >;当()2,x e ??,()'0g x <,所以()F x 的单调增区间是()20,e ,单调减区间是()2,e +?.所以()()22F x F e e?.所以2m e>.(2)(方法一):()()21ln '0xf x x mx -=>, 令()'0f x >,得0x e <<;令()'0f x <,得x e >,∴()()max 1f x f e me==, 当112me <,即2m e>时,显然存在正数0x 满足题意, 当20m e<?时, ∵()f x 在(),e +?上递减,且()112f e me =?, ∴必存在[)1,x e ??,()112f x =.故存在01x x =,使得当()0,x x ??时,()12f x <.(方法二):()1ln 022mx f x x <?<,令()ln mx h x x x =-,()2'2mxh x x-=, 所以,当20,x m 骣琪Î琪桫,()'0h x >;当2,x m 骣琪??琪桫,()'0h x <. 所以()h x 的单调增区间是20,m 骣琪琪桫,单调减区间是2,m 骣琪+?琪桫, 因为()102m h =-<,所以当21m³,即2m ³时,存在01x =,使得当()1,x ??,恒有()0h x <. 即()12f x <.当02m <<时,由(1)知ln xx ln x所以()ln 22mx mxh x x =-,02mx=得24x m=,所以224402m h m m 骣琪?琪桫,因为224m m <,所以,根据函数的图象可知存在024x m=, 使得当24,x m 骣琪??琪桫,恒有()0h x <,即()12f x <.综上所述,总存在0x ,使得当()0,x x ??时,恒有()12f x <.22.解:(1)直线l 的普通方程为3x y --即y ,曲线C 的直角坐标方程是22250x y y ++--=,即(()2219x y +-=.(2)直线l 的极坐标方程是()6R pq r =?,代入曲线C 的极坐标方程得:2250r r +-=,所以2A B r r +=-, 5A B r r =-.不妨设0A r <,则0B r >,所以2A B A B OA OB r r r r -=--=+=. 23.(1)证明:因为()11111111f x x a x a x x a a a a =-++?++=++-+++, 又1a >-,所以1112111a a ++-?=+, 所以()1f x ³.(2)解:()12f <可化为11121a a -++<+, 因为10a +>,所以11aa a -<+(*), ①当10a -<?时,不等式(*)无解, ②当0a >时,不等式(*)可化为111a aa a a -<-<++, 即221010a a a a ì--<ïíï+->îa <,a <.。