滕州滕南中学2018-2019年初一下第一次质量检测数学试卷
- 格式:doc
- 大小:161.70 KB
- 文档页数:2
藤州镇初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)下列调查适合抽样调查的有()①了解一批电视机的使用寿命;②研究某种新式武器的威力;③审查一本书中的错误;④调查人们节约用电意识.A. 4种B. 3种C. 2种D. 1种【答案】B【考点】全面调查与抽样调查【解析】【解答】解:①调查具有破坏性,因而只能抽样调查;②调查具有破坏性,因而只能抽样调查;③关系重大,因而必须全面调查调查;④人数较多,因而适合抽查.故答案为:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查的特征进行判断即可确定结论.2.(2分)如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班【答案】D【考点】用坐标表示地理位置【解析】【解答】解:年2班记作,表示8年4班,故答案为:D.【分析】根据7 年2班记作(7 ,2 )可知第一个数表示年级,第二个数表示班,所以(8 ,4 )表示8年4班。
3.(2分)如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()A.∠1<∠2B.∠1>∠2C.∠1=∠2D.不能确定【答案】C【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵AB∥CD,∴∠2=∠CFG,又∵FG平分∠EFC,∴∠1=∠CFG,∴∠1=∠2,故答案为:C.【分析】根据平行线性质可得∠2=∠CFG,由角平分线性质得∠1=∠CFG,等量代换即可得证.4.(2分)在下列5个数中①②③④⑤ 2 ,是无理数的是()A. ①③⑤ B. ①②⑤ C. ①④ D. ①⑤【答案】D【考点】无理数的认识【解析】【解答】解:无理数有:、2故答案为:D【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,即可求解。
七年级数学试卷 第 1 页 共4 页 七年级数学试卷 第 2 页 共4 页………○…………密…………封…………线…………内…………不…………要…………答…………题…………○………学号: 姓名: 班级:2018-2019学年度第二学期第一次质量监测试卷七年级 数 学题 号 一 二 三 四 总 分 得 分一、选择题(每小题3分,共30分) 1.下列运算正确的是( )A. 842a a a =⋅ B.235a a a =÷ C. 532a a a =+ D. ()743a a =-2. 计算2)(ab 的结果是( )A .ab 2B .b a 2C .22b aD .2ab3. 多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 64.已知6=m a,4=n a ,那么n m a +等于 ( )A.10B.24C.8D.9 5.若1=+b a ,322=-b a 则b a -的值是( )A. 4B. 3C. 1D. 06.计算()()201882018125.0014.3⨯-+-π的结果是( ) A. 2 B. 1 C.-1 D.07.若多项式M 与单项式ab -的乘积为ab b a b a -+-223334,则M 为( )A. 13224-+ab b aB.13224--ab b a C. 13224-+-ab b a D.13224+-ab b a8.已知23,3-==y x ,则代数式()()()xy x y x y x 22÷⎥⎦⎤⎢⎣⎡-++-的值为( )A. 3B.27C. 4D.299. 计算()()⎪⎭⎫ ⎝⎛++-22b a b a b a 的结果是( )A.42224b b a a ++B.42224b b a a +-C. 44b a +D.44b a - 10.已知552=a ,443=b ,334=c , 则a 、b 、c 、的大小关系为:( )A 、c b a >>B 、b c a >>C 、a c b >>D 、c a b >> 二、填空题(每小题3分,共24分)11. 单项式73xyπ的系数是______,次数是_____次。
2018-2019学年下学期七年级教学质量监测数学试题卷(考试时间:120分钟,总分:150分)一、选择题:(本大题共12个小题,每小题3分,共36分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效............) 1.已知2x =是关于x 的一元一次方程15ax +=的解,那么a 的值为( )A.3-B.2-C.2D.32.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.3.下列哪一种正多边形不能..铺满地面( ) A.正三边形 B.正四边形 C.正六边形 D.正八边形4.已知ABC △两边长分别是2和3,则第三边长可以是( )A.1B.2C.5D.85.已知x y >,则下列不等式成立的是( )A.33x y -<-B.33x y <C.22x y -<-D.22x y < 6.多边形每一个外角都是45︒,那么这个多边形是( )A.六边形B.七边形C.八边形D.九边形7.二元一次方程2311x y +=的正整数解有( )A.2组B.3组C.4组D.5组8.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A.80︒B.90︒C.100︒D.110︒ 9.关于x 的不等式20x m -<的正整数解是1、2、3,那么m 的取值范围是( )G F D C B AA.322m <≤B.322m ≤≤C.322m ≤<D.322m << 10.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A.()201534x x =-B.()22031534x x ⨯=⨯-C.()32021534x x ⨯=⨯-D.()32034215x x ⨯-=⨯11.甲、乙两位同学在解关于x 、y 的方程组212x ay bx y +=⎧⎨-=⎩时,甲同学看错a 得到方程组的解为34x y =⎧⎨=⎩,乙同学看错b 得到方程组的解为23x y =⎧⎨=-⎩,则x y +的值为( ) A.0 B.14 C.34 D.5412.在直角三角形ABC 中,=90C ∠︒,AD 平分BAC ∠交BC 于点D ,BE 平分ABC ∠交AC 于点E ,AD 、BE 相交于点F ,过点D 作DG AB ∥,过点B 作BG DG ⊥交DG 于点G .下列结论:①135AFB ∠=︒;②2BDG CBE ∠=∠;③BC 平分ABG ∠;④BEC FBG ∠=∠.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个二、填空题:(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效............) 13.2x 与1的差是非负数,用不等式表示为 .14.在公式()12s a b h =+中,已知16s =, 3.6a =, 4.4b =,则h 的值是 . 15.如图,已知AD 是ABC △的中线,且ABD △的周长比ACD △的周长多4cm .若16AB cm =,那么AC = cm .16.某校七年级篮球联赛,每个班分别要比赛36场,积分规则是:胜1场计2分,负1场计1分.七(1)班和七(2)班为争夺一个出线名额,展开激烈竞争.目前七(1)班的战绩是17胜13负积47分,七(2)班的战绩是15胜16负积46分.则七(1)班在剩下的比赛中至少需胜 场可确保出线.17.如图,在ABC △中,90ACB ∠=︒,把ABC △沿AC 方向平移得到DEF △,DE 与BC交于点G .已知2BG =,6EF =,3CF =,则四边形ABGD 的面积是 .AD C B 18.如图,长方形ABCD 是由m 个完全相同的小长方形组成,上下各有3个水平放置的小长方形,中间竖放若干个小长方形.若宽AB 是长BC 的59,则m 的值为 .步骤. 19.(本题16分,每小题8分)(注意:在试题卷上作答无效............) (1)解方程:2143x x +=-; (2)解方程组:23,127 5.x y x y -=⎧⎨+=⎩①②20.(本小题12分)(注意:在试题卷上作答无效............) 如图,在边长为1个单位长度的88⨯的小正方形网格中.(1)将ABC △先向右平移3个单位长度,再向下平移2个单位长度,作出平移后的A B C '''△;(2)请画出A B C '''''△,使A B C '''''△和A B C '''△关于点C '成中心对称;(3)直接写出A A B '''''△的面积.21.(本小题12分)(注意:在试题卷上作答无效............) 已知一元一次不等式组2(1)3413 1.24x x x x -≥-⎧⎪⎨+-≥-⎪⎩,①② (1)求一元一次不等式组的解集,并将其解集在数轴上表示出来;(2)设35w x =-+,在(1)的结论中,求w 的最大值和最小值.22.(本小题12分)(注意:在试题卷上作答无效............) 如图,在ABC △中,CM AB ⊥于点M ,ACB ∠的平分线CN 交AB于点N ,过点N 作ND AC ∥交BC 于点D .若78A ∠=︒,50B ∠=︒.NM CB A求:①CND ∠的度数;②MCN ∠的度数.23.(本小题12分)(注意:在试题卷上作答无效............) 2018年宜宾市创建全国文明城市的过程中,某小区决定购买文明用语提示牌和文明信息公示栏.若购买2个提示牌和3个公示栏需要510元;购买3个提示牌和5个公示栏需要840元.(1)求提示牌和公示栏的单价各是多少元?(2)若该小区购买提示牌和公示栏共50个,要求购买公示栏至少..12个,且总费用不.超过..3200元.请你列举出所有购买方案,并指出哪种方案费用最少,最少费用为多少元?24.(本小题12分)(注意:在试题卷上作答无效............) 定义:对于任何有理数m ,符号[]m 表示不大于m 的最大整数.例如:[4.5]4=,[8]8=,[ 3.2]4-=-.(1)填空:[]π=________,[ 2.1]5-+=________;(2)如果52[]43x -=-,求满足条件的x 的取值范围; (3)求方程43[]50x x -+=的整数解.25.(本小题14分)(注意:在试题卷上作答无效............) 在ABC △中,ACB ∠的平分线CD 与外角EAC ∠的平分线AF 所在的直线交于点D .(1)如图1,若60B ∠=︒,求D ∠的度数;(2)如图2,把ACD △沿AC 翻折,点D 落在D '处.①当AD AD '⊥时,求BAC ∠的度数;②试确定DAD '∠与BAC ∠的数量关系,并说明理由.。
2018~2019学年度第二学期第一次教学质量监测七年级数学阶段考试试卷(考试时间:100分钟,总分:100分,命题人:黄本华)一、选择题(本题共10题,每题2分,共20分) 1. 下列各式表示正确的是( )A .525±=B . 525=±C .525±=±D .552-=-±)(2. 下列各图中,∠1与∠2是对顶角的是( )3. 点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =5cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为 ( )A .小于3cmB .5cmC .3cmD .不大于3cm 4. 如图,a ∥b ,12∠∠是的2倍,则2∠等于( ) A .60︒ B .90︒ C .30︒ D .50︒第4题 第6题 第7题5. 下列句子中不是命题的是 ( ) A .两直线平行,同位角相等. B .直线AB 垂直于CD 吗? C .若︱a ︱=︱b ︱,则a 2 = b 2. D .同角的补角相等.6. 如图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A .43∠=∠ B . 21∠=∠C . DCED ∠=∠ D .180=∠+∠ACD D7. 如图,直线PQ ⊥MN ,垂足为O ,AB 是过点O 的直线,∠1=50°,则∠2•的度数为 ( ) A .50° B .40° C .60° D .70° 10.点P (3,-4),则点P 在( )EDC BA 43211ab2A .第一象限B .第二象限C .第三象限D .第四象限 9. 下列说法正确的是( )A .-2是-4的平方根B .2是(-2)2的算术平方根C .(-2)2的平方根是2D .8的平方根是±2 10.下列命题中,真命题的个数有( )① 同一平面内,两条直线一定互相平行; ② 有一条公共边的角叫邻补角; ③ 内错角相等。
2018-2019学年度第二学期第一阶段教学检测七年级数学试题(卷)考生须知:1. 本试卷满分120分,考试时间为120分钟.2. 答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3. 请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5. 保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.第I 卷(选择题共30 分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:2a a =gA .aB .2aC .3aD .2a2. 如图,直线,a b 被直线c 所截,则1∠与2∠是( )A.同位角B.内错角C.对顶角D.同旁内角3.下列计算结果为负数的是( )A .013⎛⎫- ⎪⎝⎭B .313⎛⎫- ⎪⎝⎭C .213-⎛⎫- ⎪⎝⎭D .13- 4. 将一副三角板按如图方式摆放,若// OA CD ,则BOC ∠的度数为( )A .15︒B .20︒ C.25︒ D .30︒5. 如果()3402,m x x y x y =那么,m n 的值分别是( )A .2,2B .2,4 C. 2,6 D .4,26. 如图,直线AB 与CD 相交于点,O OE 平分BOD ∠,若60AOC ︒∠=.则AOE ∠的度数为( )A .120︒B .130︒ C. 140︒ D .150︒7.从边长为a 的大正方形纸板中位挖去一个边长为b 的小正方形后.将其裁成四个相同的等腰梯形(如图甲) ,然后拼成一个(如图 乙),那么通过计算阴影部分的面积可以验证公式( )A .()2222a b a ab b +=++B .()()224a b a b ab +--= C.()2222a b a ab b -=-+ D .()()22a b a b a b -=+- 8. 若22x ax b -+是一个完全平方式,则a 与b 满足的关系是( )A .2a b =B .2b a = C. 2b a = D .2a b =9. 一张长方形餐桌的表面如图所示,图中空白部分的面积是阴影部分面积的( )A .2倍B .3倍 C.12 D .1310. 如图,已知//AB DE ,则B C D ∠∠∠、、之间的数量关系是( )A. 180B C D ︒∠+∠+∠=B. 180B C D ︒∠-∠+∠=C. 180D B C ︒∠-∠+∠=D.180D B C ︒∠-∠-∠= 第II 卷(非选择题共90 分)二、填空题:(每题3分,共30分)11.已知439x =,则x 的值为 .12.一个角的余角是48,这个角的补角是. ︒。
滕州市初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°【答案】B【考点】平行线的性质【解析】【解答】解:∵DE∥OB∴∠ADE=∠AOB=40°,∠CDE+∠DCB=180°∵CD和DE为光线∴∠ODC=∠ADE=40°∴∠CDE=180°-40°-40°=100°∴∠BCD=180°-100°=80°。
故答案为:B。
【分析】根据入射光线和反射光线,他们与镜面所成的角相等,可得∠ODC=∠ADE;根据直线平行的性质,两直线平行,同位角相等,同旁内角互补进行计算即可。
2.(2分)一个数的立方根等于它本身,则这个数是()A.0B.1C.-1D.±1,0【答案】D【考点】立方根及开立方【解析】【解答】1的立方根是1,-1的立方根是-1,0的立方根是0,所以立方根等于它本身的有1,-1和0 故答案为:D【分析】正数有一个正的立方根,负数有一个负的立方根,零的立方根是零,立方根等于它本身的数只有1,-1和0.3. ( 2分 ) 关于下列问题的解答,错误的是( )A.x 的3倍不小于y 的,可表示为3x > yB.m 的 与n 的和是非负数,可表示为+n≥0 C.a 是非负数,可表示为a≥0 D.是负数,可表示为 <0【答案】 A【考点】不等式及其性质【解析】【解答】解:A 、根据列不等式的意义,可知x 的3倍不小于y 的,可表示为3x≥ y ,故符合题意;B 、由“m 的 与n 的和是非负数”,表示为 +n≥0,故不符合题意;C 、根据非负数的性质,可知a≥0,故不符合题意;D 、根据 是负数,表示为 <0,故不符合题意.故答案为:A.【分析】A 先表示x 的3倍与y 的, 再根据“不小于”即“大于或等于” 列出不等式即可,再作出判断即可。
滕州城区四校联考七年级第一次质量监测数学试卷一、选择(每小题3分,共30分)1.下面所示的图形中,能围成一个正方体的是( )。
A .B .C .D .2.一个小立方块的六面分别标有字母A 、B 、C 、D 、E 、F ,如图是从三个不同方向看到的情形,则A 的对面是什么字母?( )A .EB .FC .BD .C3.同一个平面去截棱柱、棱锥、圆椎,相同的截面形状是( )A .圆B .三角形C .长方形D .不能确定4.有10个棱长为1的正方体堆成如图所示形状,则它的表面积为 ( )A .30B .34C .36D .485.如图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是( )A .7B .6C .5D .46.数轴上与原点距离为3的点表示的数是( )A .3B .-3C .±3D .6 7.计算||831611--结果为( ) A .一165 B .165 C .167 D .一167 8.若0|1||3|=-++b a ,则b a +的值为( )A .-2B .2C .-4D .49.化简ππ-+-3|3|结果为( )A .1B .2C .0D .310.若||x =2,||y =3,则y x +的值为( )A .±5B .±1C .±5,±1D .5,1二、填空(每空3分,共30分)11.长方体共有__________条棱________个面。
12.将一个正方体的表面沿某些棱剪开,展成一个平面图形,需要剪________条棱。
13.如图是正方体的一种展开图,它的各面上都有数字,如果相对面上的数字之和为5,则y x +=_________。
14.按某种规律在横线上填上适当的一个数。
82 一163 324 一645 _______________ 15.绝对值大于1而小于5的所有整数的和为______________。
2018-19下学期第一阶段水平测试数学试题答案及评分标准初一数学1一.选择题:ADBCD BAAAD二.填空题:11. 5; 12. 8; 13. y=2x ; 14. 15° ; 15. n(n+2)+1=(n+1)2 ;16. 60°三.解答题:17. 计算:(a ﹣1)(a +1) + (a ﹣2)2解原式= a 2﹣1 +a 2﹣4 a +4= 2a 2﹣4 a +318. 每空2分(1)180;(2)120;(3)17:0019. 每行2分两直线平行,内错角相等; B 、 B ,C ,两直线平行,同旁内角互补; 等量代换;20. (1) 正确画图 ……………2分AE ……………3分(2) 正确画图 ……………6分∴ 直线FC 为所求作……………7分21. 解:(1)卧室的面积是:2b (4a ﹣2a )=4ab ……………2分厨房、卫生间、客厅的面积是:b •(4a ﹣2a ﹣a )+a •(4b ﹣2b )+2a •4b =ab +2ab +8ab =11ab即木地板需要4ab 平方米,地砖需要11ab 平方米;……………4分(2)11ab •x +4ab •3x =11abx +12abx =23abx (元)即郭老师需要花23abx 元.……………7分22. 解:(1)△ADB 、△AEC 、△BEC 、△CDB 、△BEO 、△CDO ……………3分(2)∠1=∠2理由如下:∵BD 、CE 是△ABC 的高(已知)∴∠AEC=90°,∠ADB=90°(高的定义)∴∠1+∠A =90°,∠2+∠A =90°(直角三角形两个锐角互余)∴∠1=∠2(同角或等角的余角相等)…………7分……………6分……………4分23. (1)a2﹣b2=(a+b)(a﹣b).………2分(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴15=3(x﹣2y),∴x﹣2y=5;………4分②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1………6分=(22﹣1)(22+1)(24+1)(28+1)……(264+1)+1=(24﹣1)(24+1)(28+1)……(264+1)+1=(28﹣1)(28+1)……(264+1)+1=(216﹣1)……(264+1)+1=2128﹣1+1=2128………9分24. (1)50;3.6;……3分(2)(530﹣410)÷(3.6﹣1.6)=120÷2=60(千克),100+60=160(千克).∴一共批发了160千克的黄瓜;………6分(3)530﹣160×2.1﹣50=144(元).∴李大爷一共赚了144元钱.………9分25. (1)∵DE⊥AB(已知)∴∠ADO=90°(垂直定义)又∵∠A=30°,∴∠AOD=90°﹣∠A =60°(直角三角形两个锐角互余)∵∠COE=∠AOD=60°(对顶角相等)∵EF∥AC(已知)∴∠DEF+∠COE=180°(两直线平行,同旁内角互补)∴∠DEF=120°(等式性质);………3分(2)由(1)知,∠DEF=120°.∵BE平分∠DEF,∴∠BEF=∠BED=DEF=60°(角平分线定义)又∵DE⊥AB,∴∠BDE=90°(垂直定义)∴∠DBE=90°﹣60°=30°(直角三角形两个锐角互余)∵BE平分∠ABC,∴∠EBF=∠DBE =30°,(角平分线定义)∴∠F=180°﹣∠EBF﹣∠BEF(三角形内角和是180°)=180°﹣60°﹣30°=90°即EF⊥BF(垂直定义)………9分。
山东省滕州市滕南中学2024-2025学年七年级上学期第一次质量检测数学试卷一、单选题1.2024-的倒数是()A .12024-B .12024C .2024-D .20242.一种食品,标准质量为每袋250克,用正数表示超过标准质量的克数,用负数表示比标准质量少的克数.质检员抽取一袋进行检测,质量是245克,应记作()A .5-克B .5+克C .245+克D .245-克3.武汉市元月份某一天早晨的气温是3-℃,中午上升了8℃,则中午的气温是()A .5-℃B .5℃C .3℃D .3-℃4.下列四个数中,是负数的是()A .5-B .43C .214⎛⎫- ⎪⎝⎭D .()52-5.下列各组数中,互为相反数的是()A .|2|+与|2|-B .(2)--与2C .|(2)|--与|2|--D .|2|-+与(2)+-6.如图,数轴上被墨水遮盖的数可能为()A .52-B .32-C . 1.7-D . 4.1-7.有理数a ,b 在数轴上的位置如图所示,下列各式成立的是()A .a b>-B .0a b +>C .0b <D .0ab <8.在学习“绝对值”时,我们得到:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.在这一学习过程中,主要体现的数学思想是()A .分类讨论思想B .数形结合思想C .转化思想D .方程思想9.将()()()5678-+--+-写成省略正号和括号的形式,正确的是()A .5678-+-B .5678---C .5678-++D .5678--+10.设x 为有理数,若x x =,则()A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数11.如图,将一张边长为1的正方形纸片分割成7部分,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.借助图形可得,1111111248163264S ++++++=阴影.类比以上做法可以得出11111111248163264128256+++++++再加上()后,结果就是1.A .164B .1128C .1256D .151212.小强根据学习“数与式”积累的经验,111111111111122232334344545=-=-=-=-⨯⨯⨯⨯ ,,,,,则111111223344520202021+++++⨯⨯⨯⨯⨯ 的值为().A .2020B .20212022C .2021D .20202021二、填空题13.比较大小34-23-.(填“>”,“<”或“=”)14.数轴上大于 2.6-且小于3.4的所有整数之和是.15.为纪念我国著名数学家苏步青所做的卓越贡献,国际上将一颗距地球2.18亿千米的行星命名为“苏步青星”.将2.18亿用科学记数法表示为2.1810n ⨯,则n 的值为.16.33-的底数是.17.若()2530m n -++=,则m n +=.18.将一张长方形纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折2024次,可以得到条折痕.三、解答题19.某冷冻厂的一个冷库现在的室温是2C -︒,现在一批食品需要在18C -︒下冷藏,如果每小时能降温4C ︒,需要几小时才能降到所需温度?20.补全如下数轴,并在数轴上表示下列各数:0,3-,112-,2.5,并按从小到大的顺序用“<”号把这些数连接起来.21.计算:(1)()()72372217---+-(2)()()()1234...99100+-++-+++-.(3)()948149⎛⎫-+⨯- ⎪⎝⎭(4)317364612⎛⎫-⨯-+ ⎪⎝⎭(5)()216825÷---⨯;(6)421250215⎛⎫-++⨯-- ⎪⎝⎭.22.已知a ,b 互为倒数,c ,d 互为相反数,m 为最大的负整数.试求34m c d ab m+++的值.解:a ,b 互为倒数,∴___________. __________0c d ∴+=,m为最大的负整数,∴___________.34m c dab m+∴++=___________.23.(1)根据倒数的定义我们知道,若()2a b c +÷=-,则()c a b ÷+=________.(2)计算5121129336⎛⎫-+÷ ⎪⎝⎭.(3)根据以上信息可知:1512361293⎛⎫⎛⎫-÷-+= ⎪ ⎪⎝⎭⎝⎭________.24.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km )依先后次序记录如下:8636510-+---+,,,,,.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?25.我们定义一种新运算:*a b a b a b =-+⨯.(1)求()2*3-的值;(2)求()()2*2*3--⎡⎤⎣⎦的值.26.我国著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.在中学数学中,体现数形结合思想的内容较多,本学期学习的“数轴”就是体现数形结合思想的一个有力工具,利用数轴常常可以使一些复杂问题变得容易解决.例如,式子2x -∣∣的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;再比如()11x x +=--∣∣∣∣,所以1x +∣∣的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离.发现问题:12x x ++-∣∣∣∣的最小值是多少?探究问题:如图,点A ,B ,P 分别表示数1-,2,x ,3AB =.∵12x x ++-∣∣∣∣的几何意义是线段PA ,PB 的长度之和,∴当点P 在线段AB 上时,+=PA PB 3;当点P 在A 的左侧或点B 的右侧时,+>PA PB 3,所以12x x ++-∣∣∣∣的最小值是3.解决问题:(1)9x -∣∣表示数轴上x 所对应的点与数所对应的点之间的距离,x n +∣∣表示数轴上x 所对应的点与数所对应的点之间的距离;(2)13x x -++∣∣∣∣的最小值是多少?并利用数轴说明理由;(3)填空:当a 为时,3x a x ++-∣∣∣∣的最小值是2.。
初一数学答案DBCBA BBADC11、1 12、2 13、5 14、380;390 15、七16、30 17、4 , 三棱锥 (答四面体也可) 18、2或-4 19、5 20、1921、(16分)(1)1 (2)13 (3)41-(4)311- 22.(5分) 解:略23. (5分)解:因为|x |=5,所以x =5或-5.因为|y |=3,所以y =3或-3.(1)当x -y >0时,x =5,y =3或x =5,y =-3,此时x +y =5+3=8或x +y =5+(-3)=2.(2)当xy <0时,x =5,y =-3或x =-5,y =3,此时|x -y |=8.24. (6分)25(6分)解:因为a 与2互为相反数,所以a +2=0.因为c 与d 互为倒数,所以cd =1.因为m 的平方与它本身相等,所以m =0或m =1.当m =0时,3m -2a cd++2cd =0-0+2=2; 当m =1时,3m -2a cd++2cd =13-0+2=37. 综上可知,3m -2a cd++2cd 的值为2或37.26.(6分) 解:(1)2.5-(-3)=5.5(千克).答:最重的一筐比最轻的一筐重5.5千克.(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=-3-8-3+2+20=8(千克).答:20筐南丰蜜桔总计超过8千克.(3)5×(25×20+8)=2540(元).答:这20筐南丰蜜桔可卖2540元.27.(8分)解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.所以图 2 体积更大28.(8分) (1)128(2)y(3)有两种情况(答对一种即可)。
1
滕州滕南中学2018-2019年初一下第一次质量检测数学试卷
数学试卷
(满分120分,时间:100分钟)
一.选择题(请把唯一正确的答案序号填在题后括号内,每题3分,共45分) 温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来 1.下列运算正确的是()
A .a a a =-2
3
B .6
3
2
a a a =⋅ C .32
6
()a a = D.()3
3
93a a =
=⎪
⎭⎫ ⎝
⎛
-⨯⎪⎭
⎫ ⎝⎛-2012
2012
532135.2()
A.1-
B.1
C.0
D.1997
3.计算:()2
3m n 的结果是()
A 6m n B.62m n C 52m n D.32
m n
4.2
(2)--等于() A .﹣4 B .4
C .﹣
14
D .
14
5.已知,5,3==b
a
x x 则=-b
a x 23()
A.
2527B.109
C.5
3D.52 6.已知.(a+b )2=9,ab =-11
2 ,则a²+b 2的值等于() A.84B.78C.12D.6
7.如(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值为() A.–3
B.3
C.0
D.1
8.已知.(a+b )2
=9,ab =-11
2 ,则a²+b 2的值等于() A.84B.78C.12D.6
9.已知,3,5=-=+xy y x 则=+22y x ()
A.25.B 25-C19D 、19- 10.下列说法中正确的有()
①等角的余角相等;②两直线平行,同旁内角相等;③相等的角是对顶角; ④同位角相等;⑤直角三角形中两锐角互余. A .1个
B .2个
C .3个
D .4个
11.如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是() A .∠3=∠4B .∠1=∠2
C .∠B =∠DCE
D .∠D +∠DAB =180°
第11题图第12题图第13题图
12.如图,已知AB ∥CD ,∠A =70°,则∠1的度数是()
A .70°B.100°C.110°D.130°
13.如图,已知AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是()
A .相等
B .互余
C .互补
D .互为对顶角
14.小王利用计算机设计了一个程序,输入和输出的数据如下表: … 那么,当输入数据8时,输出的数据是() (A )
861(B
)863(C )8
65
(D )867
15.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是() 二、填空题(共6小题,每小题4分,共24分)
2
温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 16.用科学记数法表示:0.00034=________. 17.若16×32=2n ,则n =________. 18..若62
2
=-n m ,且3=-n
m ,则=+n m .
19.三条直线a 、b 、c ,若a ∥b ,a ∥c ,则________, 理由________________.
20.已知:如图,OC ⊥AB ,OD ⊥OE ,则与∠AOD 互余的角是____________.
21.根据图示的程序计算函数值,若输入的果为
三、解答题(共51分)
22.计算:(每小题6分,共24分)
(1)23243(2)(7)14a b ab a b ⋅-÷;(2)(5)(5)m n m n ---;
(3)()();x y
z x y z +++-;(4)2
(2)(1)(1)x x x +-+-.
23.先化简,再求值:
22(2)(2)24,xy xy x y xy ⎡⎤+--+÷⎣⎦其中10,25.x y ==-(8分)
24.推理填空:(每空2分,共14分) (1)∵AD ∥BC , ∴∠FAD =______() (2)∵∠1=∠2,
∴______∥_______()
(3)∵AD ∥BC, ∴_______________()
25.(5分)尺规作图(不写作法,保留作图痕迹):
如图,已知∠AOB 及OA 边上的点C ,过点C 作射线CE ,使CE ∥OB .
E
D C
O
B
A。