试卷分类汇编_——投影与视图
- 格式:doc
- 大小:1.22 MB
- 文档页数:39
(2013•衡阳)下列几何体中,同一个几何体的主视图与俯视图不同的是( ) A .B .C .D .考点: 简单几何体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形. 解答:解:A 、圆柱的主视图与俯视图都是矩形,错误; B 、正方体的主视图与俯视图都是正方形,错误;C 、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D 、球体主视图与俯视图都是圆,错误; 故选C . 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A . 2个B . 3个C . 5个D . 10个考点: 由三视图判断几何体. 分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数. 解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体, 从俯视图可以验证这一点,从而确定小正方体总个数为5个. 故选;C . 点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.(( )株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A BC DA .正方体 B .圆柱C .圆锥 D .球 考点: 简单几何体的三视图 分析: 俯视图是分别从物体上面看所得到的图形.分别写出四个几何体的俯视图即可得到答案. 解答:解:正方体的俯视图是正方形;圆柱体的俯视图是圆;圆锥体的俯视图是圆;球的俯视图是圆. 故选:A . 点评:本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. (2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。
最新初中数学投影与视图分类汇编含解析(2)一、选择题1.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A .πB .3πC .33πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o, 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是( )A .主视图B .主视图和左视图C .主视图和俯视图D .左视图和俯视图【答案】B【解析】【分析】 根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图底层的正方形位置发生了变化.∴不改变的是主视图和左视图.故选:B .【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.4.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为( )A .48B .57C .66D .48236+【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.5.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个【答案】B【解析】 题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.6.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.7.小亮领来n 盒粉笔,整齐地摆在讲桌上,其三视图如图,则n 的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.8.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2【答案】D【解析】【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.9.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.11.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【答案】D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.解:从左面看去,是两个有公共边的矩形,如图所示:故选D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.12.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.【答案】B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.14.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.15.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!16.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.17.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.18.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.19.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.20.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.。
专题16 视图与投影、尺规作图、命题与定理一.选择题1.(2022·山东临沂)如图所示的三棱柱的展开图不可能...是()A.B.C.D.【答案】D【分析】三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个三角形的底面组成.从而可得答案.【详解】解:选项A、B、C均可能是该三棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.【点睛】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.2.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.3.(2022·广西贵港)下列命题为真命题的是()A a=B.同位角相等C.三角形的内心到三边的距离相等D.正多边形都是中心对称图形【答案】C【分析】根据判断命题真假的方法即可求解.【详解】解:当0a<a-,故A为假命题,故A选项错误;当两直线平行时,同位角才相等,故B为假命题,故B选项错误;三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故C为真命题,故C选项正确;三角形不是中心对称图形,故D为假命题,故D选项错误,故选:C.【点睛】本题考查了真假命题的判断,熟练掌握其判断方法是解题的关键.4.(2022·湖南邵阳)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【答案】D【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D.【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图.5.(2022·湖北鄂州)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看到的图形是主视图,即可得.【详解】解:从前面看,第一层是两个小正方形,第二层左边一个小正方形,第三层左边1个小正方形,故选A.【点睛】本题考查了简单几何体的三视图,解题的关键是掌握从正面看到的图形是主视图.6.(2022·辽宁锦州)下列命题不正确...的是()A.经过直线外一点,有且只有一条直线与这条直线平行B.负数的立方根是负数C.对角线互相垂直的四边形是菱形D.五边形的外角和是360︒【答案】C【分析】由平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,分别进行判断,即可得到答案.【详解】解:A、经过直线外一点,有且只有一条直线与这条直线平行;故A正确;B、负数的立方根是负数;故B正确;C、对角线互相垂直的平行四边形是菱形,故C错误;D、五边形的外角和是360︒,故D正确;故选:C【点睛】本题考查了判断命题的真假,以及考查了平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,解题的关键是掌握所学的知识,正确的进行判断.7.(2022·内蒙古通辽)下列命题:①()3235m n m n⋅=;②数据1,3,3,5的方差为2;③因式分解()()3x x x x x-=+-;④平分弦的直径垂直于弦;则1 422x.其≥中假命题的个数是()A.1B.3C.2D.4【答案】C【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:①()3362m n m n ⋅=,故原命题是假命题; ②数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题; ③()()()324422x x x x x x x -=-=+-,是真命题;④平分弦(不是直径)的直径垂直于弦,故原命题是假命题;10x -≥,即1≥x ,是真命题;∴假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.8.(2022·山东威海)过直线l 外一点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .【答案】C【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,AP=BP,AQ=BQ,∴点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线上,∴直线PQ垂直平分线线段AB,即直线l垂直平分线线段PQ,本选项不符合题意;B、如图,连接AP、AQ、BP、BQ,AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;C、C项无法判定直线PQ垂直直线l,本选项符合题意;D、如图,连接AP、AQ、BP、BQ,AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;故选:C.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.9.(2022·湖南长沙)如图,在ABC中,按以下步骤作图:①分别过点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交于P 、Q 两点; ②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M 、连接AM 、BM .若AB =AM 的长为( )A .4B .2 CD【答案】B 【分析】根据作图可知PM 垂直平分AB ,12DM AB =,ABM 是等腰直角三角形,据此即可求解.【详解】解:由作图可得PM 垂直平分AB ,12AD DM AB ===则ADM 是等腰直角三角形∴由勾股定理得:2AM =故选:B .【点睛】本题考查了作垂线,等腰直角三角形的性质,勾股定理,掌握基本作图理解题意是解题的关键.11.(2022·贵州毕节)在ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB AE =B .AD CD =C .AE CE =D .ADE CDE ∠=∠【答案】A【分析】根据作图可知AM =CM ,AN =CN ,所以MN 是AC 的垂直平分线,根据垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等,且平分此点到线段两端构成的夹角,分别对各选项进行判断.【详解】由题意得,MN 垂直平分线段AC ,∴AD CD =,AE CE =,ADE CDE ∠=∠所以B 、C 、D 正确,因为点B 的位置不确定,所以不能确定AB =AE ,故选 A【点睛】本题考查了线段垂直平分线,熟练掌握线段垂直平分线的作图方法和性质是解题的关键. 10.(2022·四川广安)下列说法正确的是( )A .对角线相等的四边形是矩形.B .相似三角形的面积的比等于相似比.C .方差越大,数据的波动越大;方差越小,数据的波动越小.D .过一点有且只有一条直线与已知直线平行.【答案】C【分析】根据矩形的判定,相似三角形的性质,方差的意义,平行公理逐项分析判断即可求解.【详解】解:A. 对角线相等的平行四边形是矩形,故该选项不正确,不符合题意;B. 相似三角形的面积的比等于相似比的平方,故该选项不正确,不符合题意;C. 方差越大,数据的波动越大;方差越小,数据的波动越小,故该选项正确,符合题意;D. 同一平面内,过直线外一点有且只有一条直线与已知直线平行,故该选项不正确,不符合题意; 故选C【点睛】本题考查了矩形的判定,相似三角形的性质,方差的意义,平行公理,掌握相关知识是解题的关键.12.(2022·山东烟台)如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是( )A .B .C .D .【答案】A【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,可得如下图形:故选:A.【点睛】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.13.(2022·山东聊城)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是()A.B.C.D.【答案】B【分析】根据左视图的定义及画法即可判定.【详解】解:从左边看该几何体是一个斜边在左侧的直角三角形,故选:B.【点睛】本题考查画简单几何的三视图,熟练掌握和运用简单几何三视图的画法是解决本题的关键.14.(2022·内蒙古赤峰)下面几何体的俯视图是()A.B.C.D.【答案】B【分析】俯视图是从物体的上面看得到的视图.【详解】圆台的俯视图是一个同心圆环.故选:B.【点睛】本题考查几何体的三视图,主要考查学生空间想象能力及对立体图形的认知能力.15.(2022·黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【分析】这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,再相加即可.【详解】由俯视图可知最底层有5个小正方体,由左视图可知这个几何体有两层,其中第二层最多有3个,+=个.那么搭成这个几何体所需小正方体最多有538故选:B.【点睛】本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.(2022·广西贵港)一个圆锥如右图所示放置,对于它的三视图,下列说法正确的是()A.主视图与俯视图相同B.主视图与左视图相同C.左视图与俯视图相同D.三个视图完全相同【答案】B【分析】根据三视图的定义即可求解.【详解】解:主视图为等腰三角形,左视图为等腰三角形,俯视图为有圆心的圆,故主视图和左视图相同,主视图俯视图和左视图与俯视图都不相同,故选:B.【点睛】本题考查了几何体的三视图,掌握三视图的定义,会看得出三视图是解题的关键.17.(2022·山东青岛)如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()A.B.C.D.【答案】C【分析】根据几何体的俯视图是从上面看进行判断解答即可.【详解】解:由图可知,该“堑堵”的俯视图是,故选:C.【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.18.(2022·辽宁)如图所示的几何体是由4个完全相同的小正方体搭成的,它的主视图是()A.B.C.D.【答案】C【分析】根据几何体的三视图可直接进行排除选项.【详解】解:由题意得:该几何体的主视图为;故选C.【点睛】本题主要考查三视图,熟练掌握几何体的三视图是解题的关键.19.(2022·辽宁营口)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.【答案】B【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:B.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.20.(2022·广西玉林)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】根据几何体的三视图可进行求解.【详解】解:由题意可知该几何体的主视图为;故选B.【点睛】本题主要考查三视图,熟练掌握三视图是解题的关键.21.(2022·四川广安)如图所示,几何体的左视图是()A.B.C.D.【答案】B【分析】根据从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图判断即可.【详解】解:几何体的左视图是故选:B.【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.掌握以上知识是解题的关键.22.(2022·内蒙古呼和浩特)图中几何体的三视图是()A.B.C.D.【答案】C【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图为故选C【点睛】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键,注意实际存在又没有被其他棱所挡,在所在方向看不到的棱应用虚线表示.23.(2022·贵州遵义)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【答案】A【分析】根据左视图的意义和画法可以得出答案.【详解】解:∵该几何体为放倒的三棱柱,∴根据左视图的画法,从左往右看,看到的是一个直角在左边的直角三角形,故选:A.【点睛】本题考查简单几何体的三视图,熟练掌握简单几何体的三视图是解答本题的关键.从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.24.(2022·黑龙江哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【答案】D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.25.(2022·吉林)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.下图是一款松花砚的示意图,其俯视图为()A.B.C.D.【答案】C【分析】根据俯视图的定义(从上面观察物体所得到的视图)即可得.【详解】解:其俯视图是由两个同心圆(不含圆心)组成,即为,故选:C.【点睛】本题考查了俯视图,熟记定义是解题关键.26.(2022·江苏泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.27.(2022·贵州贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【答案】B【分析】根据圆锥体的立体图形判断即可.【详解】用平行底面的平面截圆锥体,截面是圆形,故选:B.【点睛】本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.28.(2022·江苏常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【答案】D【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D.【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.29.(2022·四川内江)如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.30.(2022·北京)下面几何体中,是圆锥的为()A.B.C.D.【答案】B【分析】观察所给几何体,可以直接得出答案.【详解】解:A选项为圆柱,不合题意;B选项为圆锥,符合题意;C选项为三棱柱,不合题意;D选项为球,不合题意;故选B.【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥.31.(2022·广西)下列几何体中,主视图为矩形的是()A.B.C.D.【答案】C【分析】根据常见几何体的主视图,依次判断即可.【详解】A.该三棱锥的主视图为中间有条线段的三角形,故不符合题意;B.该圆锥的主视图为三角形,故不符合题意;C.该圆柱的主视图为矩形,故符合题意;D.该圆台的主视图为梯形,故不符合题意;故选:C.【点睛】本题考查常见几何体的三视图,掌握常见几何体的三视图是解答本题的关键.32.(2022·湖北恩施)下图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是()A.“恩”B.“乡”C.“村”D.“兴”【答案】D【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点得:“恩”字与“乡”字在相对面上,“施”字与“村”字在相对面上,“振”字与“兴”字在相对面上,故选:D.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.33.(2022·四川广元)如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.34.(2022·湖北武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A.【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.35.(2022·四川凉山)如图所示的几何体的主视图是()A.B.C.D.【分析】根据主视图的定义(从正面观察物体所得到的视图叫主视图)即可得.【详解】解:这个几何体的主视图是故选:C.【点睛】本题考查了主视图,熟记定义是解题关键.36.(2022·四川泸州)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【答案】C【分析】观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形即可判定.【详解】解:由俯视图的定义可知:从上往下观察发现∶故选C.【点睛】本题考查三视图,解题的关键是熟练掌握俯视图是从物体上面看所得到的图形.37.(2022·浙江湖州)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】D【分析】主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.【详解】解:观察该几何体发现:从正面看到的应该是三个正方形,上面左边1个,下面2个,【点睛】本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.38.(2022·四川眉山)下列立体图形中,俯视图是三角形的是()A.B.C.D.【答案】B【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意;故选:B.【点睛】本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.39.(2022·浙江台州)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【答案】A【分析】找到几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看可得如下图形,故选:A.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图是从正面所看到的图形.40.(2022·黑龙江绥化)下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半【答案】B【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意;故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.41.(2022·广西河池)下列几何体中,三视图的三个视图完全相同的几何体是()A.B.C.D.【答案】D【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A.三棱柱的俯视图与主视图和左视图都不同,故此选项错误;B.圆柱的俯视图与主视图和左视图不同,故此选项错误;C.圆锥的俯视图与主视图和左视图不同,故此选项错误;D.球的三视图完全相同,都是圆,故此选项正确.故选:D.【点睛】本题主要考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.42.(2022·辽宁锦州)如图是某几何体的三视图,该几何体是( )A .B .C .D .【答案】C【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体是圆锥.故选:C .【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体. 43.(2022·内蒙古呼和浩特)以下命题:①面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;②等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD AE =,则3∠=∠BAD EDC ;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据全等三角形的判定与性质、二次函数的性质等知识逐项判断即可,【详解】解:①项,会员原来购买一个面包需要0.85a 元,现在需要a ×(1+10%)×0.9=0.99a ,则会员购买一个面包比涨价前多花了0.99a -0.85a =0.14a 元,故①项正确;②项,如图,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠B+∠BAD=∠ADE+∠EDC,∠C+∠EDC=∠AED,又∵AD=AE,∴∠ADE=∠AED,∴∠B+∠BAD=∠ADE+∠EDC=∠C+∠EDC+∠EDC,∴∠BAD=∠EDC+∠EDC=2∠EDC,故②项错误;③项,如图,△ABC和△DEF,AB=DE,AC=DF,AM是△ABC的BC边上的中线,DN是△DEF的边EF上的中线,AM=DN,即有△ABC≌△DEF,理由如下:延长AM至G点,使得AM=GM,连接GC,延长DN至H点,使得DN=NH,连接HF,∵AM是中线,∴BM=MC,∵AM=MG,∠AMB=∠GMC,∴△AMB≌△GMC,∴AB=GC,同理可证DE=HF,∵AM=DN,∴AG=2AM=2DN=DH,∵AB =DE ,∴GC =HF ,∴结合AC =DF 可得△ACG ≌△DFH ,∴∠GAC =∠HDF ,同理可证∠GAB =∠HDE ,∴∠BAC =∠GAB +∠GAC =∠HDF +∠HDE =∠EDF ,∵AB =DE ,AC =DF ,∴△ABC ≌△DEF ,故③正确;④设原数为x ,则新数为21100x ,设原数与新数之差为y , 即21100y x x =-,变形为:21(50)25100y x =--+, 将x 等于0、1、2、3、55分别代入可知,y 随着x 的增大而增大,故④正确;即正确的有三个,故选:C ,【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、二次函数的应用等知识,掌握全等三角形的判定与性质是解答本题的关键.44.(2022·吉林长春)如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF BF =B .12AE AC = C .90DBF DFB ∠+∠=︒D .BAF EBC ∠=∠【答案】B 【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,。
初中数学投影与视图难题汇编及分析一、选择题1.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】 B【分析】【剖析】依据主视图和左视图判断是柱体,再联合俯视图即可得出答案.【详解】解:由主视图和左视图能够获得该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选: B.【点睛】本题主要考察由几何体的三视图得出几何体,娴熟掌握常有几何体的三视图是解题的重点. 2.如下图,该几何体的左视图是()A.B.C.D.【答案】 B【分析】【剖析】依据几何体的三视图求解即可.【详解】解:从左侧看是一个矩形,中间有两条水平的虚线,应选: B.【点睛】本题考察的是几何体的三视图,娴熟掌握几何体的三视图是解题的重点.3.从三个不一样方向看一个几何体,获得的平面图形如下图,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【分析】【剖析】由主视图和左视图可得此几何体为柱体,依据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.应选 A.【点睛】本题考察利用三视图判断几何体,三视图里有两个同样可确立该几何体是柱体,锥体仍是球体,由另一个视图确立其详细形状.4.一个由圆柱和圆锥构成的几何体如图水平搁置,其主(正)视图为 ( )A.B.C.D.【答案】 A【分析】【剖析】依据主视图是从几何体正面看获得的图形,仔细察看实物,可得这个几何体的主视图为长方形上边一个三角形,据此即可得.【详解】察看实物,可知这个几何体的主视图为长方体上边一个三角形,只有 A 选项切合题意,应选 A.【名师点睛】本题考察了几何体的主视图,明确几何体的主视图是从几何体的正面看获得的图形是解题的重点.5.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A.48B. 57C. 66D.48236【答案】 C【分析】【剖析】先依据三视图画出长方体,再依据三视图得出AB CD 3 2, CE 4 ,而后依据正方形的性质求出AC , BC 的长,最后依据长方体的表面积公式即可得.【详解】由题意,画出长方体如下图:由三视图可知,AB CD 3 2, CE 4 ,四边形ACBD是正方形AC BCQ AC2BC 2AB 218AC BC3则这个长方体的表面积为2AC BC4AC CE 2 3 3 4 34184866应选:C.【点睛】本题考察了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的有关观点是解题重点.6.如下图的几何体是由 5 个同样的小正方体构成的,以下有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】 D【分析】【剖析】利用视图的定义分别得出三视图从而求出其面积即可.【详解】解:如下图:则俯视图与主视图面积相等.应选: D.【点睛】本题主要考察了简单组合体的三视图,正确掌握三视图的定义是解题重点.,则构成这个几何体的7.如图是一个由若干个同样的小正方体构成的几何体的三种形状图小正体的个数是( )A.7B.8C.9D.10【答案】 C【分析】【剖析】依据主视图、左视图、俯视图是分别从物体正面、左面和上边看,所获得的图形进行判断.【详解】解:综合三视图,这个几何体的基层有3+2+1=6 个小正方体,第二层有1+1=2 个小正方体,第三层有 1 个,所以构成这个几何体的小正方形有6+2+1=9个.应选 C.【点睛】本题意在考察学生对三视图掌握程度和灵巧运用能力,同时也表现了对空间想象能力方面的考察.假如掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就简单获得答案了.8.如图,分别是由若干个完整同样的小正方体构成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或 4个B.4个或 5个C.5个或 6个D.6个或 7个【答案】 B【分析】【剖析】依据给出的几何体的视图,经过着手操作,察看可得答案,也能够依据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第 1 列有 1 个,第一行第 2 列没有;第二行第 1 列没有,第二行第 2 列和第三行第 2 列有 3 个或4 个,一共有:4或5个.应选:B.【点睛】本题比较简单,考察三视图和考察立体图形的三视图和学生的空间想象能力.9.下边是从不一样的方向看一个物体获得的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】 C【分析】【剖析】由主视图和左视图可得此几何体为锥体,依据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是 3 个三角形构成的大三角形,∴该物体的形状是三棱锥.应选: C.【点睛】本题考察了几何体三视图问题,掌握几何体三视图的性质是解题的重点.10.如下图的几何体的俯视图为()A.B.C.D.【答案】 D【分析】【剖析】【详解】从上往下看,易得一个正六边形和圆.应选 D.11.如图是由 7 个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该地点小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】 C【分析】【剖析】3 ,1.据此可作出判断.由已知条件可知,左视图有 2 列,每列小正方形数量分别为【详解】解:从左面看可获得从左到右分别是3,1 个正方形.应选 C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数同样,且每列小正方形数量为俯视图中相应行中正方形数字中的最大数字.12.图是由四个完整同样的正方体构成的几何体,这个几何体的左视图是( ) A.B.C.D.【答案】 C【分析】【剖析】依据物体的左视图是从左侧看到的图形判断即可.【详解】解:从左侧看是竖着叠放的 2 个正方形,应选 C.【点睛】本题主要考察了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的重点.13.在同一时辰的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子同样长D.两人的影子长度不确立【答案】 D【分析】【剖析】在同一路灯下因为地点不确立,依据中心投影的特色判断得出答案即可.【详解】在同一路灯下因为地点不一样,影长也不一样,所以没法判断谁的影子长.应选 D.【点睛】本题综合考察了平行投影和中心投影的特色和规律.平行投影的特色是:在同一时辰,不同物体的物高和影长成比率.中心投影的特色是:① 等高的物体垂直地面搁置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.② 等长的物体平行于地面搁置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体自己的长度还短.14.以下几何体是由 4 个正方体搭成的,此中主视图和俯视图同样的是()A.B.C.D.【答案】 B【分析】【剖析】分别画出从几何体的上边和正面看所获得的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;应选: B.【点睛】本题主要考察了简单几何体的三视图,重点是掌握所看的地点.15.如图是由 5 个同样的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】 A【分析】【剖析】依据三视图的定义即可判断.【详解】依据立体图可知该左视图是基层有 2 个小正方形,第二层左侧有 1 个小正方形.应选A.【点睛】本题考察三视图,解题的重点是依据立体图的形状作出三视图,本题属于基础题型.16.某几何体由若干个大小同样的小正方体搭成,其主视图与左视图如下图,则搭成这个几何体的小正方体最罕有()A.3 个B.5 个C.7 个D.9 个【答案】 B【分析】【剖析】由主视图和左视图确立俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确立所需正方体个数最少时的俯视图(数字为该地点小正方体的个数)为:.所以搭成这个几何体的小正方体最罕有 5 个.应选 B.【点睛】本题考察了由三视图判断几何体,依据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的重点 .17.由若干个同样的小正方体搭成的一个几何体的主视图和俯视图如下图,则构成这个几何体的小正方体的个数最多有()A.8B.7C.6D.5【答案】 B【分析】【剖析】易得这个几何体共有 2 层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最基层有 4 个小正方体,第二层最多有 3 个小正方体,那么搭成这个几何体的小正方体最多为 4 3 7 个.应选: B【点睛】考察学生对三视图的掌握程度和灵巧运用能力,同时也表现了对空间想象能力方面的考查.假如掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更简单获得答案.18.如图,由若干个大小同样的小正方体搭成的几何体的左视图是()A.B.C.D.【答案】 C【分析】【剖析】依据简单几何体的三视图即可求解.【详解】解:左视图有 3 列,每列小正方形数量分别为2、 1、1.应选: C.【点睛】本题主要考察简单几何体的三视图,娴熟绘图是解题重点.19.如图是一个几何体的三视图(图中尺寸单位:cm ),依据图中所示数据求得这个几何体的侧面积是()A.12cm2B.12π cm2C.6πcm2D.8πcm2【答案】 C【分析】【剖析】依据三视图确立该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确立该几何体是圆柱体,底面半径是2÷2= 1cm,高是 3cm .所以该几何体的侧面积为2π× 1×3=6π(cm 2).应选 C.【点睛】本题主要考察了由三视图确立几何体和求圆柱体的侧面积,重点是依据三视图确立该几何体是圆柱体.20.如图是 3 个同样的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】 C【分析】试题剖析:如图中几何体的俯视图是.应选 C.考点:简单组合体的三视图.。
专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。
(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。
初三下册—投影与视图测试题(包含答案)初三数学 投影与视图 单元测试题一、选择题:(每小题3分,共60分)1.小明从正面观察下图所示的两个物体,看到的是( )2.下面是空心圆柱在指定方向上的视图,正确的是( )3.如图是某物体的三视图,则该物体形状可能是( )(A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体4.下图中几何体的主视图是( )(B )(A )(C )(D )主视图左视图(第3题)(B )(A )(C )(D )(B )(A )(C )(D )正面5.如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )6.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( )(A )Q (B )R (C )S(D )T7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( )(A )相等 (B )长的较长 (C )短的较长 (D )不能确定8.正方形在太阳光的投影下得到的几何图形一定是( )(B )(A )(C )(D )R S T P Q 图①34(第6题)(A)正方形(B)平行四边形或一条线段(C)矩形(D)菱形9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()(A)平行(B)相交(C)垂直(D)无法确定10.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()(A)16 m (B)18 m (C)20 m (D)22 m11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()(A)上午8时(B)上午9时30分(C)上午10时(D)上午12时12.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,正确的是()(A )①②③④ (B )④②③①(C )④①③② (D )④③②①13.下图是由一些相同的小正方形构成的几何体的三视图,则小正方形的个数是( )(A )4个(B )5个 (C )6个(D )7个14.如图所示的几何体的俯视图是()15.如果用□表示1个立方体,用 表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图左视图主视图俯视图(第14题)(((C )(是 ( )(A)(B)(C)(D)16.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()(A)两根都垂直于地面(B)两根平行斜插在地上(C)两根竿子不平行(D)一根到在地上17.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()(A)小明的影子比小强的影子长(B)小明的影长比小强的影子短(C)小明的影子和小强的影子一样长(D)无法判断谁的影子长(B )(A )(C )(D )224113(B )(A )(C )(D )18.底面与投影面垂直的圆锥体的正投影是( )(A )圆 (B )三角形 (C )矩形(D )正方形19.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )20.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()二、填空题(每小题4分,共24分)21.一个几何体的三视图如右图,那么这个几何体是 .俯视图主视图左视图(第21题)22.请写出三种视图都相同的两种几何体 、 .23.一个物体的俯视图是圆,则该物体有可能是 .(写两个即可)24.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2米,小刚比小明矮5cm ,此刻小明的影长是________米。
01基础题-2021中考数学真题分类汇编-投影与视图(含答案,60题)一.简单几何体的三视图(共16小题)1.(2021•宁夏)如图所示三棱柱的主视图是( )A.B.C.D.2.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.3.(2021•内江)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B.C.D.4.(2021•青岛)如图所示的几何体,其左视图是( )A.B.C.D.5.(2021•镇江)如图所示,该几何体的俯视图是( )A.正方形B.长方形C.三角形D.圆6.(2021•淮安)如图所示的几何体的俯视图是( )A.B.C.D.7.(2021•湘潭)下列几何体中,三视图不含圆的是( )A.B.C .D .8.(2021•阜新)一个几何体如图所示,它的左视图是( )A .B .C .D .9.(2021•淄博)下列几何体中,其俯视图一定是圆的有( )A .1个B .2个C .3个D .4个10.(2021•铜仁市)如图,是一个底面为等边三角形的正三棱柱,它的主视图是( )A .B .C .D .11.(2021•柳州)如下摆放的几何体中,主视图为圆的是( )A .B .C .D .12.(2021•贺州)下列几何体中,左视图是圆的是( )A .B .C .D .13.(2021•鄂州)下列四个几何体中,主视图是三角形的是( )A.B.C.D.14.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是( )A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形15.(2021•苏州)如图,圆锥的主视图是( )A.B.C.D.16.(2021•泸州)下列立体图形中,主视图是圆的是( )A.B.C.D.二.简单组合体的三视图(共41小题)17.(2021•阿坝州)如图所示的几何体的左视图是( )A.B.C.D.18.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.19.(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的主视图是( )A.B.C.D.20.(2021•朝阳)如图所示的几何体是由6个大小相同的小立方块搭成的,它的左视图是( )A.B.C.D.21.(2021•锦州)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )A.B.C.D.22.(2021•河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.23.(2021•滨州)如图所示的几何体是由几个相同的小正方体组合而成的,其俯视图为( )A.B.C.D.24.(2021•德阳)图中几何体的三视图是( )A.B.C.D.25.(2021•西藏)如图是由五个相同的小正方体组成的几何体,其主视图为( )A.B.C.D.26.(2021•抚顺)如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是( )A.B.C.D.27.(2021•郴州)由5个相同的小立方体搭成的物体如图所示,则它的俯视图为( )A.B.C.D.28.(2021•梧州)如图是由5个大小相同的正方体搭成的几何体,则这个几何体的主视图是( )A.B.C.D.29.(2021•丹东)如图是由几个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.30.(2021•泰州)如图所示几何体的左视图是( )A.B.C.D.31.(2021•毕节市)如图所示的几何体,其左视图是( )A.B.C.D.32.(2021•哈尔滨)八个大小相同的正方体搭成的几何体如图所示,其主视图是( )A.B.C.D.33.(2021•湘西州)工厂某零件如图所示,以下哪个图形是它的俯视图( )A.B.C.D.34.(2021•鄂尔多斯)如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A.B.C.D.35.(2021•烟台)一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是( )A.B.C.D.36.(2021•襄阳)如图所示的几何体的主视图是( )A.B.C.D.37.(2021•威海)如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是( )A.B.C.D.38.(2021•黑龙江)如图是由5个小正方体组合成的几何体,则该几何体的主视图是( )A.B.C.D.39.(2021•张家界)如图所示的几何体,其俯视图是( )A.B.C.D.40.(2021•湖北)如图所示的几何体的左视图是( )A.B.C.D.41.(2021•绥化)如图所示,图中由7个完全相同小正方体组合而成的几何体,则这个几何体的左视图是( )A.B.C.D.42.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )A.B.C.D.43.(2021•海南)如图是由5个大小相同的小正方体组成的几何体,则它的主视图是( )A.B.C.D.44.(2021•福建)如图所示的六角螺栓,其俯视图是( )A.B.C.D.45.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A.B.C.D.46.(2021•青海)如图所示的几何体的左视图是( )A.B.C.D.47.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同48.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.49.(2021•十堰)由5个相同的小立方体搭成的几何体如图所示,则它的俯视图为( )A.B.C.D.50.(2021•黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是( )A.B.C.D.51.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是( )A.B.C.D.52.(2021•乐山)如图是由4个相同的小正方体堆成的物体,将它在水平面内顺时针旋转90°后,其主视图是( )A.B.C.D.53.(2021•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A.B.C.D.54.(2021•宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A.B.C.D.55.(2021•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.56.(2021•丽水)如图是由5个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .57.(2021•嘉兴)如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A .B .C .D .三.由三视图判断几何体(共3小题)58.(2021•攀枝花)如图是一个几何体的三视图,则这个几何体是( )A .圆锥B .圆柱C .三棱柱D .三棱锥59.(2021•大庆)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是( )A .B .C .D .60.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 .参考答案与试题解析一.简单几何体的三视图(共16小题)1.(2021•宁夏)如图所示三棱柱的主视图是( )A.B.C.D.【解析】解:主视图为,【答案】C.2.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.【解析】解:从正面看,可得如下图形:【答案】C.3.(2021•内江)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B.C.D.【解析】解:A.圆柱的主视图和左视图都是矩形,但俯视图是一个圆形,不符合题意;B.圆锥的主视图和左视图都是等腰三角形,俯视图是圆(带圆心),不符合题意;C.长方体的三视图都是长方形,但这些矩形的长与宽不尽相同,不符合题意;D.球的三视图都是大小相同的圆,符合题意.【答案】D.4.(2021•青岛)如图所示的几何体,其左视图是( )A.B.C.D.【解析】解:这个几何体的左视图为:.【答案】A.5.(2021•镇江)如图所示,该几何体的俯视图是( )A.正方形B.长方形C.三角形D.圆【解析】解:从上面看该几何体,所看到的图形是三角形.【答案】C.6.(2021•淮安)如图所示的几何体的俯视图是( )A.B.C.D.【解析】解:从上面看该几何体,所看到的图形如下:【答案】A.7.(2021•湘潭)下列几何体中,三视图不含圆的是( )A.B.C.D.【解析】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,【答案】C.8.(2021•阜新)一个几何体如图所示,它的左视图是( )A.B.C.D.【解析】解:从左面看该几何体,所得到的图形如下:【答案】B.9.(2021•淄博)下列几何体中,其俯视图一定是圆的有( )A.1个B.2个C.3个D.4个【解析】解:其俯视图一定是圆的有:球,圆柱,共2个.【答案】B.10.(2021•铜仁市)如图,是一个底面为等边三角形的正三棱柱,它的主视图是( )A.B.C.D.【解析】解:如图所示的正三棱柱,其主视图是矩形,矩形中间有一条纵向的虚线.【答案】A.11.(2021•柳州)如下摆放的几何体中,主视图为圆的是( )A.B.C.D.【解析】解:A.三棱锥的主视图为三角形,三角形的内部有一条纵向的实线,故本选不合题意;B.三棱柱的主视图为矩形,矩形中间有一条纵向的虚线,故本选不合题意;C.长方体的主视图为矩形,故本选不合题意;D.球的主视图为圆,故本选项符合题意;【答案】D.12.(2021•贺州)下列几何体中,左视图是圆的是( )A.B.C.D.【解析】解:A.球的左视图是圆,故本选项符合题意.;B.圆柱的左视图是矩形,故本选项不合题意;C.圆锥的左视图是等腰三角形,故本选项不合题意;D.圆台的左视图是等腰梯形,故本选项不合题意;【答案】A.13.(2021•鄂州)下列四个几何体中,主视图是三角形的是( )A.B.C.D.【解析】解:正方体的主视图是正方形,故A选项不合题意,圆柱的主视图是长方形,故B选项不合题意,圆锥的主视图是三角形,故C选项符合题意,球的主视图是圆,故D选项不合题意,【答案】C.14.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是( )A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形【解析】解:圆柱体的左视图是长方形,而长方形既是轴对称图形,也是中心对称图形,【答案】A.15.(2021•苏州)如图,圆锥的主视图是( )A.B.C.D.【解析】解:圆锥的主视图是一个等腰三角形,【答案】A.16.(2021•泸州)下列立体图形中,主视图是圆的是( )A.B.C.D.【解析】解:三棱柱的主视图是中间有一条线的长方形,圆柱的主视图是长方形,圆锥的主视图是三角形,球的主视图是圆,【答案】D.二.简单组合体的三视图(共41小题)17.(2021•阿坝州)如图所示的几何体的左视图是( )A.B.C.D.【解析】解:从左面看,能看到上下两个小正方形.【答案】D.18.(2021•兰州)如图,该几何体的主视图是( )A.B.C.D.【解析】解:从正面看该几何体,可得:【答案】B.19.(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的主视图是( )A.B.C.D.【解析】解:从几何体的正面看,底层是四个小正方形,上层的左端是一个小正方形.【答案】B.20.(2021•朝阳)如图所示的几何体是由6个大小相同的小立方块搭成的,它的左视图是( )A.B.C.D.【解析】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形,【答案】A.21.(2021•锦州)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )A .B .C .D .【解析】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形,【答案】A .22.(2021•河池)如图是由几个小正方体组成的几何体,它的左视图是( )A .B .C .D .【解析】解:从左边看,是一列3个小正方形.【答案】A .23.(2021•滨州)如图所示的几何体是由几个相同的小正方体组合而成的,其俯视图为( )A .B .C .D .【解析】解:由图可得,俯视图为:,【答案】B .24.(2021•德阳)图中几何体的三视图是( )A.B.C.D.【解析】解:该几何体的三视图如下:【答案】A.25.(2021•西藏)如图是由五个相同的小正方体组成的几何体,其主视图为( )A.B.C.D.【解析】解:从正面看,底层是三个小正方形,上层的右边是两个小正方形.【答案】C.26.(2021•抚顺)如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是( )A.B.C.D.【解析】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.【答案】A.27.(2021•郴州)由5个相同的小立方体搭成的物体如图所示,则它的俯视图为( )A.B.C.D.【解析】解:该组合体的俯视图如下:【答案】D.28.(2021•梧州)如图是由5个大小相同的正方体搭成的几何体,则这个几何体的主视图是( )A.B.C.D.【解析】解:从正面看该组合体,所看到的图形如下:【答案】C.29.(2021•丹东)如图是由几个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.【解析】解:从上面看该组合体看到是两列,每列有1个正方形,看到的图形如下:【答案】B.30.(2021•泰州)如图所示几何体的左视图是( )A.B.C.D.【解析】解:从左边看,是一列两个矩形.【答案】C.31.(2021•毕节市)如图所示的几何体,其左视图是( )A.B.C.D.【解析】解:这个几何体的左视图为:【答案】C.32.(2021•哈尔滨)八个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .【解析】解:从正面看,共有三列,每列的小正方形个数分别为2、1、2,【答案】C .33.(2021•湘西州)工厂某零件如图所示,以下哪个图形是它的俯视图( )A .B .C .D .【解析】解:从上面看该几何体,是两个同心圆.【答案】B .34.(2021•鄂尔多斯)如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A .B .C .D .【解析】解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方形,【答案】B .35.(2021•烟台)一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是( )A.B.C.D.【解析】解:从左边看,是一个正方形,正方形的中间有一条横向的虚线.【答案】C.36.(2021•襄阳)如图所示的几何体的主视图是( )A.B.C.D.【解析】解:从正面看该组合体,所看到的图形为:【答案】B.37.(2021•威海)如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是( )A.B.C.D.【解析】解:从左边看,底层是三个小正方形,上层的中间是一个小正方形,【答案】A.38.(2021•黑龙江)如图是由5个小正方体组合成的几何体,则该几何体的主视图是( )A.B.C.D.【解析】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形.【答案】C.39.(2021•张家界)如图所示的几何体,其俯视图是( )A.B.C.D.【解析】解:从上面看,是一个带圆心的圆,【答案】D.40.(2021•湖北)如图所示的几何体的左视图是( )A .B .C .D .【解析】解:从几何体的左面看,是两个同心圆.【答案】A .41.(2021•绥化)如图所示,图中由7个完全相同小正方体组合而成的几何体,则这个几何体的左视图是( )A .B .C .D .【解析】解:从几何体的左面看,共有三列,从左到右每列小正方形的个数分别为3、1、1.【答案】C .42.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )A .B .C .D .【解析】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.【答案】A .43.(2021•海南)如图是由5个大小相同的小正方体组成的几何体,则它的主视图是( )A.B.C.D.【解析】解:从正面看易得有两层,底层两个正方形,上层左边是一个正方形.【答案】B.44.(2021•福建)如图所示的六角螺栓,其俯视图是( )A.B.C.D.【解析】解:从上边看,是一个正六边形,六边形内部是一个圆,【答案】A.45.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A.B.C.D.【解析】解:该组合体的主视图如下:【答案】A.46.(2021•青海)如图所示的几何体的左视图是( )A.B.C.D.【解析】解:该几何体的左视图如图所示:【答案】C.47.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【解析】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,【答案】A.48.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.【解析】解:从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.【答案】A.49.(2021•十堰)由5个相同的小立方体搭成的几何体如图所示,则它的俯视图为( )A.B.C.D.【解析】解:从上面看,底层有3个正方形,上层右边有一个正方形.【答案】A.50.(2021•黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是( )A.B.C.D.【解析】解:从上面看,是一行三个小正方形.【答案】C.51.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是( )A.B.C.D.【解析】解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.【答案】A.52.(2021•乐山)如图是由4个相同的小正方体堆成的物体,将它在水平面内顺时针旋转90°后,其主视图是( )A.B.C.D.【解析】解:顺时针旋转90°后,从正面看第一列有一层,第二列有两层,【答案】C.53.(2021•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A.B.C.D.【解析】解:从正面看,底层是三个小正方形,上层左边一个小正方形,【答案】D.54.(2021•宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A.B.C .D .【解析】解:从正面看,底层是一个比较长的矩形,上层中间是一个比较窄的矩形.【答案】C .55.(2021•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )A .B .C .D .【解析】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.【答案】C .56.(2021•丽水)如图是由5个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .【解析】解:从正面看底层是三个正方形,上层中间是一个正方形.【答案】B .57.(2021•嘉兴)如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A.B.C.D.【解析】解:从上面看,底层右边是一个小正方形,上层是两个小正方形,右齐.【答案】C.三.由三视图判断几何体(共3小题)58.(2021•攀枝花)如图是一个几何体的三视图,则这个几何体是( )A.圆锥B.圆柱C.三棱柱D.三棱锥【解析】解:由于俯视图为圆形可得为球、圆柱,圆锥,主视图和左视图为三角形可得此几何体为圆锥,【答案】A.59.(2021•大庆)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是( )A.B.C.D.【解析】解:由所给图可知,这个几何体从正面看共有三列,左侧第一列最多有4块小正方体,中间一列最多有2块小正方体,最右边一列有3块小正方体,所以主视图为B.【答案】B.60.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 3π .【解析】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.【答案】3π.。
新初中数学投影与视图真题汇编附答案一、选择题1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!2.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.3.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B【解析】【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图底层的正方形位置发生了变化.∴不改变的是主视图和左视图.故选:B.【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.4.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.5.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.6.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键.7.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.8.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为( )A .πB .3πC .33πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为( )A .60πcm 2B .65πcm 2C .90πcm 2D .130πcm 2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=2251213+=(cm)所以这个圆锥的侧面积=12513652ππ⨯⨯=g(cm2),故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.13.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.14.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大【答案】A【解析】【分析】可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.【详解】假设小正方形的边长是1,主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;因此,主视图的面积最大.故答案为A.【点睛】本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.15.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A .【点睛】 此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.16.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m ).根据三视图可以得出每顶帐篷的表面积为( )A .6πm 2B .9πm 2C .12πm 2D .18πm 2【答案】B【解析】【分析】 根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )A .B .C .D .【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C .【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
投影与视图一、选择题1. (2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。
故选D。
2. (2012天津市3分)右图是一个由4个相同的正方体组成的立体图形,它的三视图是【】【答案】A。
【考点】简单组合体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2。
故选A。
3. (2012安徽省4分)下面的几何体中,主(正)视图为三角形的是【】A. B. C.D.【答案】C。
【考点】判断立体图形的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
因此,根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形。
故选C。
4. (2012山西省2分)如图所示的工件的主视图是【】A. B. C. D.【答案】B。
【考点】简单组合体的三视图。
【分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形。
故选B。
5. (2012海南省3分)如图竖直放置的圆柱体的俯视图是【】A.长方体 B.正方体 C.圆 D.等腰梯形【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是圆。
故选C。
6. (2012陕西省3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是【】A. B. C. D.【答案】C。
【考点】简单组合体的三视图【分析】观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定即可:从左边看竖直叠放2个正方形。
故选C。
7. (2012广东省3分)如图所示几何体的主视图是【】A.B.C.D.【答案】B。
【考点】简单组合体的三视图。
【分析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1。
故选B。
8. (2012广东广州3分)一个几何体的三视图如图所示,则这个几何体是【】A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体。
所以这个几何体是三棱柱。
故选D。
9. (2012广东汕头4分)如图所示几何体的主视图是【】A.B.C.D.【答案】B。
【考点】简单组合体的三视图。
【分析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1。
故选B。
10. (2012广东湛江4分)如图所示的几何体,它的主视图是【】A. B. C. D.【答案】A。
【考点】简单组合体的三视图。
【分析】从正面看易得下层有4个正方形,上层左二有一个正方形。
故选A。
11. (2012广东肇庆3分)如图是某几何体的三视图,则该几何体是【】A.圆锥 B.圆柱 C.三棱柱 D.三棱锥【答案】A。
【考点】由三视图判断几何体。
【分析】主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥。
故选A。
12. (2012浙江湖州3分)下列四个水平放置的几何体中,三视图如图所示的是【】A. B. C. D.【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形,所以这个几何体是长方体。
故选D。
13. (2012浙江宁波3分)如图是某物体的三视图,则这个物体的形状是【】A.四面体B.直三棱柱C.直四棱柱D.直五棱柱【答案】B。
【考点】由三视图判断几何体。
【分析】只有直三棱柱的视图为1个三角形,2个矩形,故选B。
14. (2012浙江衢州3分)长方体的主视图、俯视图如图所示,则其左视图面积为【】A.3 B.4 C.12 D.16【答案】A。
【考点】由三视图判断几何体。
【分析】根据物体的主视图与俯视图可以得出,物体的长与高以及长与宽,从而得出:左视图面积=宽×高=1×3=3。
故选A。
15. (2012浙江绍兴4分)如图所示的几何体,其主视图是【】A. B. C. D.【答案】C。
【考点】简单组合体的三视图。
【分析】从物体正面看,看到的是一个等腰梯形。
故选C。
16. (2012浙江台州4分)如图是一个由3个相同的正方体组成的立体图形,则它的主视图为【】A.B.C.D.【答案】A。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得上层左边有1个正方形,下层有2个正方形。
故选A。
17. (2012浙江温州4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是【】。
【答案】B。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体:主视图为两列,左边一个正方形,右边两个正方形,故选B。
18. (2012浙江义乌3分)下列四个立体图形中,主视图为圆的是【】A.B.C.D.【答案】B。
【考点】简单几何体的三视图。
【分析】主视图是分别从物体正面看,所得到的图形,因此,A、正方体的主视图是正方形,故此选项错误;B、球的主视图是圆,故此选项正确;C、圆锥的主视图是三角形,故此选项错误;D、圆柱的主视图是长方形,故此选项错误;故选B。
19. (2012江苏常州2分)如图所示,由三个相同的小正方体组成的立体图形的主视图...是【】【答案】B。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得上层右边有1个正方形,下层有2个正方形。
故选B。
20. (2012江苏淮安3分)如图所示几何体的俯视图是【】【答案】B。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得有1个长方形,长方形内左侧有1个圆形。
故选B。
21. (2012江苏宿迁3分)如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是【】A.2B.3C.4D.5【答案】C。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,从三视图看,该几何体有一行三列两层,上层有1个小立方块,下层有3个小立方块,计有4个小立方块。
故选C。
22. (2012江苏泰州3分)用4个小立方块搭成如图所示的几何体,该几何体的左视图是【】【答案】A。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可:从左面看易得共一排,上下边各有1个正方形。
故选A。
23. (2012江苏盐城3分)如图是一个由3个相同的正方体组成的立体图形,则它的主视图为【】【答案】A。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得第一层左边有2个正方形,右边有1个正方形。
故选A。
24. (2012江苏扬州3分)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个 B.5个 C.6个 D.7个【答案】B。
【考点】由三视图判断几何体。
【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,底层应该有3+1=4个小正方体,第二层应该有1个小正方体,共有5个小正方体。
故选B。
25. (2012福建龙岩4分)左下图所示几何体的俯视图是【】【答案】C。
【考点】简单几何体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是一个圆,中间一点。
故选C。
26. (2012福建南平4分)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于【】A.16 B.24 C.32 D.48【答案】B。
【考点】简单几何体的三视图。
【分析】由主视图的面积=长×高,即高=12÷4=3;∴长方体的体积=长×高×宽=4×3×2=24。
故选B。
27. (2012福建莆田4分)某几何组合体的主视图和左视图为同一个视图,如图所示,则该几何组合体的俯视图不可能...是【】A. B. C. D.【答案】C。
【考点】简单组合体的三视图。
【分析】∵几何组合体的主视图和左视图为同一个视图,可以得出此图形是一个球体与立方体组合图形,球在上面,∴俯视图中一定有圆,只有C中没有圆,故C错误。
故选C。
28. (2012福建厦门3分)图是一个立体图形的三视图,则这个立体图形是【】A.圆锥B.球 C.圆柱D.三棱锥【答案】A。
【考点】由三视图判断几何体。
【分析】主(正)视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,故选项错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误,故选A。
29. (2012福建三明4分)左下图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是【】【答案】B。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
由俯视图知该几何体有两排三列两层,故选B。
从左面看,上层只有在前排左列有1个小正方形,下层两排都看到1个小正方形。
故选B。
30. (2012福建福州4分)如图是由4个大小相同的正方体组合而成的几何体,其主视图是【】A.B.C.D.【答案】C。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体。
故选C。
31. (2012福建泉州3分)下面左图是两个长方体堆积的物体,则这一物体的正视图是【】.A. B. C. D.【答案】A。
【考点】简单组合体的三视图。
【分析】从正面看该几何体有两层,下面一层是一个较大的长方形,上面是一个居右是一个较小的矩形。