《一元二次方程》重难点分析
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
九年级数学上一元二次方程的解法教案(优秀5篇)数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
初三上册数学教学工作计划篇二【学习目标】1、了解整式方程和一元二次方程的概念。
2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
【重点、难点】重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定【学习过程】一、知识回顾1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。
(一)温故知新
什么是一元一次方程
它的一般形式是:
(二)探索新知
问题1 如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形分析:
设切去的正方形的边长为x cm,则盒
底的长为__________,
宽为__________.
得方程________________________
整理得____________________ ①
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛
分析:全部比赛的场数为___________.
设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_____________场.
列方程______________________
化简整理得_______________ ②
【归纳】1.一元二次方程:______________.
2.一元二次方程的一般形式:__________________ .
其中ax2是____________,_____是二次项系数;bx是__________,_____是一次项系数;_____是常数项.(注意:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数是一个重要条件,不能漏掉.)
3.一元二次方程的解(根):_____________________________.。
一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。
其一般形式为ax²+bx+c=0(a≠0)。
2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。
其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。
二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。
2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。
这需要学生具备一定的化简和运算能力。
针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。
2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。
可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。
思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。
例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。
此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。
相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。
这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。
例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。
因此,学生在学习的过程中需要注意知识点的联系与运用。
八年级数学下第3讲《一元二次方程》()重点难点分析:1、一般形式中的a ,b ,c 分别是二次项的系数,一次项系数和常数项。
2、因式分解法是解一元二次方程的最常用的方法。
3、“a ≠0”是一元二次方程的前提,是一个重要的隐含条件。
4、因式分解法将一元二次方程转化成一元一次方程来解,体现了“转化化归”的数学思想。
例题精选:例1、把方程(2x -1)(3x+2)=x 2+2化成一般形式,并指出二次项系数、一次项系数和常数项.例2、已知关于x 的方程()()012112=--+++x m x m m,问:(1)m 取何值时,它是一元二次方程?并猜测方程的解; (2)m 取何值时,它是一元一次方程?例3、用因式分解法解方程:(1)2x 2-5x =0 (2)x (2x -7) + (2x -7)=0(3)4x 2-9=0 (4)25(x+3)2-16=0(5)(2x+1)2=2(2x+1) (6)4x 2-4x+1=0(7)4(y -1)2=(3y+1)2 (8)(3x+2)2-2(3x+2)-3=0例4(1)若一元二次方程ax2-bx-2017=0有一个根是-1,则a+b= . (2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值为()A. 1B. 2C. 1或2D. 0(3)解方程3x(x+2)=5(x+2)时,两边同除以x+2,得3x=5.你认为对还是错: . (4)若x=n是关于x的方程x2+mx+2n=0的非零实数根,则m+n的值为 .(5)已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,且m≠n,则nm + mn= .例5、已知a,b为实数,关于x的方程x2-(a-1)x+b+3=0的一个根为a+1,(1)用含a的代数式表示b;(2)求代数式b2-4a2+10b的值.例6、(1)已知m是方程x2-x-2=0的一个实数根,求代数式(m2-m)(m-2m+ 1)的值. (2)已知m2+m-1=0,求m3+2m2-2018的值.(3)已知3x2-x=1,求9x4+12x3-2x2-7x +2018 的值学生练习:1关于x的一元二次方程(m2-m-2)x2+mx+1=0成立的条件是()A.m≠-1B. m≠2C. m≠-1 或 m≠2 D . m≠-1 且 m≠22、下列方程中,一元二次方程共有()①x2-2x-1=0;②1y+ 3y-5=0;③-x2=0④(x+1)2+y2=2;⑤(x-1)(x-3)=x2.A. 1个B. 2个C. 3个D. 4 个3、若关于x的一元二次方程()1-a x2+x+a-1=0的一个根是0,则实数a的值为()A.-1B. 0C. 1D.-1或14、利用平方法可以构造一个整系数方程.如:当x=12+时,移项得x-1=2,两边平方得(x-1)2=()22,所以得x 2-2x -1=0.依照上述方法,当x =216-时,可以构造出一个整系数方程是( ) A. 4x 2+4x+5=0 B. 4x 2+4x -5=0 C. x 2+x+1=0 D. x 2+x -1=05已知一元二次方程ax 2+bx+c =0,若4a -2b+c =0,则它的一个根是( )A.-2B. -12 C. -4 D. 26若关于x 的方程x 2+(m+1)x + 12=0的一个实数根的倒数恰好是它本身,则m 的值为( )A.-52B. 12C.- 52或12 D. 17、若x 0是方程ax 2+2x+c =0的一个根,设M =1-ac ,N =(ax 0+1),则M 与N 的大小关系正确的是( ) A .M>N B. M =N C. M<N D. 不确定8、若a 是方程x 2-2x -1=0的解,则代数式2a 2-4a+2017的值为 .9、已知关于x 的方程()()012342=-++---m x m x m m m是一元二次方程,则m = .10、已知m ,n 都是方程x 2+2017x -2019=0的根,则(m 2+2017m -2018)(n 2+2017n -2020)=- .11、若关于x 的方程a(x+m)2+b =0的解是x 1=-2,x 2=1 (a ≠0),则方程a(x+m+2)2+b =0的解是 .12、解方程:(1)2x 2-6=0 (2)(x -4)2=16(3)2(3x -2)2=34 (4)3(x+5)2=11(5)(x -1)2-2(x -1)=0 (6)(2x+1)2=6x+3(7)(3x-4)(x+1)+4=0 (8)x(x-10)+25=02 是方程x2-4x+c=0的一个根,求c的值.13、已知x=514、若方程x2-6x-k-1=0与x2-kx-7=0仅有一个公共的实数根,试求k的值和公共的根.15、已知m是方程x2-2x-5=0的一个根,求下列代数式的值:(1)m3-2m2-5m-9;(2)m3+m2-11m-916、设a>2,b>2,试判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根,请说明理由.17、选取二次三项式ax2+bx+c(a0)中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选二次项和常数项配方:x2-4x+2=(x-2)2+(22-4)x或原式=(x+2)2+(22+4)x③选取一次项和一次项配方:x2-4x+2=(2x-2)2-x2.根据以上材料,解决下列问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求y x的值.八年级数学下第3讲《一元二次方程》()重点难点分析:1、一般形式中的a ,b ,c 分别是二次项的系数,一次项系数和常数项。
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
《一元二次方程》重难点分析
许多现实问题的数量关系都可以抽象为一元二次方程,与前面所学的方程比较,一元二次方程有更广泛的应用,是初中学生体会和理解数学与外部世界联系的重要载体.教科书充分考虑到一元二次方程的这一地位,教学中要体现好这一编写意图,注意让学生经历建立和求解一元二次方程模型的完整过程,即从现实生活或具体情境中抽象出数学问题,用数学符号建立一元二次方程表示数学问题中的数量关系,求出结果、并讨论结果的意义,从而把模型思想、应用意识的培养落在实处.
在建立数学模型解决实际问题的过程中,难点在于数量关系的分析和数学模型的选择,本章也不例外.教学中应注意引导学生仔细分析题意,借助适当的直观工具,如画图、列表等,找出问题中的已知量、未知量,找到关键词并由此确定等量关系,进而建立一元二次方程.要注意培养学生良好的解题习惯,包括借助直观方法分析题意、检验所得方程及其根的实际意义,找出合乎实际的结果等.
课本用了两个实际问题(面积问题、比赛问题)引出一元二次方程的概念.学生必须理解题目、解决这个问题了,再进行观察思考,找出方程的共同点,最后根据以往的经验知道这不是以往学过的方程,从而学习新知识.而学生在解决这两个问题后,教科书还对所列的方程进行化简、特别是比赛的问题,还将方程的二次项系数化为1,学生难于理解为什么这样做.为了避免一节课的时间的大部分都放在引导解决问题上,导致一元二次方程概念这一重点内容难以落实和这一难点不易突破,建议老师们在教学中,可以根据自己学生的实际情况,设计符合本班学生思维特点的教学过程.如除了两个实际问题都讲的设计之外,可以考虑仅用一个具体的实际问题来引入,并辅之以类比教学,与以往学习过的一元一次方程、二元一次方程(组)进行类比教学,减少难点问题带来的对教学重点的冲击,也体现了知识的系统性,体现了知识的螺旋上升的知识结构.更方便学生理解新旧知识的差异性与共同性,使学生对同类型的知识进行归纳梳理,找到学习一类问题的方法.。