2011届广州越秀区六校中考一模联考数学答案
- 格式:doc
- 大小:779.84 KB
- 文档页数:8
2011年广东省初中毕业生学业考试考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有个是正确的,请把答题卡上对应题目所选的选项涂黑.1.- 2的倒数是()1 1C . -D .-2 22010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为(A . 5.464 X107吨B . 5.464X108吨C . 5. 464X109吨D . 5. 464X1010吨一个球,摸到红球的概率为(1A .-5正八边形的每个内角为(2•据中新社北京4. 3个白球,它们除颜色外都相同, 从中任意摸出5.A . 120o 135o C. 140o 144o二、填空题(本大题5小题,每小题4分, 共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数ky 的图象经过(1, - 2),贝Uk7.使x 2在实数范围内有意义的x的取值范围是3.在一个不透明的口袋中,装有5个红球D.若/ A=40o,则/ C=&按下面程序计算:输入x 3,则输出的答案是9.如图,910.如图 ⑴,将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ ABC 和厶DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图⑵中阴影部分;取△ A 1B 1C 1和厶D 1E 1F 1各边中点,连接成正六角星形 A 2F 2B 2D 2C 2E 2,如图 ⑶中阴影部分; 如此下去…,则正六角星形 A 4F 4B 4D 4C 4E 4的面积为 _____________________ .(本大题5小题,每小题6分,共30 分)14. 如图,在平面直角坐标系中,点 P 的坐标为(一4, 0), O P 的半径为2,将O P 沿x 轴向右平移4个单位长度得O P 1.(1) 画出O P 1,并直接判断O P 与O P 1的位置关系;(2) 设O P 1与x 轴正半轴,y 轴正半轴的交点分别为 A , B ,求劣弧AB 与弦AB 围成的图 形的面积(结果保留n ). 14、(1 )0 P 与O P i 外切。
2011年广东省初中毕业生学业考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答 的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2的倒数是 ( )A. 2B. -2C. 12D. -122. 据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨.用科学记数法表示为 ( )A. 5.464×107吨B. 5.464×108吨C. 5.464×109吨D. 5.464×1010吨3. 将图中的箭头缩小到原来的12,得到的图形是 ( )4. 在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 ( )A. 15B. 13C. 58D. 385. 正八边形的每个内角为 ( ) A. 120° B. 135° C. 140° D. 144°二、填空题(本大题共5小题,每小题4分,共20分)6. 已知反比例函数y =kx 的图象经过(1,-2),则k = .7. 使x -2在实数范围内有意义的x 的取值范围是 . 8. 按下面程序计算:输入x =3,则输出的答案是__12__.第9题图9. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接B C.若∠A =40°,则∠C = . 10. 如图①,将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图②中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图③中阴影部分;如此下去…,则正六角星形A n F n B n D n C n E n 的面积为 .第10题图三、解答题(一)(本大题共5小题,每小题6分,共30分) 11. 计算:(2011-1)0+18sin 45°-22.12. 解不等式组:⎩⎪⎨⎪⎧2x +1>-38-2x ≤x -1,并把解集在数轴上表示出来.13. 已知,如图,E 、F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B. 求证:AE =CF .第13题图14. 如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,求劣弧AB ︵和弦AB 围成的图形的面积(结果保留π).第14题图15. 已知抛物线y =12x 2+x +c 与x 轴没有交点.(1)求c 的取值范围;(2)试确定直线y =cx +1经过的象限,并说明理由.四、解答题(二)(本大题共4小题,每小题7分,共28分)16. 某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,购买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?17. 如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l .AB 是A 到l 的小路,现新修一条路AC 到公路l ,小明测量出∠ACD =30°,∠ABD =45°,BC =50 m .请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1 m ,参考数据:2≈1.414,3≈1.732).第17题图18. 李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?第18题图19. 如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.第19题图五、解答题(三)(本大题共3小题,每小题9分,共27分)20. 如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.21. 如图①,△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF =90°.固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止,现不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图②.(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图②的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形?第21题图22. 如图,抛物线y =-54x 2+174x +1与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点O 出发以每秒一个单位的速度向点C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N ,设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O 、点C 重合的情况),连接CM 、BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否为菱形?请说明理由.第22题图2011年广东省中考数学试卷参考答案与试题解析1. D2. B3. A4. C5. B6. -27. x ≥28. 129. 25° 10. 14n11.解:原式=1+32×22-4(3分) =1+3-4=0.(6分) 12.解:⎩⎪⎨⎪⎧2x +1>-38-2x ≤x -1,移项可得⎩⎪⎨⎪⎧2x >-49≤3x ,(2分)解得⎩⎪⎨⎪⎧x >-2x ≥3,∴不等式组的解集为x ≥3.(4分) 用数轴表示如下:第12题解图13.证明:∵AD ∥CB , ∴∠A =∠C.在△ADF 与△CBE 中 ⎩⎪⎨⎪⎧∠D =∠B AD =CB ∠A =∠C,(3分) ∴△ADF ≌△CBE (ASA ), ∴AF =CE ,(5分)∴AF +EF =CE +EF ,即AE =CF .(6分)14.解:(1)如解图所示,∵⊙P 的圆心坐标为(-4,0),∴将⊙P 沿x 轴向右平移4个单位长度得⊙P 1,P 1的坐标为(0,0),即与原点重合,(2分) ∴PP 1=4,即PP 1等于⊙P 与⊙P 1半径之和,所以⊙P 与⊙P 1的位置关系为外切.(3分)(2)由(1)得点A 、B 的坐标分别为(2,0)、(0,2), 则可知∠AOB =90°,∴劣弧AB 与弦AB 围成的图形的面积等于 S 扇形BOA -S Rt △BOA =90πr 2360-12OA ·OB =90π×22360-12×2×2=π-2.(6分)第14题解图15.解:(1)∵抛物线y =12x 2+x +c 与x 轴没有交点 ,∴方程12x 2+x +c =0无解,(2分)即Δ=b 2-4ac =1-2c <0,解得c >12.(3分)(2)∵c >12>0,也就是一次函数k >0,b =1>0,∴直线y =cx +1经过一、二、三象限.(6分) 16.解:设该品牌饮料一箱有x 瓶,依题意,得26x -26x +3=0.6.(4分)化简,得x 2+3x -130=0,解得x 1=-13(不合题意,舍去),x 2=10,(6分)经检验:x =10符合题意.答:该品牌饮料一箱有10瓶.(7分)易错分析解分式方程时不要忘记检验. 17. 解:设AD =x ,∵tan ∠ABD =AD BD ,tan ∠ACD =ADCD ,(2分)∴BD =AD tan ∠ABD =AD tan 45°=AD1=x ,(4分)CD =AD tan ∠ACD =AD tan 30°=AD33=3x ,(5分)∴BC =CD -BD =3x -x =50,(6分)∴x =503-1=25×(3+1)≈68.3(m ).(7分)答:小明家到公路l 的距离AD 的长度约为68.3 m .18.解:(1)此次调查的总体是班里学生的上学路上花费的时间.(2分) (2)如解图:第18题解图(3)路上时间花费在30分钟以上(含30分钟)的人数占全班人数的百分比是4+150×100%=10%.(7分)19.第19题解图解:(1)∵BF =CF , ∴∠1=∠C =30°.(2分) 又∵∠2=∠1=∠C =30°,(4分) ∴∠BDF =180°-3×30°=90°.(2)由(1)知在Rt △BDF 中,∠2=30°, ∴BD =BF ·cos ∠2,∴BD =4 3.(5分) ∵AD ∥BC , ∴∠ABC =90°.在Rt △BAD 中,∠3=90°-∠1-∠2=30°, ∴AB =BD ·cos ∠3=6.(7分) 20.解:(1)64;8;15.(3分)(2)n 2-2n +2;n 2;2n -1.(3分)(3)n 2-2n +2+n 22×(2n -1)=(n 2-n +1)(2n -1).(9分)21.第21题解图解:(1)始终与△AGC 相似的三角形有:△HAB 和△HG A.(3分) (2)由(1)知△AGC ∽△HAB , ∴CG AB =AC HB ,即x 9=9y, ∴y =81x(0<x <92).(5分)(3)由(1)知△AGC ∽△HGA ,∴要使得△AGH 是等腰三角形,只要△AGC 是等腰三角形即可.(6分)22.解:(1)设直线AB 的函数关系式为y =ax +b , 对于抛物线y =-54x 2+174x +1,令x =0,得y =1,即有A (0,1),将A 代入直线AB 的关系式得b =1; 令x =3,得y =52,即有B (3,52),将B 代入直线AB 的关系式得a =12;∴直线AB 的函数关系式为y =12x +1.(2分)(2)显然OP =t ,即P (t ,0).将x =t 代入抛物线可得y =-54t 2+174t +1,即N (t ,-54t 2+174t +1).将x =t 代入直线AB 的关系式可以得到y =12t +1,即M (t ,12t +1).(4分)∴s =MN =-54t 2+174t +1-12t -1,∴s =-54t 2+154t (0≤t ≤3).(5分)(3)显然NM ∥BC ,∴要使得四边形BCMN 为平行四边形,只要MN =BC ,即s =-54t 2+154t =52,解得t =1或t =2.(6分)①当t =1时,M (1,32),∴MP =32,CP =2.在Rt △MPC 中,CM =MP 2+CP 2=52=BC ,∴四边形BCMN 为菱形.(7分)②当t =2时,M (2,2),∴MP =2,CP =1. 在Rt △MPC 中,CM =MP 2+CP 2=5≠B C. ∴四边形BCMN 不是菱形.(9分)。
2011广州各区一模试题分类——计算1、(2011白云17)解下列不等式组,并把其解集在所给的数轴(图7)上表示出来:431630x x ->⎧⎨-≤⎩2、(2011从化17)因式分解:a ax 42-.3、(2011从化19) 先化简,再求值:2241222x x x x x⎛⎫-⨯ ⎪--+⎝⎭,其中14x =.4、(2011海珠17)解分式方程:02311=-+-x x5.(2011海珠18)若)0,0(0422>>=-y x y x ,求yx y x 2345-+的值。
-1 -2 -3 1 3 2 0 图7解不等式x 23-≤12x +.7、(2011花都19)已知0142=+-a a ,求代数式)2)(2(2)2(2-+-+a a a 的值.8、(2011萝岗17) 解不等式组34.............(1)121......(2)25x x x x +>⎧⎪--⎨≤⎪⎩并在所给的数轴上表示出其解集. 4- 3- 2- 1- 5- 0 1 2 3 4 5 x9、(2011萝岗18)先化简代数式231()339x x x x +÷+--,然后选取一个合适..的x 值,代入求值.如图,实数a 、b 在数轴上的位置,化简 222()a b a b ---11、(2011天河18)若m 满足式子322m m +>,试判断关于x 的一元二次方程240x x m -+=的根的情况.12、(2011南沙17)解不等式组20260x x ->⎧⎨-+>⎩ ,并把解集在数轴上表示出来.13、(2011南沙21) 先化简再求值:221121ab a b b b b +-+--+,其中22236120b a b ab -++-=解方程组:)2()1(1272⎩⎨⎧=-=+y x y x15、(2011番禺18)先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =-=+,.。
点关注,每天更新全国各区真题详解版和经典中考题型、考点、知识点2011年广东省中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)﹣2的倒数是( ) A . 2 B . ﹣2 C . D.考点: 难度: M112 倒数 容易题. 分析: 这道题需要我们清楚倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.而以上四个选项中,只有﹣2×()=1,所以﹣2的倒数是﹣.其余均选项不符合提议。
故选D 解答: D .点评:本题主要考查倒数的概念及性质,属于中考的一个高频考点,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2.(3分)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为( )A . 5.464×107吨B . 5.464×108吨C . 5.464×109吨D . 5.464×1010吨考点: 难度: M11C 科学记数法 容易题.分析: 首先我们要知道,什么是科学计数法:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.那么本题中将546400000用科学记数法可表示为5.464×108.故选B解答: B .点评: 本题我们需要注意科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)将下图中的箭头缩小到原来的,得到的图形是( )A .B.C.D .考点:难度:M32I 相似图形的应用 容易题.分析:本题需要我们根据相似图形的定义,并且结合图形,然后对选项一一分析,即可排除错误答案.∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A解答:A.点评:本题较简单,主要考查了相似图形的定义,注意:即两个图形的形状相同,但大小不一定相同的变换就是相似变换.4.(3分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .B.C.D.考点:难度:M222 概率的计算容易题.分析:解决本题,我们需要先求出所有球的个数与红球的个数,然后再根据概率公式便可求出答案.即,共8球在袋中,其中5个红球,故摸到红球的概率为,故选C.解答:C.点评:这道题需要掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.5.(3分)正八边形的每个内角为()A .120°B.135°C.140°D.144°考点:难度:M331 多边形的内(外)角和中等题.分析:此题我们要根据正多边形的内角求法,得出每个内角的表示方法,便可求出答案.即:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°,故选B解答:B.点评:本题主要考查了多边形的内(外)角和,属于中考中频考点,注意正n边形的内角ɑ=[(n﹣2)×180]÷n.正确的记忆正多边形的内角求法公式是解决问题的关键.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.(4分)已知反比例函数解析式的图象经过(1,﹣2),则k=.考点:难度:M137 用待定系数法求函数关系式容易题.分析:根据待定系数法,将(1﹣2)代入式即可得出k的值.具体解法如下:∵反比例函数解析式的图象经过(1,﹣2),∴k=xy=﹣2,解答: ﹣2.点评:本题比较简单,考查了用待定系数法求反比例函数的解析式,属于中考高频考点,对以此类题型只需要将已知点带入函数即可求出答案。
试卷类型:A2011年广州市普通高中毕业班综合测试(一)数 学 (理 科) 2011.3本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 球的表面积公式24S R π=, 其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .2 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q 的值为A B C .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值NMD 1C 1B 1A 1DCBA图3(度)1501401101005. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 至少有一个名额且各校分配的名额互不相等, A .96 B .114C .128D .136图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽 取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.D 10. 以抛物线2:8C y x=上的一点A为圆心作圆,若该圆经过抛物线C的顶点和焦点,那么该圆的方程为.11. 已知数列{}n a是等差数列, 若468212a a a++=, 则该数列前11项的和为.12.△ABC的三个内角A、B、C所对边的长分别为a、b、c,已知3,,3c Cπ==2a b=, 则b的值为 .13. 某所学校计划招聘男教师x名,女教师y名, x和y须满足约束条件25,2,6.x yx yx-≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是名.(二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图4, CD是圆O的切线, 切点为点A、B在圆O上,1,30BC BCD︒=∠=,则圆O15. (坐标系与参数方程选讲选做题)在极坐标系中,若过点(极轴垂直的直线交曲线4cosρθ=于A、B两点,则AB图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin cos cos2f x x x x=+(x∈R).(1)当x取什么值时,函数()f x取得最大值,并求其最大值;(2)若θ为锐角,且83fπθ⎛⎫+=⎪⎝⎭,求tanθ的值.DC 1A 1B 1CBA某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润 (单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2. 若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2 (1) 求,a b 的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图5等级 一等品 二等品 三等品 次品 P 0.6a0.1 b等级 一等品 二等品 三等品 次品 利润 65 4 1-已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足 OP OQ ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212f x f x L x x -≤-都成立. (1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nk k k a a a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.2011年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±= 11. 3312. 13. 1014.π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分2222x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,…… 5分 (2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分 题号 1 2 3 4 5 6 7 8 答案ACBCBABD∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分∴sin 2tan 2cos 2θθθ==…… 9分∴22tan 1tan θθ=-. …… 10分2tan 0θθ+=.∴)(1tan 0θθ-=.∴tan 2θ=或tan θ=不合题意,舍去) …… 11分∴tan 2θ=. …… 12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分∴sin 3θ==. …… 10分∴sin tan cos 2θθθ==. …… 12分解法3:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分 ∴sin tan cos θθθ=…… 9分 22sin cos 2cos θθθ= …… 10分sin 21cos 2θθ=+2=. …… 12分 17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分 ∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分 解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分 (2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都 是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,ξ6 5 4 1-P0.6a 0.1 bGFEODC 1A 1B 1CBA∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC中,AC =AB BC BE AC ==∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C , ∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = ,∴1BC ⊥平面DFG . ∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得113213BF CC GF BC ⨯=== ,在Rt △DFG 中, tan DF DGF GF ∠==∴二面角1--C BC D. …… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭. ∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,AB 〉= ⋅n AB n AB200323⨯+⨯+-⨯-==. …… 12分 ∴sin 〈n ,AB 〉==. …… 13分 ∴tan 〈n,AB 〉= 3.∴二面角1--C BCD . …… 14分 19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =- .当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分 (2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分 由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=. ∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l 的距离d=212=…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=,即k =.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯ …… 9分=…… 10分=,即1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分点()0,2到直线2l的距离d ==…… 7分12⎫=+…… 8分12≥⨯…… 9分=…… 10分=11y =时,等号成立,此时1x =……12分∴直线2l10y --=10y ++=. …… 14分 20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分 又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分 综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥,此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有 ()()12f x f x -=-==. …… 2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,x x >>且1212x x x x +≥+,12121x x x x +<≤+. …… 4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分 (2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- . …… 6分∴112233411nkk n n k aa a a a a a a a a ++=-=-+-+-++-∑()21121n L L La a -≤++++- …… 7分1211nL a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分 ②∵12kk a a a A k++=,∴1212111k k k k a a a a a a A A k k ++++++++-=-+ ()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+ . …… 11分 ∴1122311nkk n n k AA A A A A A A ++=-=-+-++-∑ ()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。
2011 年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照 评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改 变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部 分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共 10 小题,每小题 5 分,满分 50 分.题号答案1A 2A 3B 4C 5C 6C 7B 8D 9D 10C二、填空题:本大题主要考查基本知识和基本运算.本大题共 5 小题,考生作答 4 小题,每小题5 分,满分 20 分.其中 14~15 题是选做题,考生只能选做一题.11. 300 12. 3 13. 32 14. 15. 2 3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分 12 分) (本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 的数学思想方法和运算求解能力) (1) 解: f x 2sin x cos x cos2xsin2x cos2x2 2 2 sin 2x 22cos2x考查化归与转化…… 2 分 …… 3 分2 sin 2x422 ∴ f x 的最小正周期为(2) 解:∵ f2 3 , ., 最大值为2 . ∴ 2sin 2…… 4 分…… 6 分∴ cos 2 . 3∵ 为锐角,即 0 ,8 12 3 2 . …… 7 分…… 8 分∴ 02 .2∴sin 2 1 cos2∴ tan 2sin 2cos 2 2 2 2 . 3…… 10 分2 .…… 12 分17.(本小题满分 12 分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 以及数据处理能力、运算求解能力和应用意识)1(1) 解: x 107 111111113 114 122 113 甲考查或然与必然的数学思想方法,, …… 1 分…… 2 分x 108 109 110 112 115 124 113 乙661 , S 107 113 111113 111113 113 113 114 113 122 113 2甲 2 2 2 2 261 2S 108 113 109 113 110 113 112 113 115 113 124 113 2乙 2 2 2 22688 3, …… 4 分 =21,1 …… 3 分2∵ x 甲 x 乙 , S 甲S 乙22, ∴甲车间的产品的重量相对较稳定.…… 5 分…… 6 分(2) 解: 从乙车间 6 件样品中随机抽取两件,共有 15 种不同的取法 : 1 08,109,108, ,112 ,108 115, ,108 124, ,109 110, ,109 112, ,109 115, ,109 124, ,110 112, ,108, 110, 115 ,110 124, ,112 115, ,112, 115,124 , 124 . …… 8 分110设 A 表示随机事件"所抽取的两件样品的重量之差不超过 2 克",则 A 的基本事件有 4 种:108,109,108, 故所求概率为 P A18. (本小题满分 14 分)415.110 , 109 110, ,110, 112 .…… 10 分 …… 12 分(本小题主要考查空间线面关系、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)( 1)证明:连接 B 1C ,设 B 1C 与 BC 1 相交于点O ,连接OD ,∵ 四边形 BCC 1B 1 是平行四边形,∴点 O 为 BC 的中点.1∵ D 为 AC 的中点,∴ OD 为△ ABC 的中位线,1∴ OD // AB 1 .A 1AED…… 3 分∵ OD 平面 BC 1D , AB 1 平面 BC 1D ,∴ AB 1 // 平面 BC 1D .…… 6 分B 1BO(2)解法 1: ∵ AA 1 平面 ABC , AA 1 平面 AAC C ,1 1C 1C∴ 平面 ABC 平面 AAC C ,且平面 ABC 平面 AAC C AC . 1 1作 BE AC ,垂足为 E ,则 BE 平面 AAC C ,1 1∵ AB BB 1 2 , BC 3,2 1 1…… 8 分在 Rt △ ABC 中, AC AB BC 4 9 13 , BE 2AB BC AC6 13,…… 10 分…… 12 分∴四棱锥 B AAC D 的体积V AC AD AA BE 1 11 1126∴四棱锥 B AAC D 的体积为3 .1 13 1 3 2 132 6 133 . 1 1…… 14 分解法 2: ∵ AA 1 平面 ABC , AB 平面 ABC ,∴ AA 1 AB .∵ BB 1 // AA 1 ,∴ BB 1 AB .∵ AB BC , BC BB 1 B ,∴ AB 平面 BBCC .1 1…… 8 分A 1ADB 1BOEC 1C1取 BC 的中点 E ,连接 DE ,则 DE // AB , DE AB ,2∴ DE 平面 BB 1C 1C .三棱柱 ABC A B C 的体积为V AB BC AA 6 ,1 111…… 10 分BC CC 1 DE V 1,V 3 26 1 1121 B 1C 1 BB 1 A 1B1 V2 .3 2 3 …… 12 分1 1 1 则V D B CC1A 1B B1C 1而V V D B CC1V A1B B1C 1V ∴ 6 1 2 VB AA 1C1D .B AA1C1D ,∴VB AA 1C 1D3 .∴四棱锥 B AAC D 的体积为3 .1 119.(本小题满分 14 分)(本小题主要考查求曲线的轨迹方程、直线、圆、抛物线等知识, …… 14 分考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解法 1: 设动点 P 的坐标为x , y ,依题意,得 PF x 1 ,2 2x 1 y x 1 ,_謀2化简得: y 4x ,2∴曲线 C 1 的方程为 y 4x .解法 2:由于动点 P 与点 F (1,0) 的距离和它到直线l : x 1的距离相等,…… 2 分…… 4 分∴曲线 C 1 的方程为 y 4x .( 2)解: 设点T 的坐标为 (x 0, y 0 ) ,圆 C 2 的半径为 r ,2∵ 点T 是抛物线 C 1 : y 4x 上的动点,2∴ y 0 4x 0 ( x 0 0 ). ∴ AT x a y 0 22根据抛物线的定义可知, 动点 P 的轨迹是以点 F (1,0) 为焦点,直线l 为准线的抛物线.…… 2 分2 …… 4 分…… 6 分x 0 2ax 0 a 4x 02 20 x α 24a 4 .攀椀∵ a 2 ,∴ a 2 0 ,则当 x 0 a 2 时, AT 取得最小值为 2 a 1 ,依题意得 2 a 1 a 1,2两边平方得 a 6a 5 0 ,解得 a 5 或 a 1(不合题意,舍去).2∴ x 0 a 2 3 , y 0 4x 0 12 ,即 y 0 2 3 .∴圆C 2 的圆心T 的坐标为 3, 2 3 .∵ 圆C 2 与 y 轴交于 M , N 两点,且| MN | 4 ,2 2∴ | MN | 2 r x 0 4 .2∴ r 4 x 0 13 .∵点T 到直线 l 的距离 d x 0 1 4 13 , ∴直线 l 与圆 C 2 相离.20.(本小题满分 14 分)2(本小题主要考查数列、不等式等知识,…… 8 分…… 10 分…… 12 分…… 14 分考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) ( 1)解:∵数列Sn是首项为1,公差为1的等差数列,∴ S 1n 1 n . n 2∴ S n n .当 n 1时, a 1 S 11;当 n 2 时, a n S n S又 a 1 1适合上式.∴ a n 2n 1.( 2)解:bnn 1 …… 2 分n n 1 2n 1. 22 …… 4 分a n S2n 1 1an S12n 112n 1 2n 1 2n 1 2n 112n 12n 1 2n 1 2n 12n 1 2n 1 2 2n 12n 11 1 12 2n 1 .2n 1…… 6 分n∴b b b bi12ni 112 12n 1 1 1 1 3 2 3 1 15 1 1 2 2n 1 1 2n 11 故要使不等式 b i i 12n 1 1 2 2n 1 2n 1 2 2n 1 L2n 1 1 . …… 8 分* 对任意 n N 都成立, 2n 1 1 L 2n 1 1即 *对任意 n N 都成立,得L2n 1 12 n2n 1c n . 33,则2n 1 1n 1 2n 1 n 2n 3 n 1c133令cn2n1c n 1 c n n2n 1 *对任意 nN 都成立.2n5n 4n 1 3 2 2n 33n2 …… 10 分1.∴ c n 1 ∴ cn c . …… 12 分∴L. ∴实数 L 的取值范围为 ,[另法]: cn 1 cnn 1 2n 3n 2n 133. n 1 2n 1 n 2n 32n 12n 3…… 14 分3 2 332n 5n 4n 1 2n 3n 2n 12n 3∴ cncn 1c10 .∴ c n 1 c n.33. …… 12 分∴L3 3.∴实数 L 的取值范围为,21.(本小题满分 14 分) 33 .…… 14 分(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵ f 0 0 ,∴ c 0 .∵对于任意 x R 都有 f x f x , 1 2 1 2 ∴函数 f x 又 f x x 1的对称轴为 x ,即 2b 2a ,得 a b . 21 …… 1 分…… 2 分,即 ax b 1 x 0 2对于任意 x R 都成立, ∴ a 0 ,且 b 1 0 . 2∵ b 1 0 ,2 2∴b 1, a 1.∴ f x x x .…… 4 分(2) 解: g x f x x 1x 1 x 1, x ,2 x 1 x 1, x . 21 1…… 5 分① 当 x 时,函数 g x x 1 x 12 若 1 2 1 2 1,即 0 2,函数 g x 1 ,即 2 ,函数 g x在 1 1的对称轴为x12, , 上单调递增;…… 6 分 1 2 若 , 上单调递增,在1 12 , 在 上单调递减. …… 7 分② 当 x 时,函数g x x 1 x 12 则函数g x 在1 1 , 21的对称轴为 x 112 ,上单调递增,在 , 12 上单调递减. …… 8 分 1 2综上所述,当 0 2时,函数 g x , 12 单调递增区间为, ,单调递减区间为 ;…… 9 分 当 2 时,函数 g x,单调递增区间为1 1 1 ,2 和2, ,单调递减区间为 1 1 1, 2 和 2 . …… 10 分(3)解:① 当 0 2时,由(2)知函数g x在区间 0,1 上单调递增,又g 0 1 0, g 1 2 1 0,故函数g x 在区间 0,1 上只有一个零点.…… 11 分② 当 2 时,则 1,而g 0 1 0, g21 (ⅰ)若2 3,由于2且 g 1 1 221 21, 1 11 12 0 , 11 11 4 21 2 1 0 , 此时,函数 g x 在区间 0,1 上只有一个零点;…… 12 分 ,此时,函数 g x 在区间0,1(ⅱ)若 3,由于 1 2 1且 g 1 2 1 0 上有两个不同的零点.综上所述,当 0 3时,函数g x当 3时,函数g x…… 13 分在区间 0,1 上只有一个零点;在区间 0,1 上有两个不同的零点. …… 14 分。
xyO图32011年初中毕业班第一次模拟考试数学科 问卷 第I 卷 选择题(30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( )A .20B .15C .10D .54.图2中的两个三角形是位似图形,它们的位似中心是( ) A .点PB .点OC .点MD .点N5.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x=(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )A .833m B .4 mC .43 mD .8 m9.如图5,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象BACD图1ABC D150° 图4hO PMN图2是( )10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图6-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图6-2,图6-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右第II 卷 非选择题(120分)二、填空题(本大题共6小题,每小题3分,满分18分).11.因式分解:224a a -= . 12.如图,A B C D ⊥于点B B E ,是A B D ∠的平分线,则C B E ∠的度数为 .13.如图,A B 是O ⊙的直径,C 是O ⊙上一点,44B O C ∠=°,则A ∠的度数为 . 14.如图,等腰A B C △中,A B A C =,A D 是底边上的高,若5c m 6c m A B B C ==,,则AD = cm .15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 398 652 793 1 604 4 005 发芽频率0.8500.7450.8510.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1). 16.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .A ED B C 第12题 C B A O第13题 A C DB 第14题 xAD CB图5 yx 10 O 100A . yx 10 O 100B . yx 10 O 100C . 5 yx10O 100D . 众 志成 城图6-1 成 城众志图6-2 志 成城 众第1次变换 城 众志成图6-3 成 城众志第2次变换 …三、解答题(本大题共9小题,满分102分。
2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( )A .2B .-2C . 21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的1,得到的图形是( ) 4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____.8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为A .B . D . 题3图 题9图 BC O A_________________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E 14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则题13图 B C DA F E 题14图题10图(1) E E C E 题10图(2) 题10图(3)买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E处,BF 是折痕,且BF =CF =8.(1)求∠BDF 的度数;(2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;第17题图 ) 题19图 B CED AF 题18图(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x 为何值时,△AGH 是等腰三角形.22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x (1(2)动点P 在线段OC 点M ,交抛物线于点N . 设点P 移动的时间为t 出t (3)设在(2)的条件下(不考虑点P 与点O BCMN 为平行四边形?问对于所求的t 2011一、1-5、DBACB二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF14、(1)⊙P 与⊙P 1外切。
2011年广州市初中毕业学业模拟考试数学试题(一)本试题分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟。
注意事项: 1.答卷前,考生务必在答题卡要求的位置上涌黑色的钢笔或签字笔写上自己的考生号,姓名;写上考场号,座位号,并用2B 铅笔在相应位置上涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净,再选涂其它答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共30分)一.选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.)21(---的相反数是( )A.2B.21 C.2- D.21- 2.下列图形既是中心对称图形,又是轴对称图形的是( )3.对22156y xy x --分解因式正确的是( )A.)13)(12(y x y x --B.)13)(12(y x y x -+C.)13)(12(y x y x +-D.)13)(12(y x y x ++4.二元一次方程组⎩⎨⎧=-=-232y ax y x 的根为⎩⎨⎧==00y y x x ,且满足点),(00y x 在第一象限,则正整数a的值为( )A.1B.2C.3D.4D.若关于x 的一元二次方程022=++b abx x 有两个相等的实数根,则2±=a7. 一次函数2-+=k kx y 一定过定点( )A.)2,1(--B.)2,1(-C.)2,1(D.)2,1(- 8.⊙1O 与⊙2O 的半径分别是r R 、(r R >),且)0,1()0,1(rR 、是函数232+-=x x y 与x 轴的两个交点。
2011年初三学业水平测试数学试卷一、ACBBC DBDBC 题号11-16171819202122232425总分得分签名二、填空题(本大题共有6小题,每小题3分,共18分)11、 0 12、 23 13、 2.514、 28° 15、 c ≤8的任何实数都正确 16、 1+3三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 先化简2111122x x x x ⎛⎫-÷⎪-+-⎝⎭,然后从2,1,1-中选取一个你认为合适..的数作为x 的值代入求值.17.原式22(1)(1)(1)(1)x x x x x+-=-+ ·············································································· 4分4x=. ······················································································································ 4分 当2x =时,原式4222==. ······················································································ 9分18.(本小题满分9分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°, (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为3,求 BC 的长.(结果保留π)第18题答案.(1)证明:连结OC ,30AC CD D =∠= ,°,30A D ∴∠=∠=°OA OC = ,230A ∴∠=∠=°, 160∴∠=°,90OCD ∴∠=°.CD ∴是O ⊙的切线.……5分 (2)160∠= °,BC∴的长=π60π3π180180n R ⨯⨯==. 答: BC的长为π……9分 19.(本小题满分10分)解不等式组20145x x x -⎧⎪+⎨<⎪⎩≤,并把解集在数轴上表示出来.19.由20x -≤,得2x ≥ ························································································ 3分由145x x +<,得4x <. ······························································································ 6分 所以原不等式组的解集是:24x <≤. ····································································· 8分该解集在数轴上表示为:1- 0 1 2 3 4 5 xAOBDCAOBDC1 2(3,8)(5,8)(5,7)(5,6)(3,7)(2,8)(2,7)(3,6)(5,4)(2,6)(1,8)(3,4)(2,4)(1,7)(1,6)(1,4)小莉哥哥87645321········································································································································ 10分20. (本小题满分l0分)在献爱心捐助活动中,某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元? 20.本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ··················································· 1分由题意列方程x4800=506000+x . ··············································································· 5分 解得 x =200. ·················································································································· 7分检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解. ······························································································· 8分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ·················································· 10分 解法2:设人均捐款x 元,····································································································· 1分由题意列方程6000x -4800x=50 . ········································································ 5分 解得 x =24. ····················································································································7分以下略.21. (本小题满分l2分)小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用数状图或列表的方法求小莉去上海看世博会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.21.(本题满分12分)(1)所有可能的结果如有表:……3分一共有16种结果,每种结果出现的可能性相同.……4分 和为偶数的概率为83166= 所以小莉去上海看世博会的概率为83………………………………6分(2)由(1)列表的结果可知:小莉去的概率为83,哥哥去的概率为85,所以游戏不公平,对哥哥有利.…………………………………………9分游戏规则改为:若和为偶数则小莉得5分,若和为奇数则哥哥得3分,则游戏是公平的.……………………………………………………12分22. (本小题满分l2分)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,(1)选取合适的点作为原点,建立直角坐标系,求出抛物线的解析式;(2)求绳子的最低点距地面的距离.注:此题解答方法不唯一(1)正确选择原点建立直角坐标系……2分正确确定有关点的坐标……5分正确求出抛物线解析式……8分(2)求绳子的最低点距地面的距离. ……12分23.(本小题满分l2分)已知等腰三角形的一边长是10米,面积是30平方米,求这个三角形另两边的长。