实验二 连续时间信号的频域分析
- 格式:wps
- 大小:306.45 KB
- 文档页数:16
第1篇一、实验目的1. 理解连续频域分析的基本概念和原理。
2. 掌握连续信号的傅里叶变换及其性质。
3. 学会使用MATLAB进行连续信号的频域分析。
4. 通过实验加深对连续信号频域特性的理解。
二、实验原理连续信号的频域分析是信号与系统分析中的重要内容,它可以将信号从时域转换到频域,便于分析和处理。
本实验主要涉及以下原理:1. 傅里叶变换:傅里叶变换是一种将信号从时域转换到频域的方法,它可以将任何连续时间信号分解为一系列不同频率的正弦波和余弦波的叠加。
傅里叶变换的数学表达式为:F(w) = ∫ f(t) e^(-jwt) dt其中,F(w)表示信号的频谱,f(t)表示信号,w表示频率,j表示虚数单位。
2. 傅里叶变换的性质:傅里叶变换具有许多性质,如时移性、频移性、尺度变换、卷积定理等,这些性质可以简化信号的频域分析。
3. MATLAB函数:MATLAB提供了丰富的函数用于连续信号的频域分析,如fourier函数用于计算信号的傅里叶变换,ifourier函数用于计算信号的傅里叶逆变换等。
三、实验内容1. 实验一:信号傅里叶变换(1)输入一段连续信号,如正弦波、方波等。
(2)使用fourier函数计算信号的傅里叶变换。
(3)绘制信号的时域波形和频谱图,观察信号的频谱特性。
2. 实验二:信号时移和频移(1)对实验一中的信号进行时移和频移操作。
(2)观察信号的时域波形和频谱图的变化,验证傅里叶变换的时移性和频移性。
3. 实验三:信号尺度变换(1)对实验一中的信号进行尺度变换操作。
(2)观察信号的时域波形和频谱图的变化,验证傅里叶变换的尺度变换性。
4. 实验四:信号卷积(1)输入两个连续信号,如矩形脉冲信号、三角脉冲信号等。
(2)使用conv函数计算两个信号的卷积。
(3)绘制信号的时域波形和频谱图,观察信号的卷积特性。
四、实验结果与分析1. 实验一:通过实验,我们得到了信号的时域波形和频谱图,可以看出信号的频谱特性与信号的时域特性密切相关。
一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、学习利用MATLAB 语言编写计算CTFS 和CTFT 的仿真程序。
基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB 编程完成相关的傅里叶变换的计算。
二、实验原理及方法1、连续时间周期信号的傅里叶级数CTFS 分析任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。
其中三角傅里叶级数为:∑∞=++=1000)]sin()cos([)(k k k t k b t k a a t x ωω 9.1或: ∑∞=++=100)cos()(k k kt k ca t x ϕω 9.2其中102T πω=,称为信号的基本频率,k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ϕ、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ϕ-0ωk 图像为相位谱。
指数形式的傅里叶级数为:∑∞-∞==k tjk kea t x 0)(ω 9.3其中,k a 为指数形式的傅里叶级数的系数,按如下公式计算:⎰--=2/2/1110)(1T T tjk k dt e t x T a ω 9.4 假设谐波项数为N ,则上面的和成式为:∑-==NNk tjk kea t x 0)(ω 9.5显然,N 越大,所选项数越多,有限项级数合成的结果越逼近原信号x(t)。
2、连续时间信号傅里叶变换----CTFT傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。
课程实验报告题目:连续时间信号的卷积及信号的频域分析学院通信与信息工程学院学生姓名班级学号指导教师开课学院通信与信息工程学院日期实验内容:(一)连续时间信号的卷积问题1:用计算机算卷积是把连续信号进行采样,得到一个个离散数值,然后用数值计算代替连续信号的卷积,请推导数值计算与连续信号的卷积之间的关系。
答:x(t)和y(t)为两个连续信号,进行采样后,得到离散值x(ne)与y(ne)(e为取样时间间隔),他们可以近似表示成x和y的函数值。
那么两函数卷积结果 h (t )=⎰∞∞--drr t y r x )()( ,即 h (ke )=∑∞-∞=-n e ne ke h ne x )()(,用k 替代ke h (k )=∑∞-∞=-n en k y n x )()( ,因此,若令e 无限趋于零,那么h (k )的极限值即是两函数卷积函数值。
上机题1.已知两个信号)2()1()(1---=t t t x εε和)1()()(2--=t t t x εε,试分别画出)(),(21t x t x 和卷积)()()(21t x t x t y *=的波形。
>> T=0.01; >> t1=1;t2=2; >> t3=0;t4=1; >> t=0:T:t2+t4;>> x1=ones(size(t)).*((t>t1)-(t>t2)); >> x2=ones(size(t)).*((t>t3)-(t>t4)); >> y=conv(x1,x2)*T;>> subplot(3,1,1),plot(t,x1); >> ylabel('x1(t)');>> subplot(3,1,2),plot(t,x2); >> ylabel('x2(t)');>> subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1)); >> ylabel('y(t)=x1*x2'); >> xlabel('----->t/s');上机题2.已知两个信号)()(t e t x t ε-=和)()(2/t te t h t ε-=,试用数值计算法求卷积,并分别画出)(),(t h t x 和卷积)()()(t h t x t y *=的波形。
MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。
由于盘算历程啰嗦,最适适用MATLAB 盘算。
通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。
任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。
-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。
基波频率Ω。
2、确定系统函数 )(Ω jn H。
3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。
用两个子图画出。
2、画出系统函数的幅度频谱|H(jω)|。
3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。
用两个子图画出。
解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。
实验教程目录实验一:连续时间信号与系统的时域分析-------------------------------------------------6一、实验目的及要求---------------------------------------------------------------------------6二、实验原理-----------------------------------------------------------------------------------61、信号的时域表示方法------------------------------------------------------------------62、用MATLAB仿真连续时间信号和离散时间信号----------------------------------73、LTI系统的时域描述-----------------------------------------------------------------11三、实验步骤及内容--------------------------------------------------------------------------15四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27一、实验目的及要求--------------------------------------------------------------------------27二、实验原理----------------------------------------------------------------------------------271、连续时间周期信号的傅里叶级数CTFS---------------------------------------------272、连续时间信号的傅里叶变换CTFT--------------------------------------------------283、离散时间信号的傅里叶变换DTFT -------------------------------------------------284、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------295、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33三、实验步骤及内容----------------------------------------------------------------------34四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49一、实验目的及要求--------------------------------------------------------------------------49二、实验原理----------------------------------------------------------------------------------491、连续时间LTI系统的频率响应-------------------------------------------------------492、LTI系统的群延时---------------------------------------------------------------------503、用MATLAB计算系统的频率响应--------------------------------------------------50三、实验步骤及内容----------------------------------------------------------------------51四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59一、实验目的及要求--------------------------------------------------------------------------59二、实验原理----------------------------------------------------------------------------------591、信号的抽样及抽样定理---------------------------------------------------------------592、信号抽样过程中的频谱混叠----------------------------------------------------------623、信号重建--------------------- ----------------------------------------------------------624、调制与解调----------------------------------------------------------------------------------645、通信系统中的调制与解调仿真---------------------------------------------------------66三、实验步骤及内容------------------------------------------------------------------------66四、实验报告要求---------------------------------------------------------------------------75 实验五:连续时间LTI系统的复频域分析----------------------------------------------76一、实验目的及要求------------------------------------------------------------------------76二、实验原理--------------------------------------------------------------------------------761、连续时间LTI系统的复频域描述--------------------------------------------------762、系统函数的零极点分布图-----------------------------------------------------------------773、拉普拉斯变换与傅里叶变换之间的关系-----------------------------------------------784、系统函数的零极点分布与系统稳定性和因果性之间的关系------------------------795、系统函数的零极点分布与系统的滤波特性-------------------------------------------806、拉普拉斯逆变换的计算-------------------------------------------------------------81三、实验步骤及内容------------------------------------------------------------------------82四、实验报告要求---------------------------------------------------------------------------87 附录:授课方式和考核办法-----------------------------------------------------------------88实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号 20 评分:实验日期: 2017 年 12 月 13日指导教师: 张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT、DTFT的若干重要性质。
基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB编程完成相关的傅里叶变换的计算。
以看得很清楚。
二、实验原理及方法任何一个周期为T1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。
其中三角傅里叶级数为:2.1或:2.2指数形式的傅里叶级数为:2.3其中,为指数形式的傅里叶级数的系数,按如下公式计算:2.4傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。
傅里叶变换和其逆变换定义如下:2.52.6连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。
按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号ejt的线性组合构成的,每个频率所对应的周期复指数信号ejt称为频率分量(frequency component),其相对幅度为对应频率的|X(j)|之值,其相位为对应频率的X(j)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。
信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。
二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。
信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
实验二 连续时间信号的频域分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。
基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB 编程完成相关的傅里叶变换的计算。
二、实验原理及方法1、连续时间周期信号的傅里叶级数CTFS 分析任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。
其中三角傅里叶级数为:∑∞=++=1000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1或: ∑∞=++=100)cos()(k k kt k ca t x ϕω 2.2其中102T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ϕ、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ϕ-0ωk 图像为相位谱。
三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。
也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。
指数形式的傅里叶级数为:∑∞-∞==k tjk k ea t x 0)(ω 2.3其中,k a 为指数形式的傅里叶级数的系数,按如下公式计算:⎰--=2/2/1110)(1T T tjk k dt et x T a ω 2.4指数形式的傅里叶级数告诉我们,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的周期复指数信号所组成,其中每一个不同频率的周期复指数信号称为基本频率分量,其复幅度(complex amplitude )为k a 。
这里“复幅度(complex amplitude )”指的是k a 通常是复数。
上面的傅里叶级数的合成式说明,我们可以用无穷多个不同频率的周期复指数信号来合成任意一个周期信号。
然而,用计算机(或任何其它设备)合成一个周期信号,显然不可能做到用无限多个谐波来合成,只能取这些有限个谐波分量来近似合成。
假设谐波项数为N ,则上面的和成式为:∑-==NNk tjk kea t x 0)(ω 2.5显然,N 越大,所选项数越多,有限项级数合成的结果越逼近原信号x(t)。
本实验可以比较直观地了解傅里叶级数的物理意义,并观察到级数中各频率分量对波形的影响包括“Gibbs ”现象:即信号在不连续点附近存在一个幅度大约为9%的过冲,且所选谐波次数越多,过冲点越向不连续点靠近。
这一现象在观察周期矩形波信号和周期锯齿波信号时可以看得很清楚。
三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。
抄写程序Q2_1如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t);x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]);grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')执行程序Q2_1所得到的图形如下:Q2-2给程序Program2_1增加适当的语句,并以Q2_2存盘,使之能够计算例题2-1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
通过增加适当的语句修改Program2_1而成的程序Q2_2抄写如下:% Program2_1clear, close allT = 2; dt = 0.00001; t = -2:dt:2;x1 = u(t) - u(t-1-dt); x = 0;for m = -1:1 % Periodically extend x1(t) to form a periodic signalx = x + u(t-m*T) - u(t-1-m*T-dt);endw0 = 2*pi/T;N = 10; % The number of the harmonic componentsL = 2*N+1;for k = -N: N; % Evaluate the Fourier series coefficients akak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt;endphi = angle(ak); % Evaluate the phase of aksubplot(211)'k = -10:10;stem (k,abs(ak),'k');axis([-10,10,0,0.6]);grid on;title('fudupu');subplot(212);k = -10:10stem(k,angle(ak),'k');axis([-10,10,-2,2]);grid on;titie('xiangweipu');xlabel('Frequency index x');执行程序Q2_2得到的图形Q2-3反复执行程序Program2_2,每次执行该程序时,输入不同的N值,并观察所得到的周期方波信号。
通过观察,你了解的吉伯斯现象的特点是:% Program2_3% This program is used to compute the Fourier series coefficients ak of a periodic square wave clear,close allT = 2; dt = 0.00001; t = -2:dt:2;x1 = u(t)-u(t-1-dt); x = 0;for m = -1:1x = x + u(t-m*T) - u(t-1-m*T-dt); % Periodically extend x1(t) to form a periodic signalendw0 = 2*pi/T;N = input('Type in the number of the harmonic components N = :');L = 2*N+1;for k = -N:1:N;ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt;endphi = angle(ak);y=0;for q = 1:L; % Synthesiz the periodic signal y(t) from the finite Fourier seriesy = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T);end;subplot(221),plot(t,x), title('The original signal x(t)'), axis([-2,2,-0.2,1.2]),subplot(223),plot(t,y), title('The synthesis signal y(t)'), axis([-2,2,-0.2,1.2]), xlabel('Time t'), subplot(222)k=-N:N; stem(k,abs(ak),'k.'), title('The amplitude |ak| of x(t)'), axis([-N,N,-0.1,0.6]) subplot(224)stem(k,phi,'r.'), title('The phase phi(k) of x(t)'), axis([-N,N,-2,2]), xlabel('Index k') N=1N=2通过观察我们了解到:如果一个周期信号在一个周期有内断点存在,那么,引入的误差将除了产生纹波之外,还将在断点处产生幅度大约为9%的过冲(Overshot ),这种现象被称为吉伯斯现象(Gibbs phenomenon )。
即信号在不连续点附近存在一个幅度大约为9%的过冲,且所选谐波次数越多,过冲点越向不连续点靠近。