九年级锐角三角形的简单应用授课案
- 格式:doc
- 大小:726.50 KB
- 文档页数:5
人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。
【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。
【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。
二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。
三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。
【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。
【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。
【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。
一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。
锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。
2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。
(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。
通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。
情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。
2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。
三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。
教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。
四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。
(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。
体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。
主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
4.4 解直角三角形的应用第1课时俯角和仰角问题教学目标【知识与技能】比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题. 【过程与方法】通过学习进一步掌握解直角三角形的方法. 【情感态度】培养学生把实际问题转化为数学问题的能力. 【教学重点】应用解直角三角形的知识解决与仰角、俯角有关的实际问题. 【教学难点】选用恰当的直角三角形,分析解题思路. 教学过程一、情景导入,初步认知海中有一个小岛A ,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后,到达该岛的南偏西25°的C 处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.【教学说明】经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题中的应用. 二、思考探究,获取新知1.某探险者某天到达如图所示的点A 处,他准备估算出离他的目的地——海拔为3500m 的山峰顶点B 处的水平距离.你能帮他想出一个可行的办法吗?分析:如图,BD 表示点B 的海拔,AE 表示点A 的海拔,AC ⊥BD ,垂足为点C .先测量出海拔AE ,再测出仰角∠BAC ,然后用锐角三角函数的知识就可以求出A 、B 之间的水平距离AC .【归纳结论】当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.2.如图,在离上海东方明珠塔底部1000m 的A 处,用仪器测得塔顶的仰角为25°,仪器距地面高为1.7m.求上海东方明珠塔的高度.(结果精确到1m)解:在Rt△ABC 中,∠BAC =25°,AC =1000m ,因此tan25°=BC AC =BC1000∴BC =1000×tan25°≈466.3(m),∴上海东方明珠塔的高度(约)为466.3+1.7=468米.【教学说明】利用实际问题承载数学问题,提高了学生的学习兴趣.教师要帮助学生学会把实际问题转化为解直角三角形问题,从而解决问题.三、运用新知,深化理解1.如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC =1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 的距离.(精确到1米)分析:利用正弦可求. 解:在Rt△ABC 中sin B =AC AB∴AB =AC sin B =12000.2843≈4221(米)答:飞机A 到控制点B 的距离约为4221米.2.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m.这栋高楼有多高(结果精确到0.1m)?分析:在Rt△ABD 中,α=30°,AD =120.所以可以利用解直角三角形的知识求出BD ;类似地可以求出CD ,进而求出BC .解:如图,α=30°,β=60°,AD =120.∵tan α=BD AD ,tan β=CD AD,∴BD =AD tan α=120×tan30°=120×33=403,CD =AD tan β=120×tan60°=120×3=120 3. ∴BD =BD +CD =403+1203=1603≈227.1 答:这栋高楼约高277.1m.3.如图,在离树BC 12米的A 处,用测角仪测得树顶的仰角是30°,测角仪AD 高为1.5米,求树高BC .(计算结果可保留根号)分析:本题是一个直角梯形的问题,可以通过过点D 作DE ⊥BC 于E ,把求CB 的问题转化求BE 的长,从而可以在△BDE 中利用三角函数.解:过点D 作DE ⊥BC 于E ,则四边形DECA 是矩形,∴DE =AC =12米.CE =AD =1.5米.在直角△BED 中,∠BDE =30°,tan30°=BE DE,∴BE =DE ·tan30°=43米.∴BC =BE +CE =(43+32)米.4.广场上有一个充满氢气的气球P ,被广告条拽着悬在空中,甲乙二人分别站在E 、F 处,他们看气球的仰角分别是30°、45°,E 点与F 点的高度差AB 为1米,水平距离CD 为5米,FD 的高度为0.5米,请问此气球有多高?(结果保留到0.1米)分析:由于气球的高度为PA +AB +FD ,而AB =1米,FD =0.5米,故可设PA =h 米,根据题意,列出关于h 的方程可求解.解:设AP =h 米,∵∠PFB =45°, ∴BF =PB =(h +1)米,∴EA =BF +CD =h +1+5=(h +6)米, 在Rt△PEA 中,PA =AE ·tan30°,∴h=(h+6)tan30°,∴气球的高度约为PA+AB+FD=8.2+1+0.5=9.7米.【教学说明】巩固所学知识.要求学生学会把实际问题转化成数学问题;根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.4”中第2、4、5题.教学反思本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题应选用适当的数学知识加以解决.第2课时坡度和方位角问题教学目标【知识与技能】1.了解测量中坡度、坡角的概念;2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题. 【过程与方法】通过对例题的学习,使学生能够利用所学知识解决实际问题. 【情感态度】进一步培养学生把实际问题转化为数学问题的能力. 【教学重点】能利用解直角三角形的知识,解决与坡度、与弧长有关的实际问题. 【教学难点】能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题. 教学过程一、情景导入,初步认知如图所示,斜坡AB 和斜坡A 1B 1,哪一个倾斜程度比较大?显然,斜坡A 1B 1的倾斜程度比较大,说明∠A 1>∠A .从图形可以看出,B 1C 1A 1C 1>BCAC,即tan A 1>tan A . 【教学说明】通过实际问题的引入,提高学生学习的兴趣. 二、思考探究,获取新知1.坡度的概念,坡度与坡角的关系.如上图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比),记作i ,即i =AC BC,坡度通常用l ∶m 的形式,例如上图中的1∶2的形式.坡面与水平面的夹角叫作坡角,记作α.从三角函数的概念可以知道,坡度与坡角的关系是i =tan B ,显然,坡度越大,坡角越大,坡面就越陡.2.如图,一山坡的坡度为i =1∶2,小刚从山脚A 出发,沿山坡向上走了240米到达点C ,这座山坡的坡角是多少度?小刚上升了多少米?(角度精确到0.01°,长度精确到0.1米)3.如图,一艘船以40km/h 的速度向正东航行,在A 处测得灯塔C 在北偏东60°方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东30°方向上,已知在灯塔C 的四周30km 内有暗礁.问这艘船继续向东航行是否安全?【教学说明】教师引导学生分析题目中的已知条件分别代表的是什么,将图形中的信息转化为图形中的已知条件,再分析图形求出问题.学生独立完成.三、运用新知,深化理解1.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m ,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).分析:引导学生将实际问题转化为数学问题画出图形.解:已知:在Rt△ABC 中,∠C =90°,AC =5.5,∠A =24°,求AB . 在Rt△ABC 中,cos A =AC AB,∴AB =AC cos A = 5.50.9135≈6.0(米).答:斜坡上相邻两树间的坡面距离约是6.0米.2.同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i =1∶2.5,求斜坡AB 的坡面角α,坝底宽AD 和斜坡AB 的长(精确到0.1m).解:作BE ⊥AD ,CF ⊥AD , 在Rt△ABE 和Rt△CDF 中, BE AE =13,CF FD =12.5∴AE =3BE =3×23=69(m).FD =2.5CF =2.5×23=57.5(m).∴AD =AE +EF +FD =69+6+57.5=132.5(m).因为斜坡AB 的坡度i =tan α=13≈0.3333,所以α≈18°26′. ∵BEAB=sin α, ∴AB =BE sin α=230.3162≈72.7(m).答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5米,斜坡AB 的长约为72.7米.3.庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度i =1∶3,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)解:过点A 作AD ⊥BC 于点D ,在Rt△ADC 中,由i =1∶3得tan C =13=33, ∴∠C =30°.∴AD =12AC =12×240=120(米).在Rt△ABD 中,∠B =45°, ∴AB =2AD =1202(米).1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .4.某公园有一滑梯,横截面如图所示,AB 表示楼梯,BC 表示平台,CD 表示滑道.若点E ,F 均在线段AD 上,四边形BCEF 是矩形,且sin∠BAF =23,BF =3米,BC =1米,CD =6米.求:(1)∠D 的度数;(2)线段AE 的长.解:(1)∵四边形BCEF 是矩形,∴∠BFE =∠CEF =90°,CE =BF ,BC =FE , ∴∠BFA =∠CED =90°, ∵CE =BF ,BF =3米,∴CE =3米,∵CD =6米,∠CED =90°, ∴∠D =30°.(2)∵sin∠BAF =23,∴BF AB =23,∵BF =3米,∴AB =92米, ∴AF =(92)2-32=352米, ∴AE =35+22米.5.日本福岛发生核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离.(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)分析:过点P 作PC ⊥AB ,构造直角三角形,设PC =x 海里,用含有x 的式子表示AC ,BC 的值,从而求出x 的值,再根据三角函数值求出BP 的值即可解答.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里.在Rt△APC 中,∵tan A =PC AC,∴AC =PC tan67.5°=5x12在Rt△PCB 中,∵tan B =PC BC,∴BC =x tan36.9°=4x3∵从上午9时到下午2时要经过五个小时, ∴AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得x =60. ∵sin∠B =PC PB,∴PB =PC sin B =60sin36.9°=60×53=100(海里)∴海检船所在B 处与城市P 的距离为100海里. 【教学说明】通过练习,巩固本节课所学内容. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题4.1”中第1、6、7题. 教学反思通过本节课的学习,使学生知道坡度、坡角的概念,能利用解直角三角形的知识解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.复习与提升教学目标【知识与技能】1.了解锐角三角函数的概念,熟记30°、45°、60°的正弦、余弦和正切的函数值.2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数.3.会用解直角三角形的有关知识解决简单的实际问题. 【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想. 【情感态度】通过解直角三角形的学习,体会数学在解决实际问题中的作用. 【教学重点】会用解直角三角形的有关知识解决简单的实际问题. 【教学难点】会用解直角三角形的有关知识解决简单的实际问题. 教学过程 一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系. 二、释疑解惑,加深理解 1.正弦的概念:在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sin α,即:sin α=角α的对边斜边.2.余弦的概念:在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作cos α.即cos α=角α的邻边斜边.3.正切的概念:在直角三角形中,我们把锐角α的对边与邻边的比叫作角α的正切.记作tan α,即:tan α=角α的对边角α的邻边4.特殊角的三角函数值:三角函数αsin α cos α tan α30° 12 32 3345° 22 22 1 60°321235.我们把锐角α的正弦、余弦、正切统称为角α的锐角三角函数. 6.解直角三角形的概念:在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形. 7.仰角、俯角的概念:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.8.坡度的概念:坡面的铅垂线高度与水平前进的距离的比叫作坡度(或坡比);记作i ,坡度通常用l ∶m 的形式;坡面与水平面的夹角叫作坡角,记作α.坡度越大,坡角越大,坡面就越陡.【教学说明】引导学生回忆本章所学的有关概念,知识点.加深学生的印象. 三、运用新知,深化理解1.已知,如图,D 是△ABC 中BC 边的中点,∠BAD =90°,tan B=23,求sin∠DAC .解:过D 作DE ∥AB交AC 于E , 则∠ADE =∠BAD =90°,由tan B =23,得AD AB =23,设AD =2k ,AB =3k ,∵D 是△ABC 中BC 边的中点,∴DE =32k∴在Rt△ADE 中,AE =52k ,∴sin∠DAC =DE AE =32k 52k =35.2.计算:tan 230°+cos 230°-sin 245°tan45°解:原式=(33)2+(32)2-(22)2×1=13+34-12 =7123.如图所示,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数为( )①DE =3cm ;②BE =1cm ;③菱形的面积为15cm 2;④BD =210 cm. A .1个 B .2个 C .3个 D .4个 分析:由菱形的周长为20cm 知菱形边长是5cm.在Rt△ADE 中,∵AD =5cm ,sin A =35,∴DE =AD ·sin A =5×35=3(cm).∴AE =AD 2-DE 2=4(cm). ∴BE =AB -AE =5-4=1(cm).菱形的面积为AB ·DE =5×3=15(cm 2).在Rt△DEB 中,BD =DE 2+BE 2=32+12=10(cm). 综上所述①②③正确. 【答案】C4.如图所示,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,求此时轮船所在的B 处与灯塔P 的距离(结果保留根号).分析:由题意知,在△ABP 中∠A =60°,∠B =45°,∠APB =75°联想到两个三角板拼成的三角形.因此很自然作PC ⊥AB 交AB 于C .解:过点P 作PC ⊥AB ,垂足为C ,则∠APC =30°,∠BPC =45°,AP =80,在Rt△APC 中,cos∠APC =PC PA . ∴PC =PA ·cos∠APC =403, 在Rt△PCB 中,cos∠BPC =PC PB, ∴PB =PC cos∠BPC =403cos45°=40 6∴当轮船位于灯塔P 南偏东45°方向时,轮船与灯塔P 的距离是406海里.【教学说明】通过上面的解题分析,再对整个学习过程进行总结,能够促进理解,提高认知水平,从而促进数学观点的形成和发展.四、复习训练,巩固提高1.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A .2B .2 3C .3 3D .3 分析:∵△ABC 是等边三角形,点P 是∠ABC 的平分线上一点,∴∠EBP =∠QBF =30°,∵BF =2,FQ ⊥BP ,∴BQ =BF ·cos30°=2×32= 3.∵FQ 是BP 的垂直平分线, ∴BP =2BQ =2 3.在Rt△BEP 中,∵∠EBP =30°,∴PE =12BP = 3.【答案】C 2.如图,为了测量某山AB 的高度,小明先在山脚下C 点测得山顶A 的仰角为45°,然后沿坡角为30°的斜坡走100米到达D 点,在D 点测得山顶A 的仰角为30°,求山AB 的高度.(参考数据:3≈1.73)解:过D 作DE ⊥BC 于E ,作DF ⊥AB 于F , 设AB =x ,在Rt△DEC 中,∠DCE =30°, CD =100,∴DE =20,CE =50 3.在Rt△ABC 中,∠ACB =45°,∴BC =x . 则AF =AB -BF =AB -DE =x -50, DF =BE =BC +CE =x +50 3. 在Rt△AFD 中,∠ADF =30°,tan30°=AF FD ,∴x -50x +503=33.∴x =50(3+3)≈236.6.答:山AB 的高度约为236.6米. 3.如图,小红同学用仪器测量一棵大树AB 的高度,在C 处测得∠ADG =30°,在E 处测得∠AFG =60°,CE =8米,仪器高度CD =1.5米,求这棵树AB 的高度(结果保留两位有效数字,3≈1.732).解:根据题意得:四边形DCEF 、DCBG 是矩形, ∴GB =EF =CD =1.5米,DF =CE =8米. 设AG =x 米,GF =y 米, 在Rt△AFG 中,tan∠AFG =tan60°=AG FG =x y=3, 在Rt△ADG 中,tan∠ADG =tan30°=AG DG =x y +8=33,二者联立,解得x =43,y =4. ∴AG =43米,FG =4米.∴AB =AG +GB =43+1.5≈8.4(米). ∴这棵树AB 的高度约为8.4米.五、师生互动,课堂小结师生共同总结,对于本章的知识.你掌握了多少?还存在哪些疑惑?同学之间可以相互交流. 课后作业布置作业:教材“复习题4”中第1、3、6、8、12、14题. 教学反思根据学生掌握的情况,对掌握不够好的知识点、题型多加练习、讲解.力争更多的学生学好本章内容.。
锐角三角函数的简单应用
一.温故而知新
1.=︒-2)30tan 31([ ]
A .31--
B .3+1
C . 3-1
D .1-3
2.若3tan (α+10°)=0,则锐角α的度数是[ ]
A .20°
B .30°
C .40°
D .50°
3.cos30°=︒+︒⋅
30sin 130cos [ ] A . 32
B .31
C . 43
D .21
4.在△ABC 中,∠C=90°。
(1)已知∠A=30°,BC=8cm ,求AB 、AC
(2)已知∠A=60°,AC=3cm ,求AB 与BC 的长。
二.知识讲解
知识点一 《俯角与仰角》
1.当从低处观测高处的目标时,视线与水平线
所成的锐角称为仰角.
2.当从高处观测低处的目标时,视线与水平线
所成的锐角称为俯角.
图中的∠1就是仰角, ∠2就是俯角。
练习1: 如图,测量队为测量某地区山顶P 的海拔高度,选M 点作为观测点,从M•点测量山顶P 的仰角为30°,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6•厘米,则山顶P•的海拔高为________m .(精确到1m )
练习2:飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞行距离。
练习:3:怎样测量停留在空中的气球高度呢?明明设计了这样一个方案:
先站在地面上某点处观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°.若明明的眼睛离地面1.6m, 如何计算气球的高度呢?
知识点二《方位角》
如图,在平面上,过观察点O作一条水平线(向右为东)
和一条铅垂线(向上为北),则从O点出发的视线与铅
垂线所成的锐角,叫做观测的方位角(方向角).
例如,图中“北偏东30°”是一个方位角;
又如“西北”即指正西方向与正北方向所夹直角
的平分线,此时的方位角为“北偏西45°”.
知识点三《坡度与坡角》
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.
坡度的概念,坡度与坡角的关系.
如右图,这是一张水库拦水坝的横断面的设计图,
叫做坡度(或坡比) .
记作i,即i=,坡度通常用l∶m的形式,如右上图,斜坡AB的坡度是:i= .
叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i=,显然, .
1.掌握坡度的概念
①某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为25米,则这个坡
面的坡度为 __________.
②(10江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m,则他升高了_________.
2.掌握两个常见的坡度
①某水库大坝的横断面是梯形,坝内斜坡的坡度i1=1∶3,坝外斜坡的坡度i2=1∶1,则两个
坡角的和为 .
②如图所示,河堤横断面迎水坡AB的坡比是1∶3,
3.一道常见题型.
如图,水坝的横截面是梯形ABCD ,迎水坡BC 的坡角为30°,背水坡AD 的坡度i =1:1.2,坝顶宽DC =2.5米,坝高4.5米,又知堤坝的总长度为5km.
求:(1)背水坡AD 的坡角(精确到0.1°);
(2)坝底宽AB 的长(精确到0.1米).
三.例题讲解 例1 . 东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东
40°的方向,炮台B 测得敌舰C 在它的正南方,试求敌舰与两炮台的距离.(精确到1米)(tan 50°≈1.192, cos50°≈0.6482)
例2.为了测量一条河流的宽度,小明在河的岸边选定A 、B 两个目标,在河对面的岸边选定一目标C ,测得C 在A 的北偏东45°方向 , 在B 的北偏西60°方向上, AB =80,试求河的宽度.
例3. 如图,A,B 是两座现代城市,C 是一个古城遗址,C 城在A 城的北偏东30°,在B 城的北偏西45°,且C 城与A 城相距120千米,B 城在A 城的正东方向,以C 为圆心,以60千米为半径的圆形 区域内有古迹和地下文物,现要在A,B 两城间修建一条笔直的高速公路.(1)计算公路的长度.(2)请你分析这条公路有没有可能对文物古迹造成损毁.
四.提高题冲刺
1.在高200米的山顶上测得正东方向两船的俯角分别为30°和60°,•则两船间的距离是______ 。
2.如图所示,人们从O 处的某海防哨所发现,在它的北偏东60°方向,•相距600m 的A 处有一艘快艇正在向正南方向航行,经过若干时间快艇到达哨所东南方向B 处,则A 、B 间的距离是______ .
3.如图所示,一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时至B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是 ( )
4. 如图,两座灯塔A 和B 到海洋观测站C 的距离相等,灯塔A 在观测站C 的北偏东40°,灯塔B 在观测站C 的南偏东60°,则灯塔A 在灯塔B 的 ( )
A 北偏东10°
B 北偏西10°
C 南偏东10°
D 南偏西10°
5.有一大坝其横截面为一等腰梯形,它的上底为6 m ,下底为10 m ,高为32 m,则坡角为_______.
6.如图,在某建筑物AC 上挂着一幅的宣传条幅BC ,小明站在点F 处,看条幅顶端B , 测得仰角为30°;再往条幅方向前行20m 到达点E 处,看条幅顶端B ,•测得仰角为60°, 求宣传条幅BC 的长.
7.判断题:
1. 对于任意锐角α,都有0<sin α<1和0<cos α<1( )
2. 对于任意锐角α1,α2,如果α1<α2,那么cos α1<cos α2 ( )
3. 如果sin α1<sin α2,那么锐角α1<锐角α2 ( )
4. 如果cos α1<cos α2,那么锐角α1>锐角α2 ( )
i =1∶
3
课后练习
1.如图,一座塔的高度TC=120m ,甲、乙两人分别站在塔的西、东两侧的点A 、B 处,测得塔顶的仰角分别为28º、15º。
求A 、B 两点间的距离_________(精确到0.1米)
(参考数据:tan 280.53,tan 150.27︒≈︒≈)
2.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为60°和45°,则广告牌的高度BC 为_____________米(结果保留根号).
3.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处向东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC =
米(结果保留根号).
题1图 题2图 题3图
4.如图,在某广场上空飘着一只汽球P ,A 、B 是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠
PAB=45o ,仰角∠PBA=30o ,求汽球P 的高度。
(结果保留根号)
5. 如图,一束光线照在坡度为1:3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是_________度.
6. 如图是一个拦水大坝的横断面图,AD ∥BC ,
(1) 若斜坡AB =10m ,大坝高为8m ,则斜坡AB 的坡度i AB
= .
(2)如果坡度i AB =1∶ 3 ,则坡角∠B = .
(3)如果坡度i AB =1∶2,AB =8m ,则大坝高度为__ _.
7. 如图,一段河坝的断面为梯形ABCD ,试根据图中数据,求出坡角和坝底宽AD (单位米,结果保留根号)
A B C
A B C。