高中数学第一章三角函数1.2任意角的三角函数教案新人教A版必修4
- 格式:doc
- 大小:111.00 KB
- 文档页数:3
第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
第一章第二节任意角的三角函数第三课时整体设计教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tan α中的α是使得tan α有意义的值,即α≠k π+π2,k ∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin 290°+cos 290°;(2)sin 230°+cos 230°;(3)sin60°cos60°;(4)sin135°cos135°. 推进新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响? 如图1,以正弦线MP 、余弦线OM 和半径OP 三者的长构成直角三角形,而且OP =1.图1由勾股定理有OM 2+MP 2=1.因此x 2+y 2=1,即sin 2α+cos 2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠k π+π2,k ∈Z 时,有 sin αcos α=tan α(等式2). 这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠k π+π2,k ∈Z . ②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用等式2求出正切.应用示例思路1例1已知sin α=45,并且α是第二象限的角,求cos α,tan α的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin 2α+cos 2α=1,故cos α的值最容易求得,在求cos α时需要进行开平方运算,因此应根据角α所在的象限确定cos α的符号,在此基础上教师指导学生独立地完成此题.解:因为sin 2α+cos 2α=1,所以cos 2α=1-sin 2α=1-(45)2=925. 又因为α是第二象限角,所以cos α<0.于是cos α=-925=-35, 从而tan α=sin αcos α=45×(-53)=-43. 点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tan α=-43中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2已知cos α=-817,求sin α,tan α的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cos α<0是不能确定角α的终边所在的象限的,它可能在x 轴的负半轴上(这时cos α=-1).解:因为cos α<0,且cos α≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么sin α=1-cos 2α=1--8172=1517,tan α=sin αcos α=1517×(-178)=-158, 如果α是第三象限角,那么sin α=-1517,tan α=158. 点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.思路2例1已知tan α为非零实数,用tan α表示sin α、cos α.活动:引导学生思考讨论:角的终边在什么位置;能否直接利用基本关系式求出sin α或cos α的值.由tan α≠0,只能确定α的终边不在坐标轴上.关于sin α、cos α、tan α的关系式只有tan α=sin αcos α,在这个式子中必须知道其中两个三角函数值,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cos α,进而求出sin α.解:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α. 又因为tan α=sin αcos α, 所以tan 2α=sin 2αcos 2α=1-cos 2αcos 2α=1cos 2α-1. 于是1cos 2α=1+tan 2α,cos 2α=11+tan 2α. 由tan α为非零实数,可知角α的终边不在坐标轴上,从而 cos α=⎩⎪⎨⎪⎧ 11+tan 2α,当α为第一、第四象限角,-11+tan 2α,当α为第二、第三象限角, sin α=cos αtan α=⎩⎪⎨⎪⎧ tan α1+tan 2α,当α为第一、第四象限角,-tan α1+tan 2α,当α为第二、第三象限角.点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析变式训练已知cos α≠0,用cos α表示sin α、tan α.解:本题仿照上题可以比较顺利地完成.sin α=⎪⎩⎪⎨⎧---,、,cos 1,、,cos 122第四象限角为第三当第二象限角为第一当ααααtan α=⎪⎪⎩⎪⎪⎨⎧---.、,cos cos 1,、,cos cos 122第四象限角为第三当第二象限角为第一当αααααα例2求证:1-sin x =cos x.活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sin α,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sin x ,再化简;在证法二中可以这样分析,要让算式成立,需证cos 2x =(1+sin x )(1-sin x ),即cos 2x =1-sin 2x ,也就是sin 2x +cos 2x =1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证法一:由cos x ≠0,知sin x ≠1,所以1+sin x ≠0,于是 左边=cos x 1+sin x 1-sin x 1+sin x =cos x 1+sin x 1-sin 2x =cos x 1+sin x cos 2x =1+sin x cos x=右边.所以原式成立.证法二:因为(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x cos x ,且1-sin x ≠0,cos x ≠0,所以cos x 1-sin x =1+sin x cos x. 教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a -b =0⇔a =b ”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为cos x 1-sin x -1+sin x cos x =cos x cos x -1+sin x 1-sin x 1-sin x cos x=cos 2x -1-sin 2x 1-sin x cos x =cos 2x -cos 2x 1-sin x cos x=0, 所以cos x 1-sin x =1+sin x cos x. 点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例3化简1-sin 2440°.活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos80°,由于cos80°>0,因此cos 280°=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式=1-sin 2360°+80°=1-sin 280°=cos 280°=cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量变式训练化简1-2sin40°cos40°.答案:co s40°-sin40°.点评:提醒学生注意:1±2sin αcos α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,这是一个很重要的结论.知能训练课本本节练习.解答:1.sin α=-35,tan α=34. 2.当φ为第二象限角时,sin φ=32,cos φ=-12. 当φ为第四象限角时,sin φ=-32,cos φ=12. 3.当θ为第一象限角时,cos θ≈0.94,tan θ≈0.37.当θ为第二象限角时,cos θ≈-0.94,tan θ≈-0.37.4.(1)cos θtan θ=cos θsin θcos θ=sin θ; (2)2cos 2α-11-2sin 2α=2cos 2α-sin 2α+cos 2αsin 2α+cos 2α-2sin 2α=cos 2α-sin 2αcos 2α-sin 2α=1. 5.(1)左=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=右;(2)左=sin 2α(sin 2α+cos 2α)+cos 2α=sin 2α+cos 2α=1=右.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值.教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.作业1.化简(1+tan 2α)cos 2α;答案:12.已知tan α=2,求sin α+cos αsin α-cos α的值. 答案:3.设计感想公式的推导和应用是本节课的重点,也是本节课的难点.公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立. 教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.备课资料备用习题 1.如果sin x +cos x =15,且0<x <π,那么tan x 的值是( ) A .-43 B .-43或-34 C .-34 D.43或-34答案:A2.若sin θ-cos θ=2,则sin θ·cos θ=________,tan θ+1tan θ=________, sin 3θ-cos 3θ=________,sin 4θ+cos 4θ=________.答案:-12 -2 22 123.若a ≠0,且sin x +sin y =a ,cos x +cos y =a ,则sin x +cos x =____________. 答案:a4.已知tan α=-12,求下列各式的值: (1)2cos α-sin αsin α+cos α; (2)2sin 2α+sin α·cos α-3cos 2α.答案:解:(1)原式=2-tan αtan α+1=2--12-12+1=5. (2)原式=2sin 2α+sin α·cos α-3cos 2αsin 2α+cos 2α=2tan 2α+tan α-3tan 2α+1=2-122-12-3-122+1=-125. 5.已知tan 2α=2tan 2β+1,求证:sin 2β+1=2sin 2α.答案;证明:由已知有1+tan 2α=2tan 2β+2=2(1+tan 2β),∴1+sin 2αcos 2α=2(1+sin 2βcos 2β). ∴2cos 2α=cos 2β.∴2(1-sin 2α)=1-sin 2β.∴sin 2β+1=2sin 2α.。
“任意角的三角函数”教学设计一、教学内容解析在角由“锐角”到“任意角”的推广过程中,研究的视角由“静态”到“动态”,同时研究的平台也由“平面图形”过渡到了“平面直角坐标系”.借助直角坐标系研究角,一方面引入象限角,使“角”的研究统一转化为“转动的边”的研究;另一方面也提供了用代数方法研究几何的思路.“任意角三角函数” 是“锐角三角函数”概念的因袭和扩张,但为什么要作这样的推广呢?更合适的理由是任意角三角函数是描述周期变化为重要数模型。
任意角三角函数是函数的下位概念,是刻划圆周运动规律的重要数学模型.“任意角三角函数”在圆周运动中,最基本、简单的情形是质点P 绕着单位圆的圆心作匀速圆周运动,在此运动中,关键是抓住质点P 的坐标(x ,y )随旋转角θ的变化而变化的函数关系.这种关系是确定的,至于如何更好地表达,合理的命名是非本质的内容.由于当角θ为锐角时,y 是θ的正弦,x 是θ的余弦,xy是θ的正切,因此可以以此为据,推广到任意角相应的三角函数定义. 引入锐角三角函数的概念,目的是为了研究三角形中的边角关系,因此定义侧重几何的角度,利用相似直角三角形的性质,得到锐角和三角形边与边的“比值”之间的确定关系;而引入任意角三角函数的概念,目的是为了研究周期变化现象,因此定义侧重代数的角度,在直角坐标系下,以单位圆为工具,得到角和它的终边与单位圆的交点坐标之间的确定关系.两者同时都是函数的下位概念,在弧度制下,归结为数集到数集的映射.教材中对任意角三角函数的定义有两种——单位圆的定义和欧拉的传统定义[1].从任意角三角函数的使命看,单位圆的定义显得形式简单,便于研究性质,同时借助圆周运动可以更直观地体现函数的周期性,某种意义上说,任意角三角函数就是圆的性质的几何表示.但两个定义本质相同,相互之间一点就通.二、教学目标解析1.理解任意角三角函数的定义,经历“单位圆法”定义三角函数的过程;2.会用定义求特殊角的三角函数值,会求已知终边位置的角的三角函数值; 3.会从函数三要素的角度认识三角函数的对应法则、自变量、函数值; 4.体会定义三角函数过程中的数形结合、化归、数学模型等思想方法.三、教学问题诊断分析1.三角函数是一类特殊的函数,因此本节课侧重于在一般函数概念的指导下组织教学,让学生知道三角函数的是角与坐标(或比值)之间的对应关系.学生虽有锐角三角函数的概念,但其认识只停留在三角函数是反映直角三角形的角与边之间关系的层面上,有必要让学生从角与比值的对应角度重新认识.2.锐角三角函数到任意角三角函数的推广,并非简单的特殊到一般意义上的推广,而是观念角度的变化,需要将直角三角形为载体的几何定义方式转化为以直角坐标系为载体的坐标定义方式.3.将终边上的任意一点化归到单位圆上的点,不仅是求简,更是三角函数本质的体现,但学生的理解很难到位,需要在今后的学习中循序渐进.4.在弧度制下(用单位圆的半径度量角)实现角的集合与实数集的一一对应,再实现数到坐标的对应,会造成一定的理解困难,为了突出重点,分散难点,本节课暂时不作过度的解释.四、教学过程设计 (一)情景引入游乐场内有一半径r=1米的摩天轮,中心位置O 距地面2米,点P 从初始位置A 出发(与O 处于同一水平位置),随着摩天轮逆时针转动5πα=后,相对于地面的高度H 为多少?当3,4παπα==呢?当旋转任意角α时,H 又如何用α表示呢?设计意图:让学生清楚要用函数表示圆周运动的关键是把握圆周上点的坐标与相应角的数量关系,而研究往往从最熟悉、最简单的情形出发,在任意角是锐角的情形下,学生容易由数想形,构造直角三角形,并进一步由“特殊到一般”来猜想当锐角推广到任意角时结论也成立。
第二课时三角函数线及其应用[提出问题]在平面直角坐标系中,任意角α的终边与单位圆交于点P,过P作PM⊥x轴,过A(1,0)作AT⊥x轴,交终边或其反向延长线于点T.问题1:根据上面的叙述画出α分别取135°,30°,225°和-60°时的图形.提示:问题2:由上面的图形结合三角函数定义,可以得到sin α,cos α,tan α与MP,OM,AT的关系吗?提示:可以,|sin α|=|MP|,|cos α|=|OM|,|tan α|=|AT|.[导入新知]1.有向线段带有方向的线段叫做有向线段.2.三角函数线三角函数线的四个注意点(1)位置:三条有向线段中有两条在单位圆内,一条在单位圆外;(2)方向:正弦线由垂足指向α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与α的终边(或其延长线)的交点;(3)正负:三条有向线段中与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值; (4)书写:有向线段的始点字母在前,终点字母在后.[例1] 作出3π4的正弦线、余弦线和正切线.[解] 角3π4的终边(如图)与单位圆的交点为P .作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT ,与3π4的终边的反向延长线交于点T ,则3π4的正弦线为MP ,余弦线为OM ,正切线为AT .[类题通法] 三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT .[活学活用]作出-9π4的正弦线、余弦线和正切线.解:如图所示,-9π4的正弦线为MP ,余弦线为OM ,正切线为AT .[例2] 分别比较sin 3与sin 5;cos 3与cos 5;tan 3与tan π5的大小.[解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边作2π3的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin2π3=MP ,cos 2π3=OM ,tan 2π3=AT .同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan4π5=AT ′.由图形可知,MP >M ′P ′,符号相同,则sin2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5;AT <AT ′,符号相同,则tan 2π3<tan 4π5.[类题通法]利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.[活学活用] 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?解:如图所示,当π4<α<π2时,角α的正弦线为MP ,余弦线为OM ,正切线为AT ,显然在长度上,AT >MP >OM ;当π2<α<3π4时,角α的正弦线为M ′P ′,余弦线为OM ′,正切线为AT ′,显然在长度上,AT ′>M ′P ′>OM ′.[例3] (1)sin α<-12;(2)cos α>32.[解] (1)如图①,过点⎝ ⎛⎭⎪⎫0,-12作x 轴的平行线交单位圆于P ,P ′两点,则sin ∠xOP=sin ∠xOP ′=-12,∠xOP =11π6,∠xOP ′=7π6,故α的范围是⎩⎨⎧α⎪⎪⎪⎭⎬⎫7π6+2k π<α<11π6+2k π,k ∈Z .(2)如图②,过点⎝⎛⎭⎪⎫32,0作x 轴的垂线与单位圆交于P ,P ′两点,则cos ∠xOP =cos ∠xOP ′=32,∠xOP =π6,∠xOP ′=-π6, 故α的范围是⎩⎨⎧α⎪⎪⎪⎭⎬⎫-π6+2k π<α<π6+2k π,k ∈Z .[类题通法]利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.[活学活用]利用三角函数线求满足tan α≥33的角α的范围. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪k ²π+π6≤α<k ²π+π2,k ∈Z2.三角函数线的概念[典例] 已知角α的正弦线是长度为单位长度的有向线段,那么角α的终边在( ) A .y 轴的非负半轴上 B .y 轴的非正半轴上 C .x 轴上 D .y 轴上[解析] 由题意可知,sin α=±1,故角α的终边在y 轴上. [答案] D [易错防范]1.本题易错误地认为正弦线是长度为单位长度的有向线段时,sin α=1,从而误选A. 2.若搞错正弦线和余弦线的位置,则易错选C.3.解决此类问题要正确理解有向线段的概念,既要把握好有向线段是带有方向的线段,有正也有负,同时也要把握准正弦线和余弦线的位置.[成功破障]已知角α的正切线是长度为单位长度的有向线段,那么角α的终边在( ) A .直线y =x 上 B .直线y =-x 上C .直线y =x 上或直线y =-x 上D .x 轴上或y 轴上 答案:C[随堂即时演练]1.已知角α的正弦线和余弦线是符号相反、长度相等的有向线段,则α的终边在( ) A .第一象限的角平分线上B .第四象限的角平分线上C .第二、四象限的角平分线上D .第一、三象限的角平分线上 答案:C2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论中正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM答案:D3.若角α的余弦线长度为0,则它的正弦线的长度为________. 答案:14.用三角函数线比较sin 1与cos 1的大小,结果是________. 答案:sin 1>cos 15.若θ∈⎝⎛⎭⎪⎫0,π2,利用单位圆证明:sin θ+cos θ>1.证明:如图所示,设角θ的终边交单位圆于点P ,作PM ⊥x 轴于点M .因为sin θ=MP =|MP |,cos θ=OM =|OM |,所以sin θ+cos θ=|MP |+|OM |>|OP |,而|OP |=1,所以sin θ+cos θ>1.[课时达标检测]一、选择题1.角π5和角6π5有相同的( )A .正弦线B .余弦线C .正切线D .不能确定答案:C2.已知α的余弦线是单位长度的有向线段,那么α的终边在( ) A .x 轴上 B .y 轴上 C .直线y =x 上 D .以上都不对 答案:A3.若π4<θ<π2,则sin θ,cos θ,tan θ的大小关系是( )A .tan θ<cos θ<sin θB .sin θ<tan θ<cos θC .cos θ<tan θ<sin θD .cos θ<sin θ<tan θ答案:D4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <c C .c <a <b D .a <c <b答案:C5.使sin x ≤cos x 成立的x 的一个变化区间是( )A.⎣⎢⎡⎦⎥⎤-3π4,π4B.⎣⎢⎡⎦⎥⎤-π2,π2C.⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]答案:A 二、填空题6.利用单位圆,可得满足sin α<22,且α∈(0,π)的α的集合为________. 答案:⎝ ⎛⎭⎪⎫0,π4∪⎝ ⎛⎭⎪⎫3π4,π 7.若0<α<2π,且sin α<32,cos α>12.利用三角函数线,得到α的取值范围是________. 答案:⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π8.若θ∈⎝⎛⎭⎪⎫3π4,3π2,则sin θ的取值范围是________.答案:⎝⎛⎭⎪⎫-1,22 三、解答题9.试作出角α=7π6的正弦线、余弦线和正切线.试作出角α=7π6的正弦线、余弦线和正切线.解:如图:α=7π6的余弦线、正弦线和正切线分别为OM ,MP 和AT .10.利用单位圆中的三角函数线,求满足⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0的x 的取值范围.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,得⎩⎪⎨⎪⎧sin x ≥0,cos x >12.如图所示,由三角函数线可得 ⎩⎪⎨⎪⎧2k π≤x ≤2k π+π k ∈Z ,2k π-π3<x <2k π+π3 k ∈Z .此交集为图形中的阴影重叠部分,即2k π≤x <2k π+π3(k ∈Z).故x 的取值范围为⎩⎨⎧⎭⎬⎫x |2k π≤x <2k π+π3,k ∈Z .11.试利用单位圆中的三角函数线证明:当0<α<π2时,sinα<α<tan α.证明:如图,单位圆与α的终边OP 相交于P 点,过P 作PM ⊥x 轴,垂足为M ,连接AP ,过单位圆与x 轴正半轴的交点A 作AT ⊥x 轴交OP 于点T ,则sin α=MP ,α=AP ,tan α=AT ,由S 扇形OAP <S △OAT,即12OA ²AP <12OA ²AT ,所以AP <AT .又MP <PA <AP ,因此MP <AP <AT ,即sin α<α<tanα.。
1.2.1 《任意角的三角函数》教学设计 课 题 1.2.1 任意角的三角函数 课 型 新授课 核心素养 培养学生的逻辑推理能力和数学运算能力重点难点 三角函数的定义;任意角的三角函数在各象限的符号;教法学法 启发式教学,自主探究,合作交流教学过程一、导入课题问题提出:如果旋转轮的半径为r ,圆心O 到地面的高度为h ,主持人的右脚与圆心的交点记为A ,当OA 与水平线所成的角为α时,你能求出点A 到地面的高度吗?二、自主学习1、如图:在ABC Rt ∆中,A sin = A cos = A tan =2、前面我们学习了任意角,如果将A 与原点重合,AC 边与x 轴的非负半轴重合,B 的坐标为 ?设B 到原点的距离为r ,即______==r OB (用B 的坐标表示),你能用B 的坐标表示角A 的三角函数吗?_____tan _____,cos _____,sin ===A A A问题:在OB 上移动B 点,角A 的三角函数值会不会改变?3、如果将A 终边上的点B 特殊为让它到原点的距离为单位长度“1”,你能说出点B 的轨迹吗?三、新知点拨单位圆:以 圆心, 为半径的圆叫单位圆设α是一个任意角,它的终边与单位圆交于点中),(y x P ,那么:(1)y 叫做α的正弦,即αsin =y(2)x 叫做α的正弦,即αsin =x(3)x y 叫做α的正切,即αtan =xy 我们把 、 、 统称为三角函数。
四、互动探究 根据上面三角函数的定义,填出下表中三角函数的定义域及各三角函数在每个象限的符号:三角函数 定义域αsinαcosαtanαsin αcos αtan五、新知应用例1:求π35的正弦、余弦和正切值学以致用1:求π47的三角函数值。
例2:已知角α的终边经过点P (-3,-4),求角α的正弦、余弦、正切值.一般地,α是一个任意角,)(y x P ,为α终边上的任意一个点,r 为点P 到原点的距离,则: αsin = αcos = αtan = 其中:r =学以致用2:已知角α的终边过点P (-1,2),则sin α+cos α等于例3 求证:当下列不等式组成立时,角α为第三象限角。
4-1.2.1 任意角的三角函数(二)方案二:【学情分析】:(适用于平行班)三角函数是中学数学的重要内容之一,而三角函数线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出三角函数公式,求解三角函数不等式,探索三角函数的图像和性质,……可以说,三角函数线是研究三角函数的有利工具.学习本节前,学生已经掌握任意角三角函数的定义,三角函数值在各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.【教学目标】:(1)复习三角函数的定义、定义域与值域、符号、及诱导公式;(2)掌握利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,对三角函数的定义域、值域有更深的理解;(3)能利用三角函数线解决一些简单的三角函数问题,如利用三角函数线比较两个同名三角函数值的大小及表示角的范围;(4)培养学生善于观察、勇于探索的数学能力,学习转化思想,提高解题能力.【教学重点】:三角函数线的作法及其简单应用.【教学难点】:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来.【教学突破点】:通过对有向线段的复习,分解教学难点,同时引导学生动手画图操作,通过观察、分析,获得新知.【教法、学法设计】:(1)教法选择:“引出问题、温故知新、分解难点、引导讨论、巩固应用”——启发式教学(2)学法选择:类比,达到知识迁移;动手实验,以理解知识;分析讨论,学会应用知识.【课前准备】:课件教学环节教学活动设计意图一、复习回顾1、三角函数的定义;2、三角函数在各象限角的符号;3、三角函数在轴上角的值;4、诱导公式(一):终边相同的角的同一三角函数的值相等;要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.巩固上节课内容,并为本节课的学习作铺垫二、设置疑问,点明主题前面我们学习了角的弧度制,角α弧度数的绝对值rl=α,其中l是以角α作为圆心角时所对弧的长,r是圆的半径.特别地, 当r =1时,l=α,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式.起点,正弦线和正切线以此线段与坐标轴的公共点为起点,其中点A为定点(1,0).六、巩固训练,提高能力例1 作出下列各角的正弦线、余弦线、正切线:(1)3π;(2)136π-.学生先做,然后投影展示一个学生的作品,并强调三角函数线的位置和方向.解:图略.例2 利用三角函数线比较下列各组数的大小:(1)32sinπ与54sinπ;(2) cos32π与cos54π; (3) tan32π与tan54π解:如图可知:32sinπ>54sinπcos32π>cos54πtan32π< tan54π学生先做,教师引导学生利用三角函数线解题,并投影展示一个学生作品,强调数形结合思想.例3利用三角函数线画出适合下列条件的角α的终边:(1)21sin=α;(2)21cos-=α;(3)1tan=α.共同分析(1),设角α的终边与单位圆交于P(yx,),则αsin=y,所以要作出满足21sin=α的角的终边,只要在单位圆上找出纵坐标为21的巩固练习,准确掌握三角函数线的作法.巩固新知,提高运用知识的能力体会三角函数线的用处和实质.逆向思维,灵活运用三角函数线,并为利用三角函数线求解三角函数不等式(组)作铺垫.oBAT2T1P2 P1M2M1。
高中数学第一章三角函数1.2.1 任意角的三角函数教案新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.2.1 任意角的三角函数教案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.2.1 任意角的三角函数教案新人教A版必修4的全部内容。
1.2。
1任意角的三角函数【教学目标】(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 【教学重难点】重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一)。
难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。
【教学过程】 一、【创设情境】提问:锐角O 的正弦、余弦、正切怎样表示? 借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那 么它的终边在第一象限。
在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP b OP r α==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP的长1r=的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sinMPbOPα==; cosOMaOPα==; tanMP bOM aα==。