高中数学说题方案-2019全国卷I文科19题
- 格式:docx
- 大小:392.67 KB
- 文档页数:5
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A . B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!绝密★启用前2019年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
个人精心创作,质量一流的,希望能获取您的必定。
感谢!编写页眉,选中水印,点击删除,即可批量删除水印。
2019年一般高等学校招生全国一致考试文科数学 注意事项:1.答卷前,考生务必然自己的姓名、考生号等填写在答题卡和试卷指定地址上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共 12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.)1.已知会集A 0,2 ,B2, 1,0,1,2,则A B ( )A .0,2B .1,2C .0D .2,1,0,1,21 i,则z()2.设z2i1 iA .0B .1C .1D .223.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地认识该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比率.获取以下饼图:则下面结论中不正确的选项是( ) .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和高出了经济收入的一半x2y22,0,则C的离心率()4.已知椭圆C:1的一个焦点为a24A.1B.1C.2D.22 32231/12个人精心创作,质量一流的,希望能获取您的必定。
感谢!编写页眉,选中水印,点击删除,即可批量删除水印。
5.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122B.12C.8 2D.106.设函数 f x x3 a 1x2ax.若f x为奇函数,则曲线y f x在点0,0处的切线方程为()A.y2x B.y x C.y 2x D.y x7.在△ABC中,AD为BC边上的中线,E为AD的中点,则EB()A.3AB1AC B.1AB3AC 4444C.3AB1AC D.1AB3AC 44448.已知函数fx2cos2x sin2x2,则()A.f x的最小正周期为,最大值为3B.f x的最小正周期为,最大值为4C.f x的最小正周期为2,最大值为3D.f x的最小正周期为2,最大值为49.某圆柱的高为2,底面周长为16,其三视图以下列图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.2 5C.3D.210.在长方体ABCD A1B1C1D1中,AB BC 2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为()A.8B.62C.82D.832/12个人精心创作,质量一流的,希望能获取您的必定。
2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2 B .3 C .2 D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm 5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°=A .-23B .-3C .23D .38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3 C .2π3 D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A + C .A =112A + D .A =112A+ 10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cma b c <<a c b <<c a b <<b c a <<5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试(全国 I 卷)文科数学1. 设312iz i-=+,则z =( ) A.2D.1 答案: C解析: 因为3(3)(12)1712(12)(12)5i i i iz i i i ----===++-所以z ==2. 已知集合}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,7}63{2,,,=B ,则=A C B U ( ) A. }6,1{ B.}7,1{C.}7,6{D. }7,6,1{ 答案:C解析:}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U ,又 7}63{2,,,=B ,则7}{6,=A C B U ,故选C.3.已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A.a b c << B.a c b << C.c a b <<D.b c a << 答案: B解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 190 答案: B解析: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DFAD,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B. 5. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A.B.C.D.答案: D解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A.又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ). A.8号学生B.200号学生C.616号学生D.815号学生 答案: C解答:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.7. tan 255︒=( )A.2-B.2-C.2D.2 答案: D解析:因为tan 255tan(18075)tan 75︒=︒+︒=︒tan 45tan 30tan(4530)1tan 45tan 30︒+︒=︒+︒=-︒⋅︒化简可得tan 2552︒=+8. 已知非零向量a ,b 满足||2||b a =,且b b a⊥-)(,则a 与b 的夹角为( )A.6πB.3πC.32πD.65π答案: B解答:||2||b a =,且b b a ⊥-)(,∴0)(=⋅-b b a ,有0||2=-⋅b b a ,设a 与b 的夹角为θ,则有0||cos ||||2=-⋅b b a θ,即0||c o s ||222=-b b θ,0)1cos 2(||2=-θb , 0||≠b ,∴21cos =θ,3πθ=,故a 与b的夹角为3π,选B . 9. 右图是求112+12+2的程序框图,图中空白框中应填入( )A.12A A =+ B.12A A =+C.112A A =+D.112A A=+答案: A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件. 10.双曲线)0,0(12222>>=-b a by a x C :的一条渐近线的倾斜角为︒130,则C 的离心率为( )A.︒40sin 2B.︒40cos 2C.︒50sin 1D.︒50cos 1 答案: D解答: 根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 11. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知s i n s i n 4s i n a A b B c C-=,1cos 4A =-,则bc=( )A. 6B. 5C. 4D. 3答案: A解答:由正弦定理可得到:222sin sin 4sin 4a A b B c C a b c -=⇒-=,即2224a c b =+,又由余弦定理可得到:2221cos 24b c a A bc +-==-,于是可得到6b c =12. 已知椭圆C 的焦点坐标为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( )A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=答案: B解答:由222AF F B =,1AB BF =,设2F B x =,则22AF x =,13BF x =,根据椭圆的定义21212F B BF AF AF a +=+=,所以12AF x =,因此点A 即为椭圆的下顶点,因为222AF F B =,1c =所以点B 坐标为3(,)22b ,将坐标代入椭圆方程得291144a +=,解得223,2a b ==,故答案选B.13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 答案:3y x =解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线在点(0,0)处的切线方程的斜率3k =,∴切线方程为3y x =.14. 记n S 为等比数列{}n a 的前n 项和,若11a =,334S =,则4S = . 答案:58解析:11a =,312334S a a a =++=设等比数列公比为q ∴211134a a q a q ++=∴12q =-所以4S =5815.函数3()sin(2)3cos 2f x x x π=+-的最小值为___________. 答案: 4- 解答:23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+, 因为cos [1,1]x ∈-,知当cos 1x =时()f x 取最小值, 则3()sin(2)3cos 2f x x x π=+-的最小值为4-. 16.已知90ACB ∠=︒,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的,那么P 到平面ABC 的距离为 . 答案:解答:如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ∆中,由2,PC PF ==1CF =,同理在Rt PCE ∆中可得出1CE =,结合90ACB ∠=︒,,OE CB OF CA ⊥⊥可得出1O E O F ==,OC =,PO ==17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1) (2) 能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc a b c d a c b d κ-=++++(1)男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P == (2) 有95%的把握认为男、女顾客对该商场服务的评价有差异.解答:(1) 男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P ==. (2) 22100(40201030) 4.762(4010)(3020)(4030)(1020)κ⨯-⨯==++++ 4.762 3.841>有95%的把握认为男、女顾客对该商场服务的评价有差异.18.记n S 为等差数列{}n a 的前n 项和,已知59a S -=; (1)若43=a ,求{}n a 的通项公式;(2)若01>a ,求使得n n a S ≥的n 的取值范围. 答案:(1)102+-=n a n(2){}N n n n ∈≤≤,101 解答:(1)由59a S -=结合591992)(9a a a S =+=可得05=a ,联立43=a 得2-=d ,所以102)3(3+-=-+=n d n a a n(2)由59a S -=可得d a 41-=,故d n a n )5(-=,2)9(dn n S n -=.由01>a 知0<d ,故n n a S ≥等价于010112≤+-n n ,解得101≤≤n ,所以n 的取值范围是{}N n n n ∈≤≤,101 19. 如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离.答案:见解析 解答:(1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG .,,E M N 分别是11,,BC BB A D 的中点.于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由MN ⊂平面NGHM ,于是得到//MN 平面1C DE(2)E 为BC 中点,ABCD 为菱形且60BAD ∠=DE BC ∴⊥,又1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥1DE C E ∴⊥,又12,4AB AA ==,1DE C E ∴,设点C 到平面1C DE 的距离为h由11C C DE C DCE V V --=得1111143232h ⨯=⨯⨯解得h =所以点C 到平面1C DE 20. 已知函数()2sin cos f x x x x x =--,()f x '是()f x 的导数.(1)证明:()f x '在区间(0,)π存在唯一零点;(2)若[0,]x π∈时,()f x ax ≥,求a 的取值范围.答案:略解答:(1)由题意得()2cos [cos (sin )]1f x x x x x '=-+--cos sin 1x x x =+-令()cos sin 1g x x x x =+-,∴()cos g x x x '= 当(0,]2x π∈时,()0g x '>,()g x 单调递增,当(,)2x ππ∈时,()0g x '<,()g x 单调递减,∴()g x 的最大值为()122g ππ=-,又()2g π=-,(0)0g = ∴()()02g g ππ⋅<,即()()02f f ππ''⋅<, ∴()f x '在区间(0,)π存在唯一零点.(2)令()()F x f x ax =-2sin cos x x x x ax =---,∴()F x 'cos sin 1x x x =+-a -,由(1)知()f x '在(0,)π上先增后减,存在(,)2m ππ∈,使得()0f m '=,且(0)0f '=,()=1022f ππ'->,()2f π'=-, ∴()F x '在(0,)π上先增后减,(0)F a '=-,()122F a ππ'=--,()2F a π'=--, 当()02F π'≤时,()F x '在(0,)π上小于0,()F x 单调递减, 又(0)0F =,则()(0)0F x F ≤=不合题意, 当()02F π'>时,即102a π-->,12a π<-时, 若(0)0F '≥,()0F π'≤,()F x 在(0,)m 上单调递增,在(,)m π上单调递减,则(0)0()0F F π≥⎧⎨≥⎩解得0a ≤, 而(0)0()20F a F a π'=-≥⎧⎨'=--≤⎩解得20a -≤≤,故20a -≤≤, 若(0)0F '≥,()0F π'≥,()F x 在(0,)π上单调递增,且(0)0F =,故只需(0)0()20F a F a π'=-≥⎧⎨'=--≥⎩解得2a ≤-; 若(0)0F '≤,()0F π'≤,()F x 在(0,)2π上单调递增,且(0)0F =, 故存在(0,)2x π∈时,()(0)0F x F ≤=,不合题意, 综上所述,a 的取值范围为(],0-∞.21. 已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x += 相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.答案:(1)2或6;(2)见解析.解答:(1)∵M e 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上,设圆的方程为 222()()x a y a r -+-=,又4AB =,根据222AO MO r +=得2242a r +=;∵M e 与直线20x +=相切,∴2a r +=,联解方程得0,2a r ==或4,6a r ==.(2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+即22242x y x ++=+ 化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线,所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=. 22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ++=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.答案:略解答:(1)曲线C :由题意得22212111t x t t-==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x += 而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x +=(2)将曲线C 化成参数方程形式为则d==所以当362ππθ+=23.已知a,b,c为正数,且满足1=abc,证明:(1)222111cbacba++≤++;(2)24)()()(333≥+++++accbba.答案:(1)见解析;(2)见解析.解析:(1) abba222≥+,bccb222≥+,acac222≥+,∴acbcabcba222222222++≥++,即acbcabcba++≥++222,当且仅当cba==时取等号. 1=abc且a,b,c都为正数,∴cab1=,abc1=,bac1=,故222111cbacba++≤++.(2) 3333333)()()(3)()()(accbbaaccbba+++≥+++++,当且仅当333)()()(accbba+=+=+时等号成立,即cba==时等号成立.又))()((3)()()(33333accbbaaccbba+++=+++acbcab2223⋅⋅⨯≥abc42=,当且仅当cba==时等号成立, 1=abc,故2424)()()(33333=≥+++abcaccbba,即得24)()()(333≥+++++accbba.。
高中数学说题方案
正博高级中学 兰天柱
一、说题目标
通过本题的学习可以帮助学生更好地掌握基础知识并且发展几何思维,进而培养空间想象能力、逻辑推理能力以及计算能力。
二、说题重难点
1. 重点:掌握点到面距离的求法。
2. 难点:如何寻找点在平面内的射影。
三、试题考点
1. 基础知识:线面平行的证明方法,点到平面距离的求法。
2. 核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析为高中数学的核心素养,在教学中本题主要培养学生逻辑推理、直观想象、数学运算的数学核心素养.
3. 关键能力:要求学生会熟练掌握线面平行的常用证明方法,以及掌握多种方法求点到平面的距离。
四、说题过程 1、展示试题:
2019年高考文科数学 (全国I 卷)第19题
如图,直四棱柱1111ABCD A B C D -的底面是菱形,
14,2AA AB ==,60BAD ︒∠=,,E M N 分别是11,,BC BB A D 的
中点。
(1)证明://MN 平面1C DE ; (2)求点C 到平面1C DE 的距离.
第一问解法一:(线面平行的判定定理)
证明:连结,1,B C ME . 因为,M E 分别为1,BB BC 的中点
所以,1//ME B C 且
又因为N 为1A D 中点,所以,
由题设知11//A B CD 且11A B CD =可得11//B C A D . 故//ME ND 且ME ND = 因此四边形 MNDE 为平行四边形,又MN ⊄平面1C DE , 所以//MN 平面1C DE ................5分
第一问解法二:(面面平行的性质定理)
证明:连接111111,,,A C B D DC CD 交点分别为,O P ,连接
,,,,OM ON OP ME PE ,因为,O P 分别为1111,A C D C 中点,所
以,
即//OP ND 同解法一,可证//ME ND 所以//OP ME
所以四边形OPEM 是平行四边形 所以//OM PE
又因为,O N 分别为111,AC A D 的中点,所以1//ON DC 因为1,ON OM O PE DC P ⋂=⋂=
所以,平面//OMN 平面1C DE ,因为MN ⊂平面OMN 所以//MN 平面1C DE ................5分
第二问解法分析
定义法 转化法
等体积法
向量法 定义法求点到平面的距离的步骤是:一
作、二证,三计算。
用直接法求点
到平面的距离的,关键是确定点在平面上射影的位置。
转化是立体几何中最重要的数学思想方法,将所求的问题进行等价转化,则可轻松求解
利用同一个四面体的体积,求得顶点到底面的距离。
设p 是平面α的法向量,点A 是平面
α外一点,点B 是平面α内任意一点,则
点A 到平面α的距离为
11
2
ME B C
=11
2
ND A D =11
//2
OP A D P AB d P
•=
第二问解法一(定义法)
证明:过C 作1C E 的垂线,垂足为H . 由已知可得11,DE BC DE C C ⊥⊥ 所以DE ⊥平面1C CE ,故DE CH ⊥. 从而CH ⊥平面1C DE .
故CH 的长即为C 到平面1C DE 的距离..........9分
由已知可得11,4CE C C ==,所以,117C E =,故.
从而点C 到平面1C DE 的距离为 ...........12分
第二问解法二(等体积法) 解:设C 点到平面1C DE 的距离为h .
由题可知,1CC 是以CDE 为底的三棱锥1C CDE -的高,
因为1
1
C CDE C C DE V V --=,所以, .......9分 在CDE 中 2,1,60C
D C
E DCE ︒==∠=,
所以, 在 中 因为 所以, 所以 ...........12分
第二问解法三(向量法)
解:建立如图所示的空间直角坐标系,由已知条件,经计算可知坐标点()()()10,0,0,(0,3,0),1,3,4,1,3,0
D E C C -- 从而,
()(
)()10,3,0,1,
3,4,1,3,0DE DC DC ==-=-,
设平面1
C DE 任
意一个法向量
则1,n DE n DC ⊥⊥
即 代入已知 ()
4,0,1n =
取04x =,则01z =00y =,故()4,0,1n = .......9分
所以点C 到平面1C DE 的距离为 .......12分
41717CH =417
17
1113
3
1
h S CC S C DE CDE
⋅=⋅⋅1321sin 6022
CDE
S
=⨯⨯⨯=115131722
C DE S =⨯⨯=113,25=17
DE C D C E ==,1C DE 222
11C E DE C D +=1134417217512CDE C DE
CC S h S ⨯
⋅===()000,,n x y z =000030340y x y z ⎧=⎪⎨-++=⎪⎩10
0n DE n DC ⎧=⎪⎨
=⎪⎩1430014171717DC n d n -⨯+⨯+⨯===
五、拓展变式 2、展示试题:
2019年高考文科数学 (全国I 卷)第19题
如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,
60BAD ︒∠=,,E M N 分别是11,,BC BB A D 的中点。
(1)证明://MN 平面1C DE ; (2)求点D 到平面1C DE 的距离.
变式题解法(转化法)
解:由(1)知//MN 平面1C DE ;所以
点N 到平面1C DE 的距离等于直线MN 到平面1C DE 的距离, 也等于点M 到平面1C DE 的距离。
过点M 作1C E 的垂线,垂足为Q ,连接1,ME MC .
在1MEC 中,115,22,17ME MC EC ===
.......9 分
又因为 ,所以 点N 到平面1C DE 的距离等于
.......12分
六、试题的内容和结构
222111
1110cos 210
310sin 10
ME MC EC EMC ME MC EMC +-∠==-⋅⋅∠=617
17MQ =
1112EMC S EC MQ =⋅⋅617
17
近几年,高考对立体几何考察难度降低,更加注重基本方法和理论考察,所以,教学中要及时检验学生对基础知识,基本证明方法的熟练性程度。
面面平行和垂直都要涉及线线和线面平行和垂直的证明,线面距、面面距等都可转化为点到平面的距离来求解。
所以,高考对空间距离的考查主要围绕线面平行和垂直,以及求点到平面的距离进行问题设置。
2019年高考文科数学 (全国II 卷)第17题
如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱
1AA 上,1BE EC ⊥.
(1)证明:BE ⊥平面11EB C ;
(2)若1,3AE A E AB ==,求四棱锥11E BB C C -的体积.
2018年高考文科数学 (全国II 卷)第17题
在三棱锥P ABC -中22AB BC ==,4PA PB PC AC ====,O 为AC 的中间.
(1) 证明:PO ⊥平面ABC ;
(2) 若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.
八、反思
在教学中,不能就题论题,对涉及知识、技能面广的题目,要力争“一题多解”,“一题多练”,“一题多变”,对相关知识进行有效的拓展、迁移。
对该知识点联系到的相同、相似或相关的知识进行比较、鉴别和再认识,以培养学生举一反三,融会贯通的能力。
这样才能让学生达到做一题,学一法,会一类,通一片的目的,无论是对于学生知识的掌握,还是对学生认识水平的升华都会起到不可估量的作用。
教学价值 立意与创新。