常微分方程第四讲
- 格式:ppt
- 大小:955.00 KB
- 文档页数:35
4微分⽅程的解及解的稳定性第四讲微分⽅程解的稳定性上⼀讲,我们利⽤最⼤值原理讨论了新古典经济增长模型,得到了两个⽅程,⼀个是状态变量的转移⽅程,另⼀个是欧拉⽅程。
这两个⽅程构成了包含状态变量和控制变量的⼆元⼀次⽅程组。
[]δα--=-)()()()()(1t k t c t k t k t k []δραα--=-1)()()(t k t c t c 这个⽅程组是⼀个⾮线性微分⽅程组,⼀般情况下,⾮线性⽅程组不存在解析解,即⽅程组的解不能⽤初等函数来表⽰。
因此,他们的性质需要借助其他⽅法来了解。
微分⽅程:变量为导数的⽅程叫做微分⽅程。
常微分⽅程:只有⼀个⾃变量的微分⽅程叫做常微分⽅程。
偏微分⽅程:有两个或两个以上⾃变量的⽅程叫做偏微分⽅程。
微分⽅程的阶:微分⽅程中变量的导数最⾼阶叫做⽅程的阶。
线性⽅程:⽅程的形式是线性的。
例如,⽅程0)()()()(321=+++t x t y a t y a t y a是⼀个⼆阶线性常微分⽅程。
⼜如,索洛-斯旺模型的基本⽅程是⼀个⾮线性⽅程:())()()(t k t k s t k-=δα再如,拉姆齐模型的动态是下列微分⽅程组的解:[]δα--=-)()()()()(1t k t c t k t k t k []δραα--=-1)()()(t k t c t c ⼀、⼀阶微分⽅程⼀阶微分⽅程可以⽤下⾯的⽅程表⽰ ),(y x f dx dy= (1.1) 其中,函数R R R f →?:是连续可微函数。
最简单的微分⽅程是)(x f dxdy= (1.2) 它的解可表⽰为不定积分:+=c dx x f y )( (1.3)其中,?dx x f x F )()(=表⽰任意⼀个被被积函数,c 为任意常数。
当然,我们也可以确定任意⼀个被积函数,例如,令??xdt t f dx x f x F 0)()()(==, 则(2.2)的不定积分可表⽰为+xc dt t f y 0)(=这时,不定积分仍然代表⽆穷多条曲线,如果给出初始条件0)0(y y =, 则,上⾯微分⽅程的解就是+xy dt t f y 00)(= (1.4)⼆、常见的⼀阶微分⽅程解法1.⼀阶线性微分⽅程⼀阶线性微分⽅程的⼀般形式为)()(x g y x p dx dy=+ (2.1) 边界条件(即初始条件)0)0(y y =。
第四讲 微分方程考纲要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列微分方程:()()n y f x =,(,)y f x y '''=和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.问题1 何谓微分方程、微分方程的阶、解、通解、初始条件、特解、初值问题和微分方程的积分曲线?答 微分方程:含有自变量、未知函数、未知函数的导数的等式. 微分方程的阶(order):微分方程中出现的未知函数的导数的最高阶数.微分方程的解:满足微分方程的函数.微分方程的通解:微分方程的解中含有任意常数,且独立的任意常数的个数等于微分方程的阶数.初始条件:确定微分方程通解中任意常数的值的条件. 微分方程的特解:确定了通解中任意常数的值后所得到的解. 初值问题(Cauchy 问题):微分方程连同初始条件. 一阶微分方程初值问题:(,,)0F x y y '=,00()y x y =.二阶微分方程初值问题:(,,,)0F x y y y '''=,00()y x y =,00()y x y ''=. 微分方程的积分曲线:微分方程的解的图形(通解的图形是一族曲线).问题2 如何求解一阶微分方程?答 一阶微分方程的一般形式是:(,,)0F x y y '=,解出y ':(,)dyf x y dx=,考纲要求掌握变量可分离的微分方程、一阶线性微分方程、.齐次微分方程、伯努利方程的解法.1可分离变量的微分方程:()()dyg x h y dx= 解法 分离变量:()()dy g x dx h y =;两端积分:()()dyg x dx h y =⎰⎰. 2 齐次微分方程:dy y dx x ϕ⎛⎫= ⎪⎝⎭解法 令y u x =,则y xu =,dy du u x dx dx =+,代入方程,得()duu x u dxϕ+=并求解.3 一阶线性微分方程:()()dyP x y Q x dx+= 若()0Q x ≡,则称它是齐次的,否则,称它为非齐次的. 解法(常数变易法) 先解对应齐次线性微分方程()0dyP x y dx+=,求得通解()P x dx y Ce -⎰=; 再令非齐次线性微分方程的解为()()P x dxy C x e -⎰=,代入方程求出()C x .通解公式:()()(())P x dx P x dxy e Q x e dx C -⎰⎰=+⎰ 解的结构:一阶非齐次线性微分方程的通解=对应的齐次线性微分方程的通解+非齐次线性微分方程的特解.4 伯努利方程:()()(0,1)dyP x y Q x y dxαα+=≠.(与一阶线性微分方程比较)解法 方程两边乘以y α-,再令1z y α-=,将方程化为一阶线性微分方程.求解微分方程的步骤是:判断方程的类型并用相应的方法求解. 例 求解下列一阶方程:1.y y x y x +-='22 【C x xy x +=>ln arcsin ,0】 2.)ln (ln x y y y x -=' 【1+=Cx xe y 】3.e e y y x dxdyxy2)(,22=+= 【2ln 2+=x x y 】 4.1)0(,0)cos 2()1(2==-+-y dx x xy dy x 【11sin 2--=x x y 】5.02)(3=--ydx dy y x 【y C y x +-=351】6.ln dy y dx y x=- 7.0)2(2=+-xdy dx y xy 【Cx xy +=2】 问题3 如何求解可降阶的二阶微分方程?答 二阶微分方程(,,,)0F x y y y '''=,解出(,,)y f x y y '''=,考纲要求掌握下列三种类型可降阶方程的解法:1. ()y f x ''=、()()n y f x =型的微分方程 特点:右端仅含x . 解法:积分两次.2. (,)y f x y '''=型的微分方程 特点:右端不显含未知函数y .解法:换元,化为一阶方程求解. 步骤如下: ⑴令y p '=,则dpy p dx'''==,方程化为(,)p f x p '=(这是关于变量x ,p 的一阶方程);⑵解出p ;⑶再由y p '=解出y . 3.(,)y f y y '''=型的微分方程 特点:右端不显含x .解法:换元,化为一阶方程求解. 步骤如下: ⑴令y p '=,则dp dp dy dp y p dx dy dx dy ''===,方程化为(,)dpp f y p dy=(这是关于变量y ,p 的一阶方程);⑵解出p ;⑶再由y p '=解出y . 例1. 解方程20yy y '''-=.【12C x y C e =】2.求微分方程2()y x y y ''''+=满足初始条件(1)(1)1y y '==的特解.3.求初值问题221,(1)1,(1)1yy y y y ''''=+==-的解. 解 令y p '=,则dp dp dy dpy p dx dy dx dy''===, 方程化为221dp ypp dy =+,分离变量,得221pdp dy p y=+,两边积分,得 21ln(1)ln ln p y C +=+,即211p C y +=.将初始条件1,1,1x y y p '====-代入,得12C =,故212p y +=,解得p =p =.再解y '=dx =-,两边积分,得2x C =-+,将初始条件1,1x y ==代入,得22C =,2x =-,即21(45)2y x x =-+.注意 二阶可降阶方程求特解过程中,任意常数出现一个,确定一个,有利于下一步求解.问题4 叙述二阶线性微分方程解的性质、解的结构. 答 二阶线性微分方程的一般形式:()()()y P x y Q x y f x '''++= 若()0f x ≡,则称方程是齐次的,否则称方程是非齐次的. 1.线性微分方程解的性质⑴如果1y 与2y 是齐次方程()()0y P x y Q x y '''++=的两个解,则1122y C y C y =+是此齐次方程的解.⑵如果1y 与2y 是非齐次方程()()()y P x y Q x y f x '''++=的两个解,则12y y -是对应齐次方程()()0y P x y Q x y '''++=的解.⑶(解的叠加原理)设*k y 是线性方程()()()k y P x y Q x y f x '''++=的特解,则*1n k k y =∑是1()()()nk k y P x y Q x y f x ='''++=∑的特解.2线性微分方程解的结构定理1(齐次方程解的结构)如果1y 与2y 是齐次方程()()0y P x y Q x y '''++=的两个线性无关的特解,则1122y C y C y =+是此齐次方程的通解.定理2(非齐次方程解的结构)设*y 是非齐次方程()()()y P x y Q x y f x '''++=的一个特解,1122y C y C y =+是对应的齐次方程()()0y P x y Q x y '''++=的通解,则*1122y y C y C y =++是此非齐次方程的通解.例 设123,,y y y 是)()()(x f y x Q y x P y =+'+''的三个线性无关的解,则其通解为 .【1121231()()y C y y C y y +-+-】问题5 如何求解二阶常系数线性齐次方程0y py qy '''++=?答 先求出它的特征方程20r pr q ++=的两个根,再根据特征根的三种不同情形写出通解(见下表).特征方程20r pr q ++=的根 方程0y py qy '''++=的通解 两个不等实根12,r r 1212e e r x r x y C C =+两个相等实根12r r = 112()e r x y C C x =+两个共轭复根1,2r i αβ=± 12e [cos sin ]x y C x C x αββ=+ 问题6 如何求二阶常系数线性非齐次方程()y py qy f x '''++=的特解?答 考纲要求会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程,由非齐次方程解的结构,只要求出它的一个特解和对应的齐次方程的通解,而齐次方程的通解已经解决,关键是求它的一个特解.1.若()()e x m f x P x λ=,则令*()e k x m y x Q x λ=,其中0,12k λλλ⎧⎪=⎨⎪⎩不是特征根;,是单特征根;,是二重特征根.2.若()e [()cos ()sin ]x m l f x P x x P x x λωω=+,则令**e [()cos ()sin ]k x n n y x Q x x Q x x λωω=+,其中{}max ,n m l =,0,1i k i λωλω+⎧=⎨+⎩不是特征根;,是单特征根.将它们代入非齐次方程,求出多项式中的待定系数,从而求出特解. 例1.求022=-'-''x e y y 满足1)0(,1)0(='=y y 的解.【x e x y 2)21(4143++=】 2.求x x y y cos +=+''的通解.【x x x x C x C y sin 21sin cos 21+++=】3.x x y y sin 12++=+''的特解形式可设为 . 问题7 如何求解欧拉方程2()x y pxy qy f x '''++=? 答 令t x e =,则dy xy Dy dt'==, 222(1)d y dyx y D D y dt dt''=-=-,欧拉方程化为二阶常系数线性方程.例 欧拉方程)0(0242>=+'+''x y y x y x 的通解为 .【221x C x C y +=】 问题8 如何求解含变限积分的方程(积分方程)?答 积分方程通过求导可化为微分方程,这种方程通常含有初始条件(令积分上限等于积分下限).例1.设⎰--=xdt t f t x x x f 0)()(sin )(,)(x f 为连续函数,求)(x f . 解 00()sin ()()xxf x x x f t dt tf t dt =-+⎰⎰,⑴ 两边对求导,得()cos ()()()cos ()xxf x x f t dt xf x xf x x f t dt '=--+=-⎰⎰,⑵两边再对求导,得()sin ()f x x f x ''=--,故)(x f 满足微分方程sin y y x ''+=-,由⑴,⑵得初始条件(0)0,(0)1f f '==.2.函数)(x f 在[0,)+∞上可导,(0)1f =,且满足等式01()()()01xf x f x f t dt x '+-=+⎰, 求()f x '.【e ()1xf x x -'=-+】解 由01()()()01xf x f x f t dt x '+-=+⎰,得 ()1f x '=-,(1)()(1)()()0xx f x x f x f t dt '+++-=⎰,()(1)()()(1)()()0f x x f x f x x f x f x ''''+++++-=, (1)()(2)()0x f x x f x '''+++=,令()f x p '=,(1)(2)0dpx x p dx+++=,21dp x dx p x +=-+, ln ln(1)ln p x x C =--++,即e ()1xC p f x x -'==+, 又()1f x '=-,得1C =-,故e ()1xf x x -'=-+.问题9 如何用微分方程求解应用问题? 答 关键是建立微分方程(包括初始条件). 例题3 应用题1.设)(x f y =是第一象限连接)0,1(),1,0(B A 的一段连续曲线,),(y x M 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点,若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求)(x f 的表达式.【2)1()(-=x x f 】2.设位于第一象限的曲线()y f x =过点1)22,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.⑴求曲线()y f x =的方程;(2221x y +=)⑵已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示()y f x =的弧长s .【4l 】 解 ⑴曲线()y f x =在点(,)P x y 处的法线方程为1()Y y X x y -=--', 令0X = ,得x Y y y =+',故点Q 的坐标为(0,)x y y +'. 由题设知,0xy y y ++=',即20xdx ydy +=,解得222x y C +=,将1)22代入上式,得1C =,故曲线()y f x =的方程为2221x y +=. ⑵曲线sin y x =在[0,]π上的弧长2022l πππ-===⎰⎰⎰,()y f x =的参数方程为cos ,,2x y θθ=⎧⎪⎨=⎪⎩弧长s θ==⎰.4===⎰. 3.设)(x f 在[1,)+∞上连续,若由曲线()y f x =,直线1,(1)x x t t ==>与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体体积为2()[()(1)]3V t t f t f π=-,求()y f x =所满足的微分方程,并求该微分方程满足条件229x y ==的解.【2232x y y xy '=-;3(1)1xy x x=≥+】 4.现有一质量为9000kg 的飞机,着陆的水平速度为700km/h 经测试,飞机所受的总阻力与飞机的速度成正比(比例系数为6100.6⨯=k ),问从着陆点算起,飞机滑行的最长距离是多少?【1.05km 】解 【利用22dv d sF ma m m dt dt===建立方程,关键是受力分析】质量9000kg m =,水平速度()v v t =,(0)700km/h v =,飞机所受的总阻力f kv =-,依题意dv kv mdt -=,dv k dt v m =-,两边积分,得ln ln kv t C m=-+,即ekt mv C -=,将(0)700v =代入上式,得700C =,故700ekt mv -=,飞机滑行的最长距离000700()700e e 1.05k k t t mmms v t dt dt k+∞--+∞+∞===-=⎰⎰(km )问题10(数学三) 何谓差分、差分方程、差分方程的阶?如何求解一阶常系数线性差分方程?答 函数()t y f t =的差分1t t t y y y +∆=-.二阶差分2121()2t t t t t t t y y y y y y y +++∆=∆∆=∆-∆=-+. 差分方程:含有差分的等式. 差分方程的阶:下标差的最大值.第 58 页 求解一阶常系数线性差分方程1()t t y py f t +-=的步骤是:⑴先求对应齐次方程10t t y py +-=通解:求出特征方程0r p -=的根r p =,10t t y py +-=通解为t t y Cp =,⑵再求非齐次方程1()t t t m y py P t b +-=的特解*()k t t m y t Q t b =,0,1,b p k b p ≠⎧=⎨=⎩⑶非齐次方程1()t t t m y py P t b +-=通解为*t t t y Cp y =+,例1.设,2t y t =则差分=∆t y .【21t +】2.设t t a y =则差分=∆t y .【(1)t a a -】3.差分方程t t t t y y 21=-+的通解为 .【(2)2t t y C t =+-】4.差分方程1t t y y t +-=的通解为 .【(2)2t t y C t =+-】5.差分方程051021=-++t y y t t 的通解为 .【51(5)()126t t y C t =-+-】 6.某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以t W 表示第t 年的工资总额,则t W 满足的差分方程是 .【1 1.22t t W W +=+】希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。