夹逼定理与单调有界收敛定理
- 格式:pdf
- 大小:286.42 KB
- 文档页数:3
序列与级数的收敛性判断方法序列与级数是数学中重要的概念,它们在各个领域都有广泛的应用。
在研究序列与级数的性质时,我们常常需要判断它们的收敛性。
本文将介绍一些常用的判断序列与级数收敛性的方法。
一、序列的收敛性判断方法1. 有界性判断法对于一个序列来说,如果存在一个实数M,使得对于所有的正整数n,都有|an|≤M成立,那么称该序列是有界的。
有界序列一定是收敛的,而且收敛到的极限值就是序列的上确界或下确界。
2. 单调性判断法如果一个序列是单调递增的,并且有上界,那么它一定是收敛的。
同样地,如果一个序列是单调递减的,并且有下界,那么它也是收敛的。
这是因为有界单调序列必定存在极限。
3. 夹逼定理夹逼定理是判断序列收敛性的常用方法。
如果一个序列an满足对于所有的正整数n,都有bn≤an≤cn成立,并且序列bn和cn都收敛到同一个极限L,那么序列an也收敛到L。
4. 子序列的收敛性判断法如果一个序列的子序列收敛到某个极限L,那么该序列也收敛到L。
这是因为子序列是原序列的一部分,它们的收敛性是相互联系的。
二、级数的收敛性判断方法1. 正项级数的收敛性判断法如果一个级数的每一项都是非负数,并且序列{Sn}的部分和有上界,即存在一个实数M,使得对于所有的正整数n,都有Sn≤M成立,那么该级数是收敛的。
2. 比较判别法比较判别法是判断级数收敛性的常用方法。
如果一个级数的每一项都是非负数,并且存在另一个级数{bn},使得对于所有的正整数n,都有0≤an≤bn成立,那么如果级数{bn}收敛,那么级数{an}也收敛;如果级数{bn}发散,那么级数{an}也发散。
3. 比值判别法比值判别法是判断级数收敛性的重要方法。
对于一个级数an,如果存在正实数r,使得对于充分大的正整数n,都有|an+1/an|≤r成立,那么:- 如果0≤r<1,那么级数an是绝对收敛的;- 如果r>1,那么级数an是发散的;- 如果r=1,那么比值判别法无法确定级数an的收敛性。
高数极限证明方法在高等数学中,极限是一个十分重要的概念。
极限是函数趋于某个点或无穷时的一种特殊情况,它能够描述函数在该点的局部特性,如连续性、可导性等。
在证明高数极限的过程中,有一些基本的方法和原则可以被应用。
首先,我们先来看一下高数中的一些极限基本定理,它们是证明极限的基础:1.极限的唯一性定理:如果函数f(x)的极限存在,则该极限是唯一的。
也就是说,一个函数只能趋于一个极限。
2.有界收敛定理:如果一个函数在某个点a 的某个去心领域中有界且有极限,那么这个函数在该点必然有极限。
3.夹逼定理:如果对于所有的x∈X,都有g(x)≤f(x)≤h(x),并且g(x)和h(x)的极限都为L,那么f(x)的极限也为L。
4.极限的四则运算法则:如果函数f(x)和g(x)在点a处有极限,那么它们的和、差、积以及商(只要g(a)≠0)在该点也有极限,并且极限值等于对应的运算。
掌握了以上基本定理后,我们可以运用以下几种证明方法来证明高数中的极限问题:1.ε-δ方法:这是一种直接证明的方法,通过选取合适的δ,使得当0<|x-a|<δ时,相应地有|f(x) - L| <ε,其中ε为一个正数。
该方法常用于连续函数的极限证明。
2.夹逼法:当无法直接计算函数的极限时,我们可以使用夹逼法来确定极限值。
夹逼法的关键是找到两个已知函数,使得它们的极限都等于L,并且函数f(x)一直被这两个函数夹在中间。
3.断点法:当函数在某个点a处无极限时,我们可以考虑将该点变成一个极限点,并引入无穷大或无穷小,从而计算出极限。
此时,我们需要观察并分析函数在该点的性质,如左极限和右极限是否存在。
4.局部性质法:当要证明函数在某个点a处有极限时,我们可以先观察该点的局部性质,如连续性、可导性等,然后利用这些性质推导出极限。
总结一下,证明高数极限时,我们可以采用ε-δ方法来直接证明,也可以用夹逼法来确定极限值,还可以使用断点法来处理无极限的情况,最后可以利用函数的局部性质来推导极限。
2015考研高数:极限计算常用7种突围方法(一) 四则运算法则四则运算法则在极限中最直接的应用就是分解,即将复杂的函数分解为若干个相对简单的函数和、积和商,各自求出极限即可得到要求的极限。
但是在分解的时候要注意:(1)分解的各部分各自的极限都要存在;(2)满足相应四则运算法则,(分母不能为0)。
四则运算的另外一个应用就是“抓大头”。
如果极限式中有几项均是无穷大,就从无穷大中选取起主要作用的那一项,选取的标准是选趋近于无穷最快的那一项,对数函数趋于无穷的速度远远小于幂函数,幂函数趋于无穷的速度远远小于指数函数。
(二) 洛必达法则(结合等价无穷小替换、变限积分求导)洛必达法则解决的是“零比零”或“无穷比无穷”型的未定式的形式,所以只要是这两种形式的未定式都可以考虑用洛必达法则。
当然,在用洛必达的时候需要注意(1)它的三个条件都要满足,尤其要注意第二三个条件,当三个条件都满足的时候才能用洛必达法则;(2)用洛必达法则之前一定要先化简,把要求极限的式子化成“干净”的式子,否则会遇到越求导越麻烦的情况,有的甚至求不出来,所以一定要先化简。
化简常用的方法就是等价无穷小替换,有时也会用到四则运算。
考生一定要熟记常用的等价无穷小,以及替换原则(乘除因子可以替换,加减不要替换)。
考研中,除了也常常会把变限积分和洛必达相结合进行考查,这种类型的题目,首先要考虑洛必达,但是我们也要掌握变限积分求导。
另外,考试中有时候不直接考查“零比零”或“无穷比无穷”型,会出“零乘以无穷”,“无穷减无穷”这种形式,我们用的方法就是把他们变成“零比零”或“无穷比无穷”型。
(三) 利用泰勒公式求极限利用泰勒公式求极限,也是考研中常见的方法。
泰勒公式可以将常用的等价无穷小进行推广,如,等。
也可以用来求解未知极限式中的未知参数,和解决抽象函数的极限。
尤其是未知极限式中的未知参数,比起洛必达更适合用泰勒公式去做。
(四) 幂指函数的极限计算方法幂指函数指的是,底数和指数都是函数的函数。
数列收敛的条件
数列的收敛是指当数列随着项数的增加趋近于某个值时,该数列收敛于这个值。
那么什么样的数列会收敛呢?下面我们就来详细了解一下。
首先,数列的收敛必须满足以下两个条件:
一、数列的极限存在,也就是说,数列能够随着项数的增加无限地接近某一个值,这个值就是数列的极限。
二、数列的极限值是唯一的,也就是说,在所有可能的极限值中只有一个极限值是正确的。
另外,有两个重要的收敛定理:
一、夹逼定理:如果数列an ≤ bn ≤ cn,而且lim an =lim cn =a,那么lim bn=a。
二、单调有界数列定理:如果数列an单调递增且有上界,则数列收敛;如果数列an单调递减且有下界,则数列收敛。
那么,什么样的数列不收敛呢?
一、发散数列,也就是说,数列不会收敛于任何一个确定的值,例如无限递增或无限递减的数列。
二、震荡数列,也就是说,数列在某一项以后会在两个或多个值之间来回波动,没有任何一项符合数列收敛的要求。
综上所述,数列的收敛与否取决于数列的极限是否存在,在满足这个条件的基础上,应用夹逼定理或单调有界数列定理能够更加准确地判断数列是否收敛。
三大收敛定理引言在数学领域,收敛是一个重要的概念。
当一个数列或函数的值越来越接近一个确定的极限值时,我们称之为收敛。
收敛定理是指一系列定理,用于判断数列或函数是否收敛以及极限的性质。
本文将介绍三大收敛定理,分别是柯西收敛准则、夹逼定理和单调有界数列定理。
这些定理是数学分析中最重要的基本定理之一。
一、柯西收敛准则柯西收敛准则是判断数列是否收敛的一种重要方法。
柯西收敛准则的基本思想是:如果对于任意给定的正数ε,存在一个自然数N,使得当n和m大于等于N时,数列的前n个元素和前m个元素之差的绝对值小于ε,则该数列是收敛的。
表达式表示如下:对于任意给定的ε>0,存在自然数N,对于任意n,m>N,有|an - am| < ε。
二、夹逼定理夹逼定理是用来判断函数极限的一种重要方法。
夹逼定理的基本思想是:如果一个函数在某个区间上的两个函数夹住,且两个函数的极限相等,则这个函数的极限也相等。
具体的说:假设函数f(x)、g(x)和h(x)在区间[a, b]内定义,并且当x在这个区间上时,有g(x) ≤ f(x) ≤ h(x)。
如果当x趋于某个值c时,有lim(g(x)) = lim(h(x)) = L,则lim(f(x))也等于L。
三、单调有界数列定理单调有界数列定理是判断数列是否收敛的一种常用方法。
该定理分为两部分:单调有上界的数列必有极限,以及单调有下界的数列必有极限。
单调有上界的数列必有极限可以表述为:如果一个实数数列递增且有上界,那么这个数列是收敛的。
同理,单调有下界的数列必有极限可以表述为:如果一个实数数列递减且有下界,那么这个数列也是收敛的。
实例应用下面我们通过一个实例来应用上述三大收敛定理。
例:判断数列{(-1)^n/n}是否收敛。
首先,我们可以通过柯西收敛准则来判断数列是否收敛。
对于任意给定的ε>0,我们有:|an - am| = |(-1)^n/n - (-1)^m/m| ≤ 2/n ≤ ε。
数列与级数的收敛判别法数列与级数是数学中常见的概念,它们在数学分析、微积分等领域有着广泛的应用。
在研究数列与级数时,我们常常需要判断它们是否收敛,即是否存在有限的极限值。
本文将介绍几种经典的数列与级数的收敛判别法。
一、数列的收敛判别法1. 有界性判别法对于数列{an},如果存在一个实数M,使得对于所有的n,都有|an|≤M成立,那么数列{an}是有界的。
根据实数的确界原理,有界的数列必定存在收敛子列,因此可以推断该数列也是收敛的。
2. 单调性判别法对于数列{an},如果对于所有的n,都有an≤an+1或an≥an+1成立,即数列{an}单调递增或单调递减,那么该数列收敛的充分必要条件是{an}单调有界。
3. 夹逼定理夹逼定理是判别数列收敛性的重要工具。
设数列{an}、{bn}和{cn}满足an≤bn≤cn,并且lim(an)=lim(cn)=a。
如果数列{bn}收敛,那么它的极限必定是a。
二、级数的收敛判别法1. 正项级数判别法若级数Σan收敛,且对于任意的n,都有an≥0成立,则该级数是正项级数。
正项级数的收敛判别法有以下几个重要的定理:(1)比较判别法:若对于所有的n,都有0≤an≤bn成立,且级数Σbn收敛,则级数Σan也收敛;若级数Σan发散,则级数Σbn也发散。
(2)极限判别法:若存在正数c,使得lim(an/bn)=c,则有以下几种情况:当0<c<∞时,若级数Σbn收敛,则级数Σan也收敛;若级数Σan发散,则级数Σbn也发散。
当c=0时,若级数Σbn收敛,则级数Σan也收敛。
当c=∞时,若级数Σan收敛,则级数Σbn发散;若级数Σan发散,则级数Σbn收敛。
(3)比值判别法:若lim(|an+1/an|)=r,其中r为非负实数,那么有以下几种情况:当r<1时,级数Σan收敛。
当r>1时,级数Σan发散。
当r=1时,级数的敛散性不确定。
2. 交错级数判别法交错级数是指级数Σ(-1)^n*an,其中an为正数。
数学中的数列与级数极限判定方法数学中的数列与级数极限判定方法是数学分析中的重要概念和工具。
数列是一系列有序的数字排列,而级数是将数列中的各项进行求和得到的数值。
在数学中,我们常常需要判定数列与级数是否收敛或发散,进而研究它们的性质与行为。
本文将介绍数学中常见的数列与级数极限判定方法。
一、数列极限判定方法1. 有界性判定法:一个数列若有上界或下界,则称它是有界的。
若一个数列既有上界又有下界,则该数列有界。
当一个数列有界时,我们可以通过观察上下界来猜测它的极限。
2. 单调性判定法:若数列的前一项与后一项之间满足一定的大小关系,即前一项小于后一项或前一项大于后一项,则称该数列是单调的。
对于单调数列,我们可以通过观察其单调性来判断其极限。
3. 夹逼定理:夹逼定理是数列极限判定中常用的方法之一。
当一个数列同时被两个极限为相等的数列夹在中间时,夹逼定理成立。
4. 收敛数列的四则运算法则:若两个数列收敛,它们的和、差、积、商(除数不为零)仍然收敛,并且极限满足相应的运算法则。
5. 隔项相除法:当数列中的每一项都可以表示为前一项与其后一项的商时,我们可以通过隔项相除法判断数列的极限。
二、级数极限判定方法1. 比较判别法:比较判别法是判断级数敛散性的常用方法之一。
对于正项级数,我们可以通过比较级数项与已知敛散的级数项来判断级数的敛散性。
2. 极限判别法:当级数的项可以表示为某个数列的通项时,我们可以通过判别该数列的极限来判断级数的敛散性。
3. 部分和判别法:对于级数的部分和序列,我们可以通过判断其收敛性来判断级数的敛散性。
4. 交错级数的判别法:交错级数是指级数中的项交替正负的级数。
对于交错级数,我们可以通过其交错性质和项的递减性来判断其极限。
5. 绝对收敛与条件收敛:如果一个级数的绝对值级数收敛,那么该级数称为绝对收敛。
如果一个级数本身收敛,但绝对值级数发散,那么该级数称为条件收敛。
通过数列与级数的极限判定方法,我们可以更好地理解数学中的数列与级数,研究它们的性质与行为。