三年级数学巧算加减法综合讲义
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
第1讲加减法巧算教学目标本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
知识点拨一、基本运算律及公式㈠加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
㈡减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算㈠凑整法凑整法就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数再将各组的结果相加.①借数凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.②分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.模块一: 分组凑整思想(一)添括号分组——不移位【巩固】 计算下面算式1+2+3+45678910111219811982198319841985198619871988----++++-----++++【巩固】 仔细考虑,相信你可以找到巧妙算法的.19919819719619519454321-+-+-+⋅⋅⋅+-+-+㈡找“基准数”法当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)㈢数字拆分法根据位值原理将数字进行拆分,然后在凑整或者简单的提取公因数法进行计算。
三年级数学巧算加减法综合讲义专题分析:加减巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要加上,多减要加上,少减要减去”的原则进行处理。
另外,可结合加法交换律、结合律及减法性质凑整,从而达到简算目的。
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
加法具有以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a 一般地,多个数相加,任意改变相加的次序,其和不变。
(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c)借数凑整法:直观上凑整不明显的可以“借数”凑整。
(1)在加、减法混合运算中,去括号时,如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“—”号,那么去掉括号后,括号内的数的运算符号“+”变为“—”,变为“+”。
例如,(2)在加减法混合运算中,添括号时,如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面“—”号,那么括号内的数的原运算符号“+”变为“—”,“—”变为“+”在进行加减运算时,为了又快又准确地算出结果,除了要熟练地掌握运算法则外,还需要掌握一些常用运算方法和技巧。
•在速算与巧算中常用的三大基本思想:1.凑整(目标:整十整百整千...)2.分拆(分拆后能够凑成整十整百整千...)3.组合(合理分组再组合 )加法交换律:两个数相加,交换加数的位置,它们的和不变。
即 a+b=b+a。
第一讲加减法巧算前言:在进行加减计算时,“先计算括号中的部分,再从左往右依次计算”是基本的运算法则。
但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你算得更快更准。
“凑整法”是最常用的巧算方法就是在计算时优先计算可以得到整十整百整千的部分,从而达到巧算的目的。
要想凑出整十,两个数的末位相加应该得0,这样的情况除了0+0外,还有1+9,2+8,3+7,4+6,5+5。
同学们在做题时要注意观察各个加数的个位,看能不能找到合适的凑法。
除了加法可以凑整外,减法也可以凑整,个位相同的两个数相减后便能得到整十的数。
在进行加减混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算。
但需要注意的是,在调整的过程中,每个数都必须带着自己左边的符号一起移动,这种调整可以形象的称“带符号搬家”。
如果搬家的是算式的第一个数,前面没有符号,在这个数之前添一个加号就可以。
例1 (1)计算:73+119+231+69+381+17;(2)计算:375—138+247—175+139—237.分析(1)通过个位凑十来配对,但其中以1和9结尾的部分都分别有两个,应该如何配对呢?(2)加法配对看末位,减法应该如何呢?练习1(1)计算:36+97+32+64+168+103;(2)计算:2468—192+532+392—224+1234.除了“带符号搬家”可以调整顺序外,“脱括号”与“添括号”也是改变运算顺序的常用手段,加减法计算中“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变符号;括号前面是减号,脱去括号变符号。
例 2 (1)计算:162—(162—135)—(35—19);(2)计算:163—(50—18)—(153—76)+(124—18)。
分析:去掉括号会怎么样呢?练习2(1)计算:123—(23—45)—(45—67);(2)计算:437—(200—83)+(63—53)。
学科教师辅导讲义第03讲-加减巧算T同步课堂P实战演练S归纳总结T(Textbook-Based)——同步课堂知识梳理一、基本运算律及公式1、加法加法交换律:a+b=b+a加法结合律:a+b+c=(a+b)+c=a+(b+c)2、减法巧添括号:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算核心:凑整1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法.当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)三、等差数列求和公式:总数=(首项+末项)×项数÷2典例分析考点一:分组凑整例1、计算1+2+3+4+5+6+7+8+9+10【解析】观察式子可以发现,1+9=10,2+8=10,3+7=10.... 先运用加法交换律将和为10的数字分成一组,再运用加法结合律a+b+c=(a+b)+c=a+(b+c),使运算过程简便:原式=1+9+2+8+3+7+4+6+5=6400例2、某小组有20人,他们的数学成绩分别是:87、91、94、88、93、91、89、87、92、86、90、92、88、90、91、86、89、92、95、89,求这个组的平均成绩?【解析】根据题意,可以列出如下算式:(87+91+94+88+93+91+89+87+92+86+90+92+88+90+90+91+86+89+92+95+89)÷20观察发现,学生的成绩都接近于90,选90为“基准数”原式=(90×20-3+1+4-2+3+1-1-3+2-4+2-2+1-4-1+2+5-1)÷20=1800÷20=90考点五、数列求和等差数列求和公式:总数=(首项+末项)×项数÷2例1、求1到99共99个连续自然数位上的所有数字之和。
第1讲加减法巧算知识梳理【加减法的巧算】在进行加减运算时,为了又快又准确,除了要熟练掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑数”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百或整千……的数,再将每组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
【加法交换律】两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a【加法结合律】先把前两个数相加,或先把后两个数相加,和不变叫做加法结合律。
字母公式:a+b+c=a+(b+c)=(a+b)+c【例题一】凑整法(1)23+54+18+47+82(2)(1350+49+68)+(51+32+1650)【例题二】借数凑整法(1)57+64+238+46(2)4993+3996+5997+848【例题三】分组凑整法(1)875-364+125-236 (2)1847-1928+628-136-64【例题四】加补凑整法(1)512-382 (2)6854-876-97【例题五】利用线段图解决问题(1)小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?(2)一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?(3)某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
又知巧克力糖的块数恰好是小白兔软糖块数的2倍。
三年级一班共买了多少块糖果?巩固拓展一、计算:42+71+24+58+29 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)二、应用题:1、一桶柴油连桶称重120千克,用去一半柴油后,连桶称还重65千克。
三年级加减巧算专题简析:在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看作所接近的数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千…相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以结合加法交换律、结合律以及减法的性\质进行凑整,从而达到简算的目的。
例题1 计算下面各题。
(1)396+55 (2)427+1008(3)456-298 (4)582-305思路导航:(1)中396接近于400,396+55可以看成400+55,多加了4,所以还要减4;(2)中1008接近于1000,427+1008变成427+1000,少加了8,所以还要加8;(3)中298接近于300,456-298变成了456-300,多减了2,所以还要加2;(4)中305接近于300,582-305变成了582-300,少减了5,所以还要减5。
练习一1.速算。
(1)497+28 (2)750+1002(3)598+231 (4)2004+2712.计算,并想想它的解题思路。
(1)574-397 (2)472―203(3)8732―2008 (4)487―2983.计算:402+307―297―99例题2 你有好办法迅速计算出结果吗?(1)502+799―298―97 (2)9999+999+99+9思路导航:(1)是一道加减混合运算,每个数都接近于整百数,计算时可先把这些数拆成两部分,再把整百数与整百数相加减,“零头数”与“零头数”相加减,最后把两个部分数合起来;(2)这四个数都分别接近于整万、整千、整百、整十数,我们可以把9999看作10000,999看作1000,99看作100,9看作10,这样每个数都多了1,最后再从它们的和中减去4个1,即可得出结果。
练习二1.计算。
完整版小学三年级数学加减法速算与巧算速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
300-73-27 ①例 31000-90-80-20-10 ② 27)= 300-(73+解:①式300-100=200=)+1080(90++20=1000- ②式8001000-200== 2.先减去那些与被减数有相同尾数的减数。
专题分析:
加减巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要加上,多减要加上,少减要减去”的原则进行处理。
另外,可结合加法交换律、结合律及减法性质凑整,从而达到简算目的。
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
加法具有以下两个运算律:
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a 一般地,多个数相加,任意改变相加的次序,其和不变。
(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c)
借数凑整法:直观上凑整不明显的可以“借数”凑整。
(1)在加、减法混合运算中,去括号时,如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“—”号,那么去掉括号后,括号内的数的运算符号“+”变为“—”,变为“+”。
例如,
(2)在加减法混合运算中,添括号时,如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面“—”号,那么括号内的数的原运算符号“+”变为“—”,“—”变为“+”
在进行加减运算时,为了又快又准确地算出结果,除了要熟练地掌握运算法则外,还需要掌握一些常用运算方法和技巧。
•在速算与巧算中常用的三大基本思想:
1.凑整(目标:整十整百整千...)
2.分拆(分拆后能够凑成整十整百整千...)
3.组合(合理分组再组合 )
加法交换律:两个数相加,交换加数的位置,它们的和不变。
即 a+b=b+a。
一般地,多个数相加,任意改变相加的次序,其和不变。
加法结合律:几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即a+b+c = (a+b)+c = a+(b+c),
例1 凑整数法:(1) 1+2+3+4+5+6+7+8+9+10 (2) 1+3+5+7+9+11+13+15+17+19 (3)1350+49+68+51+32+1650
例2 去括号法:去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即: a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a -(b-c)=a-b+c
a+(b-c)=a+b-c,a-(b+c)=a-b-c,a-(b-c)=a-b+c 如:43+(38+45)+(55+62+57)
2.在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
a+b-c=a+(b-c),a-b+c=a-(b-c),a-b-c=a-(b+c) 如:100-10-20-30 括号前面是加号,去掉括号不改号,括号前面是减号,去掉括号要改号.
3.减法巧算:把几个可以“凑整”的减数先加起来,再从被减数中减去 300-73-27 10 00-90-80-20-10 先减去那些与被减数有相同尾数的减数。
4723-(723+189) 2356-159-256 利用“凑整”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
467+997 987-178-222-390
4.带符号搬家“+” ,“-”325+46-125+54 19+12-19+3+4 -12
5.合理分组 (1)875-364-236 (2)1847-1928+628-136-64
(3)2+4+6+8+...+100-1-3-5-7-...-97-99
6.基准数法(标准数)几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
78+76
+83+82+77+80+79+85 =80×8-2-4+3+2-3-1+5=640
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列
1,2,3,4,5,6,7,8,9;1,3,5,7,9;2,4,6,8,10;3,6,9,1 2,15;4,8,12,16,20等等都是等差连续数.
1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数×个数
等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:
和=(首数+末数)×项数÷2
如:2+4+6+8+10+12+14+16+18+20= (2+20)×10÷2=(2+20)×5=110。