高聚物的力学性能
- 格式:pdf
- 大小:155.65 KB
- 文档页数:23
高分子材料与无机非金属金属材料的区别高分子材料与无机非金属材料、金属材料的区别有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。
高分子材料一般具有以下特点:(1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变;(2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解;(3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。
例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。
此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。
当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。
高分子化合物固、液、气三种存在状态的变化一般并不很明显。
固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。
固体状态的高分子化合物多是硬而有刚性的物体。
无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。
在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。
纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。
通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。
无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。
第七章粘弹性一、思考题1. 何谓高聚物的力学性能?从承载速度区分,力学性能可分为哪几类?2. 何谓粘弹性?何谓Boltzmann 叠加原理?何谓时温等效原理?3. 粘弹性实验一般有哪些?何谓应力松弛和蠕变?什么是松弛模量和蠕变柔量?松弛时间与推迟时间有何异同?4. 什么是高聚物的力学滞后和内耗?表征高聚物动态粘弹性的参量有哪些?用什么参量描述其内耗大小?5. 如何由不同温度下测得的E-t 曲线得到某一参考温度下的叠合曲线?当参考温度分别取为玻璃化温度和玻璃化温度以上约50C时,WLF方程中的C2应分别取何值?哪一组数据普适性更好?6. 粘弹性力学模型中的基本元件和基本连接方式有哪些?它们有何基本关系式?写出Maxwell 模型和Voigt 模型的基本微分方程。
广义Maxwell 模型和广义Voigt 模型分别适用于描述高聚物在什么情况下的性质?二、选择题1.高聚物的蠕变与应力松弛的速度( ) CD与温度无关②随着温度增大而减小③随着温度增大而增大2 •用T g为参考温度进行E t曲线时温转换叠加时,温度低于T g的曲线,其lg a值为( )C1 正,曲线向右移动C2 负,曲线向左移动C3 负,曲线向右移动C4 正,曲线向左移动3.高聚物发生滞后现象的原因是( )C1 高聚物的弹性太大C2 运动单元运动时受到内摩擦力的作用C3 高聚物的惰性大4.Voigt 模型可用于定性模拟( )C1 线性高聚物的蠕变C2 交联高聚物的蠕变C3 线型高聚物的应力松弛C4 交联高聚物的应力松弛5.Maxwell 模型可用于定性模拟( )C1 线型高聚物的蠕变C2 交联高聚物的蠕变③线型高聚物的应力松弛(④交联高聚物的应力松弛6 •高聚物黏弹性表现最为明显的温度是()①v T g ②高于T g附近③T f附近7. 高聚物的蠕变适宜用()的模型来描述。
①理想弹簧和理想黏壶串联(②理想弹簧和理想黏壶并联③四元件模型8. 高聚物的应力松弛适宜用哪种模型来描述?()①广义Maxwell模型②广义Voigt模型③四元件模型9. 对于交联高聚物,以下关于其力学松弛行为哪一条正确?()③蠕变能回复到零③应力松弛时应力能衰减到零③可用四元件模型模拟三、判断题(正确的划“V”,错误的划“X”)1. 交联聚合物的应力松弛现象,就是随时间的延长,应力逐渐衰减到零的现象。
●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。
●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。
▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。
●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。
▓实例橡胶的适度交联。
●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。
▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。
●取向对强度的影响
规律:取向能增加取向方向上材料的强度。
§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。
对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。
若三条件达不到,加入第三组分。
效果:原脆性高聚物的冲击强度提高5~10倍。
第六章高聚物的力学性能(1)6.1 概述6.1.1 高聚物力学性能的特点(形变性能、断裂性能)高弹形变:平衡高弹形变:瞬时、平衡、可逆的高弹形变;非平衡高弹形变:瞬时粘弹性,与时间有关高弹性:准平衡态高弹形变,由高分子构象熵的改变引起,处于链段无规自由热运动橡胶(弹性体)→外力作用(拉伸力)→ 链段运动对外响应→可逆的弹性形变(伸长数倍)普弹性:内能的改变引起粘弹性:呈粘性流体的性质、弹性和粘性同时出现。
表现在力学松弛现象(蠕变、应力松弛)及动态力学行为。
高聚物的力学行为:依赖于时间、温度。
必须同时考虑应力、应变、时间和温度来描述。
研究目的:(1)力学性能宏观描述和测试合理化;(2)宏观力学性能与微观各个层次的结构因素的关系。
6.1.2 形变类型和描述力学行为的基本物理量(1)简单剪切(形状改变,体积不变)剪切应力:σ = F/A,剪切应变:γ= tgθ,剪切模量(刚度):G = σ/γ,剪切柔量:J = 1/G = γ/σ(2)本体(体积)压缩(形状不变,体积改变)本体应变:Δ= ΔV / V,本体模量:K = P/Δ = P / (- ΔV / V),本体柔量(可压缩度):B = 1 / K(3)单向拉伸(形状和体积同时改变)拉伸应力:σ = F/A0(张应力,工程应力),拉伸应变:ε1 = (l-10)/10=Δl/10(张应力,工程应变,习用应变),杨氏模量:E = σ / ε1 (高聚物 E = 0.1MPa~500MPa),拉伸柔量:D = 1 / E横向应变:ε2 =(b - b0)/ b0,ε3 =(d - d0)/ d0)泊松比:γ = -ε2 / ε1= -ε3 / ε1 (拉伸试验中横向应变与纵向应变的比值的负数)对于大多数高聚物:橡胶,γ = 0.5,体积几乎不变,没有横向收缩。
塑料,γ = 0.2~0.4。
对各向同性的理想材料:G = E /(1+γ),K = E(1 - 2γ),E = 9KG /(3K + G),若体积几乎不变,即γ = 1/2, 则 E = 3G;对于各向异性材料情况比较复杂,不止有两个的独立弹性模量,通常至少有5或6个。
高聚物结构与性能的关系1.高聚物的结构根据研究单元的不同分类,聚合物的结构可分为两类:一类是聚合物的链结构,即分子内的结构,即研究分子链中原子或基团之间的几何排列;另一种是聚合物的分子聚集结构,即分子间结构,它研究每单位体积内许多分子链的几何排列。
对于高分子材料而言,链结构只是间接影响其性能,而分子聚集结构是直接影响其性能的因素。
1.1聚合物链结构高聚物的链结构包括近程结构和远程结构。
近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。
聚合物链结构是决定聚合物基本性能的主要因素。
由于不同的链结构,各种聚合物的性能完全不同。
例如,聚乙烯柔软易结晶,而聚苯乙烯坚硬易碎,不能结晶;等规聚丙烯在室温下为固态结晶,无规聚丙烯在室温下为粘性液体。
1.2高聚物的聚集态结构聚合物的分子聚集结构包括结晶态、非晶态、液晶态、取向态等;聚合物的分子聚集结构是在加工成型过程中形成的,是决定聚合物产品使用性能的主要因素。
即使具有相同链结构的同一聚合物具有不同的加工条件,其模制产品的使用性能也会非常不同。
例如,晶体取向度直接影响纤维和薄膜的机械性能;不同的晶体尺寸和形态会影响塑料制品的冲击强度、开裂性能和透明度。
因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。
研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。
2.高聚物结构与力学性能的关系2.1链结构与力学性能的关系不同的聚合物,具有不同的分子结构,必然会表现出不同的材料性质。
聚集乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯腈、环氧树脂和聚二甲基硅氧烷(硅橡胶)等等都是不同分子结构的高聚物,它们或是晶态高聚物,或是非晶态高聚物,或是橡胶,或是不溶不熔的热固性树脂,这些都是一般人都知道的常识。
1.玻璃态
T<Tg
(2)力学特征:形变量小(0.01 ~1%),模量高(109 ~1010Pa)。
形变与时间无关,呈普弹性。
(1)运动单元:键长、键角的改变或小尺寸单元的运动。
T d
T f
T g
2.玻璃化转变区(1)链段运动逐渐开始
(2)形变量ε增大,模量E降低。
T d
T f
T g
3.高弹态
T g ~T f
(1)运动单元:链段运动
(2)力学特征:高弹态
形变量大,100-1000﹪
模量小,105-107Pa T d
T f
T
g
4.粘流转变区
(2)形变量加大,模量降低,宏观上表现为流动
(1)整链分子逐渐开始运动,
T d
T f
T g
5.粘流态
T f ~T d
(2)力学特征:形变量更大
模量更低
流动
(3)T 与平均分子量有关
(1)运动单元:整链分子产生相对位移T d
T f
T g
T f
图5-9 高聚物的比容-压力曲线图5-10 高聚物的tanδ-lgν曲线
33。
●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。
●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。
▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。
●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。
▓实例橡胶的适度交联。
●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。
▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。
●取向对强度的影响
规律:取向能增加取向方向上材料的强度。
§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。
对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。
若三条件达不到,加入第三组分。
效果:原脆性高聚物的冲击强度提高5~10倍。