人教A版高中数学必修三练习算法的概念
- 格式:docx
- 大小:39.06 KB
- 文档页数:3
重庆市高中数学第一章算法初步1.1.1 算法的概念教案新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市高中数学第一章算法初步1.1.1 算法的概念教案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市高中数学第一章算法初步1.1.1 算法的概念教案新人教A版必修3的全部内容。
1.1.1算法的概念一、三维目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法.(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组.2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力.二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言.三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水"“替我理发”等则是做不到的。
高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
数学·必修3(人教A版)
本章概述
1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)能根据问题设计运算(执行)步骤.
(3)
理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句
理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
算法是从2007年开始出现在高考中的,从目前情况看,已成为高考必考内容,现在各地高考中算法主要考查程序框图的阅读和理解,而且难度较小,今后高考不排除考查阅读程序语言、画程序框图甚至写程序语言.由于采用“一标多本”的模式,因此考查框图的可能性最大.
算法初步。
高中数学必修三算法的概念算法是一种解决问题的步骤和方法的描述。
它是计算机科学和数学领域的重要概念,也是高中数学必修三中的重要内容之一、算法的设计和分析是高中数学中算法的核心。
在本文中,我将详细介绍算法的概念、分类、设计和分析等方面的内容。
首先,算法是一种解决问题的步骤和方法的描述。
它是计算机程序的基础,也是数学问题求解的一种形式化描述。
一个算法通常由一系列的步骤组成,每个步骤都能够执行其中一种操作,以达到解决问题的目的。
算法可以用自然语言、图形、伪代码或编程语言来描述。
它在计算机科学、数学、工程和其他领域中都有广泛的应用。
接下来,我们来介绍算法的分类。
按照具体问题的特性,算法可以被分为不同的类型。
常见的算法分类包括算法、排序算法、图算法、动态规划算法等。
算法是用来在一些集合中寻找特定元素的算法,常见的算法包括二分查找算法、深度优先算法、广度优先算法等。
排序算法是将一组元素按照特定的顺序排列的算法,常见的排序算法包括冒泡排序算法、插入排序算法、选择排序算法、快速排序算法等。
图算法是用来解决图相关问题的算法,常见的图算法包括最短路径算法、最小生成树算法等。
动态规划算法是一种将问题分解为子问题,通过求解子问题的最优解来求解原问题的算法。
而算法的设计和分析则是提高算法效率和正确性的关键。
算法设计是指根据问题的特性,选择合适的数据结构和算法策略,设计出解决问题的高效算法。
而算法分析则是评估算法的性能和效率。
算法分析可以从时间复杂度和空间复杂度两个方面进行评估。
时间复杂度是指算法执行所需的时间,通常用大O表示;空间复杂度是指算法执行所需要的额外空间,通常用大O表示。
算法的时间复杂度和空间复杂度是用来描述算法的运行效率的重要指标。
在实际应用中,算法的性能和效率往往是我们关注的重点。
一个好的算法可以提高计算机程序的运行速度和性能。
因此,算法的选择和设计是非常重要的。
在高中数学必修三中,我们通常会学习到一些常见的算法,如查找算法、排序算法和动态规划算法等。
高中数学必修3知识点一:算法初步1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
2:程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
②构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B 框是依次执行的,只有在执行完A 框指定的操作后,才能接着执行B 框所指定的操作。
(2)条件结构: 算法结构。
条件P 是否成立而选择执行A 框或B 框。
第一章算法初步
1.1 算法与程序框图
1.1.1 算法的概念
课后篇巩固提升
1.下列所给问题中,不能设计一个算法求解的是( )
A.用二分法求方程x 2-3=0的近似解(精确度0.01)
B.解方程组{x +y +5=0,x -y +3=0
C.求半径为2的球的体积
D.求S=1+2+3+…的值
D,S=1+2+3+…,不知道需要多少步完成,所以不能设计一个算法求解.
2.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( )
A.13分钟
B.14分钟
C.15分钟
D.23分钟
洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是唯一的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.
3.有如下算法:
第一步,输入不小于2的正整数n.
第二步,判断n 是否为2.若n=2,则n 满足条件;
若n>2,则执行第三步.
第三步,依次从2到n-1检验能不能整除n ,若都不能整除,则n 满足条件.
上述算法中满足条件的n 是( )
A.质数
B.奇数
C.偶数
D.合数
n 是质数.
4.如下算法:
第一步,输入x 的值.
第二步,若x ≥0,则y=x ;否则,y=x 2.
第三步,输出y 的值.
若输出y 的值是9,则x 的值是( )
A.3
B.-3
C.3或-3
D.-3或9
,可知此为分段函数y={x ,x ≥0,x 2,x <0
的算法.当x ≥0时,x=9;当x<0时,x 2=9,x=-3.
5.已知一个算法:
第一步,m=a.
第二步,若b<m ,则m=b ,输出m ,结束算法;否则,执行第三步.
第三步,若c<m ,则m=c ,输出m ,结束算法.
如果a=3,b=6,c=2,那么执行这个算法的结果是( )
A.3
B.6
C.2
D.m
a=3,b=6,c=2时,依据算法执行后,m=a=3<b=6,c=2<3=m ,则m=c=2,即输出m 的值为2.
6.给出下列算法:
第一步,输入x 的值.
第二步,当x>4时,计算y=x+2;否则,计算y=√4-x .
第三步,输出y 的值.
当输入x=0时,输出y= .
x=0>4不成立,故计算y=√4-x =2,输出y=2.
7.结合下面的算法:
第一步,输入x.
第二步,判断x 是否小于0,若是,则输出3x+2,
否则执行第三步.
第三步,输出x 2+1.
当输入的x 的值分别为-1,0,1时,输出的结果分别为 、 、 .
x=-1时,-1<0,输出3×(-1)+2=-1;
当x=0时,0=0,输出02+1=1;
当x=1时,1>0,输出12+1=2.
1 1 2
8.下面是解二元一次方程组{2x -y +6=0,①x +y +3=0②的一个算法,请将该算法补充完整. 第一步,①②两式相加,得3x+9=0.
③ 第二步,由③式可得 . ④
第三步,将④式代入①式,得y=0.
第四步,输出方程组的解 .
,第二步应为解③得x 的值为x=-3,第四步是输出方程组的解{x =-3,y =0.
3 {x =-3,y =0
9.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(不用砝码)将假银元找出来吗?
法一)第一步,任取2枚银元分别放在天平两边,若天平左右不平衡,则轻的一边放的就是假银元;若天平左右平衡,则进行第二步.
第二步,取下右边的银元,放在一边,然后把剩余的7枚银元依次放在右边进行称量,直到天平左右不平衡为止,右边放的就是假银元.
(法二)第一步,把银元分成3组,每组3枚.
第二步,先将任意两组分别放在天平的两边,若天平左右不平衡,则假银元就在轻的那一组里;若天平左右平衡,则假银元就在未称的那一组里.
第三步,取出含假银元的那一组,从中任取2枚银元放在天平的两边,若天平左右不平衡,则轻的一边放的就是假银元;若天平左右平衡,则未称的那一枚就是假银元.
10.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:
(1)有三根杆子A ,B ,C ,A 杆上有三个碟子(大小不等,自上到下,由小到大),如图;
(2)每次移动一个碟子,小的只能叠在大的上面;
(3)把所有碟子从A 杆移到C 杆上.
试设计一个算法,完成上述游戏.
,将A 杆最上面碟子移到C 杆.
第二步,将A 杆最上面碟子移到B 杆.
第三步,将C 杆上的碟子移到B 杆.
第四步,将A 杆上的碟子移到C 杆.
第五步,将B 杆最上面的碟子移到A 杆.
第六步,将B 杆上的碟子移到C 杆.
第七步,将A 杆上的碟子移到C 杆.。