人教A版高中数学必修三《算法的概念》教案
- 格式:doc
- 大小:97.50 KB
- 文档页数:5
1.1.1算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
算法的概念【教学目标】1.通过分析解决具体问题的过程与步骤,体会算法的基本思想.2.了解算法的含义和特征.3.会用自然语言表述简单的算法.【教法指导】本节重点是要会用自然语言描述算法,并写出相应的算法步骤;难点是算法的应用;本节知识的主要学习方法是:动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】一、知识回顾:想一想:解决一个问题的算法是唯一的吗?2.算法的特征算法是解决问题过程的抽象而精确的描述,一般具备以下几个特征:(1)有限性:一个算法的步骤序列是有限的,它应在有限步操作之后停止.(2)确定性:算法中的每一步应该是确定的,并且能有效地执行且得到确定的结果,而不应当是模棱两可的.(3)普遍性:很多具体的问题,都可以设计合理的算法去解决.3.算法的设计(1)算法与计算机的关系计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.(2)设计算法的目的设计算法的目的实际上是寻求一类问题的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的“语言”准确地描述出来,从而达到让计算机执行的目的.(3)设计算法的要求①写出的算法必须能解决一类问题;②要使算法尽量简单、步骤尽量少;③要保证算法正确,且计算机能够执行.概念诠释:(1)算法可以理解为按照一定规则解决某一类问题所构成的完整的解题步骤,或看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题;(2)通俗点说,算法就是计算机解题的过程.在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法,前者是推理实现的算法,后者是操作实现的算法;(3)算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题时更具有条理性、逻辑性等特点.通常把算法过程称为“数学机械化”,其最大优点是可以让计算机来完成.算法的描述方法算法的描述可以有不同的方式,主要有自然语言、程序框图、计算机程序语言.(1)自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解;缺点是如果算法中包含判断或转向,并且操作步骤较多时,就不那么直观和清晰了;(2)程序框图描述算法就是指用规定的图形符号来描述算法,具有直观、结构清晰、条理分明、通俗易懂、便于检查修改等优点.题型一对算法概念的理解例、(1)(2012·固原高一检测)下列关于算法的说法,正确的个数有 ( ).①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1 B.2 C.3 D.4归纳总结、提高升华:算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,在用算法解决问题时,显然体现了特殊与一般的数学思想.变式训练:下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从青岛乘动车到济南,再从济南乘飞机到南京观看全运会;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的有________.【答案】①②③【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3x>x+1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾.题型二直接应用数学公式的算法例、写出求二次函数y=-2x2+4x+1的最值的算法.归纳总结、得出规律:(1)设计此类算法的步骤:①弄清这个算法要解决的问题是什么,需要用到哪些公式.②明确公式中需要哪些量,题目中已知什么量,还需知道哪些中间量.③优先解决中间量.④套用公式,并用简洁的语言描述出来.(2)注意事项:在设计算法时,只要有公式,则直接利用公式解决问题是最理想、方便的.变式训练:1.求两底半径分别为2和4,高为4的圆台的表面积,写出该问题的算法.题型三累加、累乘问题的算法:例、给出求1+2+3+4+5的一个算法.总结规律、提高升华:解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要易于实现、易于理解,效率要高,通用性要好等.变式训练:求1×3×5×7×9×11的值,写出其算法.题型四 算法的应用1.写出求方程组⎩⎪⎨⎪⎧ 3x -2y =14x +y =-2 ①②的解的算法.总结规律、提高升华:通过求解二元一次方程组可知,求解某个问题的算法不一定唯一,对于具体的实例可以选择合适的算法,尽量做到“省时省力”,使所用算法为最优算法.变式训练:设计算法,给定任一x 的值,求y 的值,其中y =⎩⎪⎨⎪⎧2x -1,x ≤0,x 2+1,x >0. 解析:算法如下第一步,输入x 的值.第二步,判断x 是否大于零,若x >0,执行第三步;否则,执行第四步.第三步,计算y =x 2+1的值,转去执行第五步.第四步,计算y =2x -1的值.第五步,输出y 的值.随堂测评1.下列关于算法的说法中正确的个数有( )①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x 2-x >2是一个算法;④算法执行后一定产生确定的结果;⑤对于像“喝一碗水”这类含有动作的语言能出现在算法的一个步骤中.A.1个 B.2个 C.3个 D.4个答案: B解析:因为x2-x>2仅仅是一个数学问题,不能表达一个算法,所以③是错误的.依据算法的多样性(不唯一性)知①错误,由算法的有限性知②正确,由于算法具有可执行性,算法的每一步必须是计算机能执行的,所以⑤是错误的,正确的有②④.2.阅读下列算法:第一步,输入n.第二步,判断n是否是2,若n=2,则n满足条件;若n≠2,则执行第三步.第三步,依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件.满足上述条件的数是( )A.质数B.奇数C.偶数D.4的倍数3.给出下列叙述:①某人从广州乘高铁到北京,再从北京乘飞机到巴西旅游;②x>1;③植树节植树需要运苗、挖坑、栽苗、浇水这些步骤.其中能称为算法的为.4.输入一个x值,利用y=|x+1|求函数值的算法如下,请将所缺部分补充完整:第一步,输入x;第二步,________;第三步,计算y=-x-1;第四步,输出y.答案:当x≥-1时,计算y=x+1,否则执行第三步解析:含绝对值的函数的函数值的算法要注意分类讨论思想的应用,本题中当x≥-1时y=x+1;当x<-1时y=-x-1,由此可完善算法.5.设计一个算法解方程组⎩⎨⎧=++=521y x x y课堂小结:1.算法的基本思想.2.算法的含义和特征.3.自然语言表述简单的算法. 作业:练习题。
人教版高中必修31.1.1算法的概念教学设计一、引言计算机科学是一个快速发展的领域,算法作为计算机科学的基础,是计算机科学的核心内容之一。
在高中阶段,学生需要逐渐了解计算机科学中的基础概念和原理,因此本文旨在介绍人教版高中必修31.1.1中算法的概念,提供适合高中学生的算法教学设计思路。
二、算法的概念算法指的是一个计算过程,该过程在给定输入后,按照一定规则来计算输出。
简单来说,算法就是一组解决问题的有限指令集。
算法主要被用于解决一些计算性问题,比如排序、搜索、加密等等。
一个好的算法应该能够在有限时间内处理输入值,且其输出结果应该正确、完整、易于理解和实现。
三、算法教学设计3.1 引入为了引起学生对算法的兴趣,可以运用一些有趣的例子进行讲解。
比如,可以讲解一些困难的游戏或难题,然后通过讲解算法的原理帮助学生理解并解决难题。
3.2 普及算法知识在学生对算法有了兴趣之后,应该分步骤来讲解算法的概念和原理。
可以通过讲解算法的基础知识,如时间复杂度、空间复杂度等概念,以及几个经典的算法来普及算法知识。
3.3 练习为了更好地巩固学生的算法知识,应该设计一些算法练习。
可以让学生练习一些基本算法,如冒泡排序、二分查找等等。
在完成练习后,可以让学生相互分享自己的思路和方法,以帮助提高彼此的算法实现能力。
3.4 实践在学生已经掌握一些基本算法后,可以针对一些具体的应用场景,如图像处理、网络安全等领域进行设计实践。
通过实践,不仅能够帮助学生更好地理解算法的实现过程,还能够帮助学生锻炼解决问题的能力。
四、总结本文针对人教版高中必修31.1.1算法的概念进行了教学设计。
在引入、普及、练习和实践的过程中,可以帮助学生更好地了解算法及其应用,提高学生的计算机科学素养,为未来的学习和工作打下基础。
1. 1.1 算法的概念【教学目标】1.了解算法的含义,体会算法的思想。
2.能够用自然语言叙述算法。
3.掌握正确的算法应满足的要求。
【重点与难点】教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点:把自然语言转化为算法语言。
【教学过程】1.情境导入:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
因此,算法其实是重要的数学对象。
2.探索研究算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的算法、作图的算法,等等。
3.例题分析例1.任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
ff- ®窩中课即标准宜脸敕料托数学❸屮了1!¥厲用働料*總幵總屮心《算法的概念》教材分析本节课是算法的起始课。
主要内容有:算法的概念、算法的基本特征,算法的表述形式。
算法是一种解决问题的方法, 是数学及其应用的重要组成部分, 也是计算机科学的重要 基础。
算法的思想有着广泛的应用性。
在数学中,算法通常是指按照一定规则解决某一类问理的明确和存限的步骤。
现在,算 法通常可以编成计算机程序,让计算机执行并解决问题。
在算法概念的表述中,有范围限定词“在数学中”,因此学习的内容均为数学中的问题。
有一个有前缀限制的基本特征词“步骤” ,前缀中,“按照一定规则”指的是解决具体问题 时的依据和表达方式,关注的是算法的基本逻辑结构(顺序、条件和循环) ,也表示算法具 有有序性。
“解决某一类问题”,强调的是算法适用对象的常态,突出算法的研究价值以及它的普遍适用性,也表明特殊问题的解题与一般问题的算法,存在联系又有区别。
“明确和 有限”,表示算法的每一步都是明确的、可执行的,总的步骤是有限的。
算法有多种表示方法, 其中自然语言描述与人的表达方式最接近, 的基础。
中国古代数学是以算法为主要特征,并蕴涵着丰富的算法思想。
算法唤发出新的生机和活力,并使之成为当代社会必备的基本知识。
正是反应了时代的需要。
算法具有的基本逻辑结构与形式逻辑结构存在对应关系,有着丰富的逻辑思维材料。
是学习其它描述方法 现代信息技术的发展使 算法进入高中必修内容算法思想贯穿于整个中学数学内容之中,有着丰富的层次递进的素材。
因此,算法的学习对整个高中数学的学习有着“源”与“流”的关系。
又由于算法的具体实现上可以和信息技术相结合。
因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力,发展他们有条理的思考与表达的能力,同时可以让他们知道如何利用现代技术解决问题。
【知识与能力目标】(1)初步了解算法的含义和概念,了解算法的概括性、逻辑性、有穷性、不惟一性和普遍性等特征。
人教版数学高中必修3《算法的概念》教学设计【学习目标】1.通过实例体会算法思想,了解算法的含义与主要特点;2.能按步骤用自然语言写出简洁问题的算法过程;3.培育学生规律思维力量与表达力量.【学习重点】将问题的解决过程用自然语言表示为算法过程.【学习难点】用自然语言描述算法.【授课类型】新授课【学习方法】探究式【学习过程】一、复习引入:算法不仅是数学及其应用的重要组成局部,也是计算机理论和技术的核心.在现代社会里,计算机已经成为人们日常生活和工作不行缺少的工具.听音乐、看电影、玩嬉戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的全部领域.那么,计算机是怎样工作的呢?要想弄清晰这个问题,算法的学习是一个开头.同时,算法有利于进展有条理的思索与表达的力量,提高规律思维力量.在以前的学习中,虽然没有消失算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、新课学习:一般的二元一次方程组其中的求解步骤见课本第3页。
算法概念算法:在数学中,算法通常是指根据肯定规章解决某一个或一类问题的明确和有限的步骤。
算法的重要特征:(1)有限性:一个算法在执行有限步后必需完毕;(2)准确性:算法的每一个步骤和次序必需是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.三、特例示范例1.(1)设计一个算法,推断7是否为质数。
(2)设计一个算法,推断35是否为质数。
例2.写出用“二分法”求方程的近似解的算法。
四、当堂练习:课本第5页练习1、2五、本节小结:算法的概念;用自然语言写出算法过程;六、学习评价:1.高一数学(必修3)学生同步学案《1.1.1算法的概念》完成状况评价。
1.1.1算法的概念一教材分析1 教材背景算法是新课标教材新增加的内容,从古至今算法思想都能在解决问题中得到体现,他不仅是数学及应用的重要组成部分,也是信息技术的重要基础。
随着信息技术的发展,算法思想已成为数学素养的一部分。
所以学习算法是非常必要的。
2 本节课的地位及作用这部分的学习一方面为日后系统的学习算法打下良好的基础,另一方面中学数学中的算法内容和其它许多内容是密切联系在一起的,比如线性方程组的求解、数列的求和等。
体会算法的思想有助于更好的解决其它数学问题。
二重点难点及关键根据对教材的分析确定以下重点难点。
重点:体会算法的思想,理解算法的含义,了解算法的特征。
难点:把自然语言合理的转化成算法语言。
关键:本节课突出重点突破难点的关键是重在对案例的算法的分析,案例的选择也主要从算法的典型性、与往知识的连续性和可接受性的角度出发,使学生能够通过案例的学习理解算法的本质。
三目标分析1知识目标通过分析具体问题过程与步骤,建立算法的概念,感受算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法。
2能力目标使学生体会算法思想的同时,发展有条理的思考表达能力,提高逻辑思维能力。
3情感目标通过体验算法表述的过程,培养学生的创新意识,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
四学情分析算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。
在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。
五教法分析采用“问题探究式”教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。
六教学设计1创设情景问题1 火车站对乘客退票收取一定的费用,规定:票价每10元(不足10元按10元计算)收2元,票价2元及2元以下的不退。
设计算法,计算票价为x 元退票应返还的金额。
(在解决这一问题之前演示多媒体课件,帮助学生更好的分析问题)分析:共分三种情况。
数学知识点人教A版高中数学必修三1.1.1《算法的概念》教案-总结1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例??=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤:第一步,①+②×2,得5x=1.③第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为==.53,51y x (3)用代入消元法解二元一次方程组=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤:第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④第三步,解④得y=53.⑤第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为==.53,51y x (4)对于一般的二元一次方程组=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤:第一步,①×b 2-②×b 1,得(a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③第二步,解③,得x=12212112b a b a c b c b --. 第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④第四步,解④,得y=12211221b a b a c a c a --. 第五步,得到方程组的解为--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.。
高中必修3数学算法教案一、教学目标:1.了解算法的概念和基本特性2.掌握常见的算法设计方法3.熟练应用算法解决实际问题二、教学重点:1.算法的基本概念和特性2.算法设计方法的应用3.实际问题的算法解决三、教学难点:1.算法设计方法的灵活运用2.实际问题的算法转化和解决四、教学内容:1.算法的概念和基本特性- 什么是算法?算法的特点有哪些?- 算法的分类及常见算法的应用领域2.算法设计方法- 穷举法:逐个测试所有可能的解决方案- 分治法:将问题分解为更小的子问题解决- 动态规划法:将问题划分为相互重叠的子问题解决- 贪心法:每一步都选择当前最优的解决方案3.实际问题的算法解决- 使用穷举法解决排列组合问题- 使用分治法解决最大子数组和问题- 使用动态规划法解决背包问题- 使用贪心法解决背包问题五、教学方法:1.讲授相结合:通过教师讲解和演示应用实例,使学生理解算法的概念和基本特性2.练习与讨论:设置小组讨论和课堂练习,提高学生算法设计和解决问题的能力3.案例分析:通过实际问题的算法案例分析,让学生了解算法在实际问题中的应用六、教学过程:1.引入:通过一个生活中的实际问题引入算法的概念和基本特性2.讲解:介绍算法的概念、基本特性和常见的算法设计方法3.实例演示:通过一些实际问题的算法解决实例演示,让学生了解算法的应用4.练习训练:设置练习题目,让学生熟练掌握算法设计方法和解决问题的能力5.总结反思:总结本节课的学习内容,让学生反思算法的重要性和实际应用七、教学资料:1.教材PPT2.练习题目3.实例演示案例八、作业布置:1.完成练习题目2.对一道实际问题进行算法设计和解决九、教学效果评估:1.课堂参与情况2.练习题目的完成情况3.实际问题的算法设计和解决情况十、教学反思:1.对学生的学习情况进行总结和反思2.根据学生的反馈和表现进行下节课的调整和优化十一、教学延伸:1.扩展更多的算法设计方法和应用案例2.进行竞赛和挑战,提高学生算法设计的能力十二、教学课件:(以上为教案范本,具体实施时可根据实际情况进行调整)。
"数学§1.1.1算法的概念教案新人教A版必修3 "算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考):1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时§1.1 算法与程序框图§1.1.1 算法的概念一、教材分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.二、教学目标1、知识与技能:(1)了解算法的含义,体会算法的思想。
河北省武邑中学高中数学算法的概念教案新人教A版必修3 备课人授课时间
课题1.1.1算法的概念
课标要求 1.了解算法的含义,体会算法的思想;2.掌握正确的算法应满足的要求。
教学目标
知识目标
(1)了解算法的含义,体会算法的思想。
(2)能够用自然
语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会
写出解线性方程(组)的算法。
(5)会写出一个求有限整数
序列中的最大值的算法。
技能目标
通过求解二元一次方程组,体会解方程的一般性步骤,从而
得到一个解二元一次方程组的步骤,这些步骤就是算法,不
同的问题有不同的算法。
由于思考问题的角度不同,同一个
问题也可能有多个算法,能模仿求解二元一次方程组的步
骤,写出一个求有限整数序列中的最大值的算法。
情感态度价值观
通过本节的学习,使我们对计算机的算法语言有一个基本的
了解,明确算法的要求,认识到计算机是人类征服自然的一
各有力工具,进一步提高探索、认识世界的能力。
重点算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点把自然语言转化为算法语言,写出解决一类问题的算法。
教问题与情境及教师活动学生活动
学过程及方法一.导入新课
思路1(情境导入)
一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法
二.研探新知
探究(一):算法的概念
思考1:在初中,对于解二元一次方程组你学过哪些方法?
思考2:用加减消元法解二元一次方程组
()
()
⎩
⎨
⎧
=
+
-
=
-
2
1
2
1
1
2
y
x
y
x
的具体步骤是什么?
第一步,①+②×2,得 5x=1 . ③
第二步,
第三步,
第四步,
1
河北武邑中学教师课时教案
教问题与情境及教师活动学生活动
学过程及方法
第五步,
思考3:参照上述思路,一般地,解方程组
⎩
⎨
⎧
=
+
=
+
2
2
2
1
1
1
c
y
b
x
a
c
y
b
x
a
()0
1
2
2
1
≠
-b
a
b
a的基本步骤是什么?
第一步,
第二步,
第三步,
第四步,
第五步,
思考4:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个
“算法”。
我们再根据这一算法编制计算机程序,就可以让计
算机来解二元一次方程组.那么解二元一次方程组的算法包括
哪些内容?
思考5:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的。
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
思考6:有人对哥德巴赫猜想“任何大于4的偶数都能写成两个质数之和”设计了如下操作步骤:
第一步,检验6=3+3,
第二步,检验8=3+5,
第三步,检验10=5+5,
……
利用计算机无穷地进行下去!
请问:这是一个算法吗?
思考7:根据上述分析,你能归纳出算法的概念吗?
算法的定义:广义的算法是指完成某项工作的方法和步骤,在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤
算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”
是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.
探究(二):算法的步骤设计
【例1】(1)设计一个算法,判断7是否为质数.
(2)设计一个算法,判断35是否为质数.
算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.
2
河北武邑中学教师课时教案
学过程及方法
算法如下:
⑴第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7
第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.
第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.
第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.
第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除
7.因此,7是质数.
⑵类似地,可写出“判断35是否为质数”的算法:
第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.
第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.
第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.
第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.
因此,35不是质数.
变式训练请写出判断n(n>2)是否为质数的算法.()4P
【例2】写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法
分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.
“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.
解:第一步,令f(x)=x2-2,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点m=
2
b
a+
.
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];
否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b].
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.
若是,则m是方程的近似解;否则,返回第三步.
当d=0.005时,按照以上算法,可以得到下表.
a b |a-b|
1 2 1
1 1.5 0.5
1.25 1.5 0.25
3
河北武邑中学教师课时教案
学过程及方法
实际上,上述步骤也是求2的近似值的一个算法
三.随堂练习
1.
5
P练习2
2.一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.
解:具体算法如下:
算法步骤:
第一步:人带两只狼过河,并自己返回.
第二步:人带一只狼过河,自己返回.
第三步:人带两只羚羊过河,并带两只狼返回.
第四步:人带一只羊过河,自己返回.
第五步:人带两只狼过河.
教学小结(1)正确理解算法这一概念.
(2)结合例题掌握算法的特点,能够写出常见问题的算法.
课
后
反
思
4。