冲击地压的监测方法
- 格式:ppt
- 大小:1.52 MB
- 文档页数:18
冲击地压测定监测与防治方法地压是指地层中发生的岩层破裂、变形、滑动等引起的地表活动现象。
地压灾害主要表现为地表下陷、地裂缝、建筑物倾斜、地下管线断裂等。
冲击地压是特指地压灾害中在一瞬间发生的瞬间放能。
冲击地压对人类和社会造成严重危害,因此需要进行地压测定、监测与防治。
下文将介绍冲击地压的相关方法。
1.地层压力测试。
通过在地下进行地层的钻孔与地堰,然后通过测量钻进地下的过程中所遇到的地层水压、岩层强度指标等,得出地层的压力情况。
2.地震勘探。
通过地震波传播的方法,测定地下岩石体的结构和密度,从而得出地压的程度和可能产生的范围。
3.变形探测。
利用高精度的变形仪器对地表进行监测,观察地表的变形情况,从而判断地下是否存在地层压力。
冲击地压监测是指对地下岩石体的地压情况进行实时监测,并根据监测结果做出相应的应对措施。
常见的冲击地压监测方法有:1.监测孔注浆。
在地下建设监测孔,通过注入浆液来填充空隙,增强地层的稳定性,从而减少地压的发生。
2.应变测量。
在地表和地下建筑物中设置应变仪器,通过测量应变的变化情况来判断地压的变化情况。
3.声波监测。
通过在地下设置声波设备,传输声波信号,观察声波反射的情况,来判断地下岩石体的密度和结构情况,从而判断地压的可能性。
冲击地压防治是针对地压灾害的实施具体措施,以减轻冲击地压的危害,保护人类和社会的安全。
常见的冲击地压防治方法有:1.岩体加固。
通过对地下岩体进行加固,如钢筋混凝土浇筑、喷射混凝土等,增强岩体的稳定性,减少冲击地压的发生。
2.地下排水。
通过设置地下排水系统,及时排除地下水,并排除地下溶洞、裂缝等因素,减少地下岩石的变形和滑动,减轻冲击地压的危害。
3.爆破放能。
在地下岩石体中进行控制性的爆破,通过其能量的释放来调整地下岩体的应力分布,减轻地压的危害。
综上所述,冲击地压的测定、监测与防治方法包括地层压力测试、地震勘探、变形探测等测定方法;监测孔注浆、应变测量、声波监测等监测方法;岩体加固、地下排水、爆破放能等防治方法。
冲击地压监测预警方案微震、地音监测及冲击地压的预测预报由防冲办负责,根据监测结果做好卸压解危措施的落实工作,确保安全生产。
监测过程中,如果工作面周围的地音监测异常指数超过预警指标,判定存在冲击地压危险,应及时进行解危治理。
(一)微震监测方案利用xxxx上09运顺外围系统周边的微震探头对xxxx上09运顺外围系统进行监测。
(二)地音监测方案。
xxxx上09掘进工作面各布设2个地音监测探头,当工作面距离最近探头110m的时候,将最远一组探头移至距迎头30m位置,以此方式循环移动传感器。
方式见图7-3.图7-3 xxxx上09工作面掘进期间地音探头布置示意图三、冲击地压预警指标(一)微震监测系统预警指标微震监测的能量分级预警指标按表7-3内容执行。
表7-3 微震能量分级预警指标危险等级指标及其取值范围无冲击危险1.一般:102~103J,最大Emax<5×103J;2.∑E<5×103J/每5m推进度;3.井下无震动。
弱冲击危险1.一般:102~104J,最大Emax<5×104J;2.∑E<5×104J/每5m推进度;3.有矿压显现。
中等冲击危险 1.一般:102~105J,最大Emax<5×105J;地音监测系统以地音活动偏差值及变化趋势作为危险性评价的主要依据。
1.冲击危险等级划分a级—无冲击危险。
b级—弱冲击危险。
此时应加强对冲击危险状态的监测及采掘作业的监督管理。
c级—中等冲击危险。
此时应实施冲击地压解危措施,降低冲击地压危险程度。
d级—强冲击危险。
此时应停止采掘作业,并撤离不必要的人员;制定防冲措施,检查防冲效果;直到危险等级降低后,才可继续进行采掘作业。
2.预警规则(1)单个地音通道连续至少两个班的危险等级达到c或d,判定该探头前后50m范围存在冲击危险,取较高等级作为该区域的冲击危险等级(c或d)。
(2)同一顺槽相邻两个通道在最近一个班同时达到c或d,判定这两个探头之间区域为冲击危险区,危险等级取较高等级。
煤矿冲击地压区域应力监测与源头防治关键技术及示范应用1、引言随着我国经济的快速发展和能源需求的不断增加,煤矿资源逐渐成为我国能源供应的主要来源之一。
然而,煤矿开采过程中,由于地质条件的限制以及采矿技术的限制,冲击地压现象时常发生,引起严重的矿山灾害。
因此,在煤矿冲击地压区域应力监测与源头防治方面,研究关键技术,开展示范应用,对于保障煤矿生产安全具有重要意义。
2、冲击地压的概念冲击地压是指在采煤过程中,由于煤柱受到突出煤和后方煤体的影响而发生的一种地压现象。
由于受力突发且一般难以预测,往往会导致地表沉降、煤柱破坏以及矿井顶板垮落等严重后果。
3、冲击地压区域应力监测技术冲击地压区域应力监测技术是指通过对煤层应力进行实时监测,以便快速准确地预测冲击地压事件的发生,从而采取相应的防范措施。
目前,煤矿冲击地压区域应力监测主要采用的技术包括钢筋测力仪、综合地质仪器和数码测量等。
4、冲击地压源头防治技术冲击地压源头防治技术是指通过改变煤层力学性质或采矿参数,从源头上控制冲击地压事件的发生。
目前,煤矿冲击地压源头防治主要采用的技术包括压缩煤柱保护法、控制宽度采煤法和减小采高等。
5、关键技术的示范应用为了加强煤矿冲击地压区域应力监测与源头防治技术的示范应用,我国部分煤矿开展了一系列的研究。
例如湖南龙山煤矿采用了数控综采面区域应力实时监测技术和综合地质仪器进行冲击地压预测和预防;山东金鼎煤矿引进了压缩煤柱保护技术,并结合井下综合地质工作实现了冲击地压源头的防控。
6、总结煤矿冲击地压是煤矿生产过程中不可避免的灾害之一,对于煤矿生产安全具有重要影响。
煤矿冲击地压区域应力监测与源头防治技术的关键技术研究及示范应用,可为煤矿生产安全提供有力保障,促进我国煤炭资源的可持续发展。
新立煤矿冲击地压监测技术与方法摘要:根据新立煤矿三水平91#煤层目前冲击地压监测的相关条件,建立多手段和多参量的冲击地压综合监测体系。
其中微震监测可以对全井田范围进行冲击地压动载荷的实时监测,而钻屑法和电磁辐射监测法可以针对圈定的重点危险区域进行监测,其中电磁辐射监测法操作简单、用时少、效率高,有利于生产现场冲击危险区域的有效监控。
另外,钻屑法也可以作为一种检验手段,对监测效果进行验证或者在当前系统的监测盲区进行人工监测。
关键词:微震监测;钻屑法;电磁辐射对冲击地压进行监测,必须弄清其发生的能量来源。
根据冲击启动理论,冲击地压启动的能量来源主要分为两类,即采动围岩远场系统外集中动载荷和近场系统内集中静载荷。
系统外集中动载荷包括了远场的或近场的厚硬岩层活动、采掘爆破等产生的冲击波,以采场大面积坚硬顶板断裂或上覆高位坚硬顶板断裂、底板断裂、井下爆破产生的瞬间压缩弹性能为主;系统内集中静载荷指采动影响产生应力场后,以顶底板断裂前产生的集中弯曲弹性能和采场围岩中的集中压缩弹性能为主。
通常情况下,冲击地压主要采用三种监测手段对诱发冲击地压的载荷来源进行分源监测:①微震监测系统来监测大范围的煤岩层断裂所产生的动载荷,监测范围可覆盖到整个井田区域,适用于区域大范围远场监测,实现长期危险趋势预测。
②地音系统来监测小范围巷道围岩的微破裂,监测范围可覆盖到采掘工作面超前或滞后150m范围,适用于关键区域精细化监测及预警。
③采动应力监测系统来实时监测巷道煤帮中产生的集中静载荷连续变化情况,不受人为因素影响。
根据新立煤矿现在具备的条件,选择微震监测、电磁辐射监测和钻屑法监测作为联合预警的三种监测手段,根据安全生产条件变化适时补充应力在线监测系统。
1微震监测法微震监测法就是采用微震网络进行现场实时监测,通过提供震源位置和发生时间来确定一个微震事件,并计算释放的能量;进而统计微震活动性的强弱和频率,并结合微震事件分布的位置判断潜在的矿山动力灾害活动(冲击地压)规律,通过识别矿山动力灾害活动规律(冲击地压)实现危险性评价和预警。
一种煤矿冲击地压检测方法
煤矿冲击地压是指煤矿工作面进刀面中岩层破裂和冲击作用引起的地压现象。
为了及时监测和掌握煤矿冲击地压的变化情况,煤矿冲击地压检测方法也逐渐发展和改进。
下面介绍一种常见的煤矿冲击地压检测方法:
局部地压传感器法:通过安装在工作面采掘机上的局部地压传感器,实时、连续地测量和记录岩石体的应变变化,进而推算出地层应力和地层应变。
该方法主要包括以下步骤:
1. 选取煤层中合适的位置,在工作面采掘机上安装局部地压传感器,使传感器能够直接受到煤层冲击的应变变化。
2. 传感器通过连接线将采集到的应变信号传输到数据采集装置中,可以是单点传感器的信号采集电路,也可以是多点传感器的信号采集装置。
3. 数据采集装置将传感器采集到的应变信号转换成电信号并记录下来,可以通过实时显示装置直观地观察到岩体的变化。
4. 通过对应变信号进行分析和处理,计算出地层的应力和应变等参数,包括最大地压、封闭机构压力、后翻角度等。
5. 根据测量结果,及时调整采矿参数,采取合理的支护措施,以减轻地压对工
作面和作业人员的影响。
局部地压传感器法可以实时监测到冲击地压的变化情况,为煤矿生产管理人员提供科学的数据支持,有助于及时采取措施减轻冲击地压对煤矿生产的影响。
煤矿冲击地压监测系统1 国外冲击地压监测发展状况煤矿冲击地压发生的原因极其复杂,影响因素较多,灾害严重,无疑是一个困扰绝大多数国家并且没有有效的解决办法的共同问题。
1738年,英国首次报道了冲击地压的影响,并且在此后许多国家相继遭受了冲击地压给煤矿产业及人们带来的不同程度的危害,全世界包含中国在内的30多个多家的矿区均发生过不同程度的冲击地压,其中,遭受灾害的在德国和波兰发生的频率最高,破坏程度最严重。
截止2017年,波兰冲击地压的监测系统主要有如下几种,矿井采用微震监测系统,矿监控系统的使用原则是,只要能正常工作,就要使用该设备。
地面声发射监测系统是近年来由EMAG研究中心开发的一种新的监测系统。
它用于监测工作面周围岩石层的断裂。
目前,该系统正处于试验阶段,通过二十五年来不断的坚持研究,最终确定了一系列监测系统,同时也模拟起草了多部有关规定及防范监测措施,并在大量的实践中取得了优越的防治效果,从根本上成功的预防并减少了冲击地压给矿产业带来的危害。
1951年以来,苏联地质力学和岩体测量机构与其他矿业相关研究单位联手解决有冲击地压带来的灾害问题,通过二十五年来不断的坚持研究,最终确定了一系列监测系统,同时也模拟起草了多部有关规定及防范监测措施,并在大量的实践中取得了优越的防治效果,从根本上成功的预防并减少了冲击地压给矿产业带来的危害。
1955到1977年间危险矿山的数量从八增加到36,而年度冲击的数量从83下降到7,然后下降到1980以后的5和6倍。
在前苏联,岩爆的频率比煤矿小得多。
主要形式是岩石喷射、振动和微冲击。
在德国,煤层顶板的冲击压力主要是550m的岩层表面,所以,顶部岩石层将是冲击地压受影响最为严重的一部分,德国研制的煤粉钻屑法等方法具有较高的国际威望。
2 研究目的和意义随着我国矿山开采速度的迅速增加,灾害呈现程度越来越严重、范围越来越大的趋势,近几年来因岩爆造成的伤亡人数剧增,有些矿井一次冲击摧毁巷道长度达到500米以上,因此冲击地压监测已经成为很多煤矿生产的最薄弱环节,冲击何时来、发生冲突后导致什么后果,是目前矿井面临的主要问题,促进了人们对冲击地压状态监测的研究。
冲击地压测定、监测与防治方法
地压是土壤对基础结构的长期作用产生的巨大而持续的应力,它
会对重要的结构设施产生破坏性的影响。
为了进行地压测定,一般使
用压测仪,用来监控这种应力的变化,估计偏心应力对结构的影响,
评估地压的影响,以及进行预防防护。
一般来说,地压测定可以分为两个主要步骤:土地调查、地压测定。
土地调查先要查明需要测定地压的地点,研究其土壤、岩石等性质,分析土地环境情况,以及代表性点处地压值比较,以便正确判断
所在区域地压变化趋势。
地压测定采用深层孔洞测试方法来确定地压,具体步骤是:1、
在测点处饲养探头;2、数据采集;3、数据处理;4、计算地压的大小;
5、结果比较;
6、确定地压负荷的穿透效应;
7、绘制穿透曲线,确定
地压变化趋势。
一旦确定地压,就可以采取相应措施来防护基础设施。
根据地压
的分布情况,可以采用不同的措施,具体有固定地基、调节地基、护
筑固结构等。
此外,还可以进行地压的动态监测,将地压数据(如负
荷和位移)存储在数据库中,定期检查,及时发现地压变化,以便做
出正确的判断和防护措施。
地压测定、监测和管理是保障建筑和结构安全运行的重要环节,
只有恰当采取措施,才能有效防止负荷或应力大小超出设计范围,避
免构筑物受损影响、脆弱起坍或破坏、坍塌等危险情况发生。