冲击地压实时监测预警技术及其应用
- 格式:pdf
- 大小:378.61 KB
- 文档页数:4
KJ24监测预警应用问题问题一:KJ24钻孔应力计预警值确定的流程、方法。
(无法确定预警值,这两套系统在矿上无法得到实际应用,每天接收数据无法切实应用,贵方安装调试KJ24系统,在各矿应用过程中,肯定协助出过相关技术报告,集团检查一直要求做出预警值及完整的确定流程。
)答:冲击地压实时在线监测系统是基于钻屑法的基本原理,通过大量的现场监测数据和理论研究找出岩层运动、支撑压力、钻屑量与钻孔围岩应力之间的内在关系进而得到典型煤层条件下“钻屑量-绝对应力-相对应力”之间的关系,通过实时在线监测工作面前方相对应力场的变化规律,实现冲击地压危险区和危险程度的实时监测预警和预报。
采用钻屑法对初始预警值进行标定,从而确定预警阀值,当煤体应力超过预警阀值时系统将自动报警。
预警级别划分为绿色、黄色、红色三级,系统安装初期要根据周围矿井或工作面防冲经验确定一套预警值,初始理论预警值可设置如下:后期结合本工作面的实际情况利用钻屑法进行检验,找出应力预警值与临界钻屑量的关系,从而确定适合当前工作面的预警值。
具体方法如下:应力在线监测系统预报冲击地压的一般准则:(1)不发生冲击地压准则1:全绿色——所有测点均小于预警值2:一组黄色+过程判断——三天内无明显增加3:一组红色+过程判断——一天内无明显增加(2)发生冲击地压准则1:两组及以上红色预警——停产、卸压2:两组及以上黄色预警+钻屑量超限或动压明显——停产、卸压3:一组红色预警+过程判断——一天内明显增加且钻屑量超限或动压明显,局部冲击;变化小或下降,钻屑量不超限,不发生冲击。
(3)预警处理方法1:绿色预警当所有测点压力均处于绿色预警范围时,说明该区域内无发生冲击地压的危险性或卸压效果显著,只需进行常规钻屑量检验。
2:黄色预警出现一组黄色预警时需要下一检修班在预警点附近钻屑检验,若煤粉超量或动压明显则需要立即进行大直径钻孔卸压;若不超量且无明显动压显现,则只需加强该测点附近的应力观测;当黄色预警出现两组以上时则需要进行大直径钻孔卸压;3:红色预警监测区域内出现一组红色预警时,需要下一检修班在预警点附近进行大直径钻孔卸压及钻屑法检验,分析预警原因并采取相应措施;当红色预警出现两组以上时需要停产并分析原因,采取适当措施卸压直至达到安全范围;(4)冲击地压治理流程根据发生冲击地压的成因和机理,防治措施分为两大类:一类是防范措施;另一类是解危措施。
冲击地压监测预警方案微震、地音监测及冲击地压的预测预报由防冲办负责,根据监测结果做好卸压解危措施的落实工作,确保安全生产。
监测过程中,如果工作面周围的地音监测异常指数超过预警指标,判定存在冲击地压危险,应及时进行解危治理。
(一)微震监测方案利用xxxx上09运顺外围系统周边的微震探头对xxxx上09运顺外围系统进行监测。
(二)地音监测方案。
xxxx上09掘进工作面各布设2个地音监测探头,当工作面距离最近探头110m的时候,将最远一组探头移至距迎头30m位置,以此方式循环移动传感器。
方式见图7-3.图7-3 xxxx上09工作面掘进期间地音探头布置示意图三、冲击地压预警指标(一)微震监测系统预警指标微震监测的能量分级预警指标按表7-3内容执行。
表7-3 微震能量分级预警指标危险等级指标及其取值范围无冲击危险1.一般:102~103J,最大Emax<5×103J;2.∑E<5×103J/每5m推进度;3.井下无震动。
弱冲击危险1.一般:102~104J,最大Emax<5×104J;2.∑E<5×104J/每5m推进度;3.有矿压显现。
中等冲击危险 1.一般:102~105J,最大Emax<5×105J;地音监测系统以地音活动偏差值及变化趋势作为危险性评价的主要依据。
1.冲击危险等级划分a级—无冲击危险。
b级—弱冲击危险。
此时应加强对冲击危险状态的监测及采掘作业的监督管理。
c级—中等冲击危险。
此时应实施冲击地压解危措施,降低冲击地压危险程度。
d级—强冲击危险。
此时应停止采掘作业,并撤离不必要的人员;制定防冲措施,检查防冲效果;直到危险等级降低后,才可继续进行采掘作业。
2.预警规则(1)单个地音通道连续至少两个班的危险等级达到c或d,判定该探头前后50m范围存在冲击危险,取较高等级作为该区域的冲击危险等级(c或d)。
(2)同一顺槽相邻两个通道在最近一个班同时达到c或d,判定这两个探头之间区域为冲击危险区,危险等级取较高等级。
对于煤矿冲击地压灾害监测预警技术的几点思考随着煤矿工作深入,煤矿冲击地压灾害成为矿工们面临的严重挑战。
为了有效预防和及时应对冲击地压灾害,监测预警技术至关重要。
本文将对煤矿冲击地压灾害监测预警技术进行几点思考和讨论。
一、传感器技术在煤矿冲击地压灾害监测预警中的应用传感器技术在煤矿监测预警中发挥着至关重要的作用。
传感器可以实时监测地压变形、震动等参数,通过数据分析和处理,提前发现地质构造紧张、裂隙扩张等可能引发冲击地压灾害的迹象,从而采取相应的预警措施。
在传感器技术方面,目前应用最为广泛的有应变、振动、声波等传感器,通过这些传感器监测地质构造和煤层变形,发现预警信号。
未来,随着传感器技术的不断发展,将有望实现更加精准和智能化的监测预警系统。
传感器监测到的大量数据需要进行有效处理和分析,以提取出有价值的信息,从而进行有效的预警。
数据处理与分析在煤矿冲击地压监测预警中发挥着至关重要的作用。
目前,已经有一些成熟的数据处理和分析技术应用于煤矿监测预警中,比如基于人工智能的数据挖掘、机器学习等技术,能够对传感器监测到的数据进行精准的分析,发现地质构造和煤层变形的规律和趋势,提前发现可能的冲击地压灾害风险。
未来,随着大数据、人工智能等技术的不断成熟和应用,数据处理与分析在煤矿冲击地压灾害监测预警中的作用将进一步凸显。
地质雷达技术是一种利用电磁波探测地下构造和地质体的技术,在煤矿监测预警中有着广阔的应用前景。
地质雷达技术能够穿透地表和地下松动层矿体,获取地下煤层和岩层的结构信息,发现煤层变形、岩层位移等迹象,为冲击地压灾害的预警提供重要依据。
随着地质雷达技术的不断发展和成熟,其在煤矿冲击地压灾害监测预警中的应用前景将更加广阔。
智能预警系统是指基于先进的传感器技术、数据处理与分析技术等,实现对煤矿冲击地压灾害的智能监测和预警。
智能预警系统能够全面监测煤矿地质构造和煤层变形的情况,通过对监测到的数据进行实时分析和处理,发现冲击地压灾害的迹象,及时发出预警信号,并给出相应的预警建议和措施。
煤矿冲击地压区域应力监测与源头防治关键技术及示范应用1、引言随着我国经济的快速发展和能源需求的不断增加,煤矿资源逐渐成为我国能源供应的主要来源之一。
然而,煤矿开采过程中,由于地质条件的限制以及采矿技术的限制,冲击地压现象时常发生,引起严重的矿山灾害。
因此,在煤矿冲击地压区域应力监测与源头防治方面,研究关键技术,开展示范应用,对于保障煤矿生产安全具有重要意义。
2、冲击地压的概念冲击地压是指在采煤过程中,由于煤柱受到突出煤和后方煤体的影响而发生的一种地压现象。
由于受力突发且一般难以预测,往往会导致地表沉降、煤柱破坏以及矿井顶板垮落等严重后果。
3、冲击地压区域应力监测技术冲击地压区域应力监测技术是指通过对煤层应力进行实时监测,以便快速准确地预测冲击地压事件的发生,从而采取相应的防范措施。
目前,煤矿冲击地压区域应力监测主要采用的技术包括钢筋测力仪、综合地质仪器和数码测量等。
4、冲击地压源头防治技术冲击地压源头防治技术是指通过改变煤层力学性质或采矿参数,从源头上控制冲击地压事件的发生。
目前,煤矿冲击地压源头防治主要采用的技术包括压缩煤柱保护法、控制宽度采煤法和减小采高等。
5、关键技术的示范应用为了加强煤矿冲击地压区域应力监测与源头防治技术的示范应用,我国部分煤矿开展了一系列的研究。
例如湖南龙山煤矿采用了数控综采面区域应力实时监测技术和综合地质仪器进行冲击地压预测和预防;山东金鼎煤矿引进了压缩煤柱保护技术,并结合井下综合地质工作实现了冲击地压源头的防控。
6、总结煤矿冲击地压是煤矿生产过程中不可避免的灾害之一,对于煤矿生产安全具有重要影响。
煤矿冲击地压区域应力监测与源头防治技术的关键技术研究及示范应用,可为煤矿生产安全提供有力保障,促进我国煤炭资源的可持续发展。
新立煤矿冲击地压监测技术与方法摘要:根据新立煤矿三水平91#煤层目前冲击地压监测的相关条件,建立多手段和多参量的冲击地压综合监测体系。
其中微震监测可以对全井田范围进行冲击地压动载荷的实时监测,而钻屑法和电磁辐射监测法可以针对圈定的重点危险区域进行监测,其中电磁辐射监测法操作简单、用时少、效率高,有利于生产现场冲击危险区域的有效监控。
另外,钻屑法也可以作为一种检验手段,对监测效果进行验证或者在当前系统的监测盲区进行人工监测。
关键词:微震监测;钻屑法;电磁辐射对冲击地压进行监测,必须弄清其发生的能量来源。
根据冲击启动理论,冲击地压启动的能量来源主要分为两类,即采动围岩远场系统外集中动载荷和近场系统内集中静载荷。
系统外集中动载荷包括了远场的或近场的厚硬岩层活动、采掘爆破等产生的冲击波,以采场大面积坚硬顶板断裂或上覆高位坚硬顶板断裂、底板断裂、井下爆破产生的瞬间压缩弹性能为主;系统内集中静载荷指采动影响产生应力场后,以顶底板断裂前产生的集中弯曲弹性能和采场围岩中的集中压缩弹性能为主。
通常情况下,冲击地压主要采用三种监测手段对诱发冲击地压的载荷来源进行分源监测:①微震监测系统来监测大范围的煤岩层断裂所产生的动载荷,监测范围可覆盖到整个井田区域,适用于区域大范围远场监测,实现长期危险趋势预测。
②地音系统来监测小范围巷道围岩的微破裂,监测范围可覆盖到采掘工作面超前或滞后150m范围,适用于关键区域精细化监测及预警。
③采动应力监测系统来实时监测巷道煤帮中产生的集中静载荷连续变化情况,不受人为因素影响。
根据新立煤矿现在具备的条件,选择微震监测、电磁辐射监测和钻屑法监测作为联合预警的三种监测手段,根据安全生产条件变化适时补充应力在线监测系统。
1微震监测法微震监测法就是采用微震网络进行现场实时监测,通过提供震源位置和发生时间来确定一个微震事件,并计算释放的能量;进而统计微震活动性的强弱和频率,并结合微震事件分布的位置判断潜在的矿山动力灾害活动(冲击地压)规律,通过识别矿山动力灾害活动规律(冲击地压)实现危险性评价和预警。
综放工作面冲击地压综合防治安全技术措施1. 引言综放工作面是煤矿开采过程中的重要环节,但由于冲击地压等因素的存在,对工人的安全构成了威胁。
为了提高综放工作面的安全性,并降低事故风险,需要采取一系列的综合防治安全技术措施。
本文将介绍一些常用的冲击地压综合防治安全技术措施,以提供参考。
2. 环境监测在综放工作面施工之前,应首先对其周围环境进行全面而准确的监测。
环境监测内容包括地质构造、地应力水平、地下水位等因素的调查。
通过环境监测,可以及早发现任何潜在的安全隐患,以便采取相应的措施进行防范。
3. 改良巷道支护技术巷道是综放工作面的重要组成部分,在冲击地压方面起着关键作用。
为了增强巷道的支护能力,减少冲击地压对工人和设备的影响,常采用的技术措施有:•硬岩巷道支护:采用钢支撑、喷射混凝土等方法,增强巷道的稳定性和承载力;•软岩巷道支护:采用锚杆、网片等材料,增加巷道的抗压能力;•综合支护:根据实际情况采取多种支护措施的综合应用,以提高巷道的整体稳定性。
4. 规范施工作业在综放工作面施工过程中,应严格按照相关规章制度进行作业,并严禁违章操作。
施工作业过程中,需要注意以下几点:•合理划分工作面:根据地质条件合理划定工作面的范围,以便更好地保证施工过程的安全;•定期检查设备:对综放工作面所使用的设备进行定期的检查和维护,确保其工作正常;•合理布置通风系统:通过合理布置通风系统,保证空气流通,降低冲击地压带来的危险;•定期进行培训:对参与综放工作面施工的工人进行定期培训,增强其安全意识和应急能力。
5. 科技应用随着科技的进步,一些先进的技术也被应用于综放工作面的冲击地压防治中。
这些技术包括:•激光测距技术:通过激光测距仪器实时监测巷道的变形情况,提前预警地压危险;•无人机巡检:利用无人机对综放工作面进行巡检,及时发现可能的安全隐患;•数据分析系统:通过建立综放工作面的数据分析系统,对冲击地压进行实时监测和分析,以指导安全管理决策。
煤矿冲击地压灾害及其控制技术发布时间:2021-05-07T15:20:04.827Z 来源:《工程管理前沿》2021年1月第3期作者:权福国[导读] 随着浅部煤炭资源的枯竭,煤矿的开采深度逐步加深,权福国山东济宁运河煤矿有限责任公司山东省济宁市 272000摘要:随着浅部煤炭资源的枯竭,煤矿的开采深度逐步加深,地压大,水温高,深部岩石岩性改变等特点逐步突出显现,随之而来的各种动力灾害现象也显著增加。
根据巷道及工作面冲击震动破坏的原因和机理,现对煤矿冲击地压发生的情况进行了统计并分析了其特点,提出了冲击地压防治的有效技术手段和监测预警系统。
关键词:煤矿冲击地压;灾害;监测预警引言:冲击地压又叫作岩爆,是指岩体中积聚的弹性变形势能在一定的条件下猛烈地释放,导致岩石爆裂,并弹出碎片的现象,可以说岩爆是目前为止矿山安全事故多发的因素之一。
在发生岩爆的同时会产生剧烈的震动,不仅严重损坏井下巷道及设备,而且还会使地面上的建筑遭到极大的破坏。
该种灾害发生的时间可能是几天也可能是几个月,由于冲击地压非常复杂,所以一般很难用单一的方法对其进行监测,因此各种监测预警技术应该综合考虑多种因素才能达到安全预警的效果。
正文:一、冲击地压现象概述冲击地压是矿山井巷和采场周围煤岩体由于变形能释放而产生的以突然、急剧、猛烈的破坏为特征的动力现象。
冲击地压与岩爆、矿震、煤与瓦斯突出同属于煤岩动力灾害,但是它又明显不同于岩爆、矿震和煤与瓦斯突出。
冲击地压与岩爆最显著的差异在于构成结构体的岩性明显不同,冲击地压发生在煤矿井巷,而岩爆多发生在含脆性岩体的非煤矿山和井巷工程中,冲击地压的破坏程度、影响范围比岩爆要大的多。
冲击地压和岩爆常会导致矿震的发生,而矿震则不一定会导致冲击地压或岩爆的发生。
冲击地压与煤与瓦斯突出最大的不同在于前者没有气体的参与。
冲击地压的发生是有条件的,并非相同地质条件的矿井都会发生冲击地压,即使同一矿井,也不是所有的地区都会发生冲击地压。
对于煤矿冲击地压灾害监测预警技术的几点思考1. 引言1.1 煤矿冲击地压灾害监测预警技术的重要性煤矿冲击地压灾害监测预警技术的重要性在煤矿生产中起着至关重要的作用。
由于煤矿冲击地压灾害是造成煤矿事故和灾难的主要原因之一,及时有效地监测和预警这种灾害可以有效降低事故发生的概率,保护矿工的生命安全。
通过采用先进的监测预警技术,可以实时监测矿山地质运动情况,提前发现潜在的地质灾害隐患,预警相关部门和矿工采取必要的防范措施,减少事故的发生及损失。
煤矿冲击地压灾害监测预警技术的应用也有利于提高矿山生产效率,降低生产成本,增强安全生产意识,推动煤矿行业的可持续发展。
加强对煤矿冲击地压灾害监测预警技术的研究和应用具有极其重要的现实意义和深远影响。
1.2 煤矿冲击地压灾害现状煤矿冲击地压灾害是煤矿生产中常见的一种危险性灾害,通常指矿体岩层发生松动、位移或坍塌,对地面造成冲击或挤压作用,导致地面上的建筑物、设施或人员受到损害。
在煤炭开采过程中,矿井工作面产生的巨大采场压力会引起岩层应力的调整,导致地压变形和地质灾害的发生。
煤矿冲击地压灾害严重威胁着矿井的安全生产和相关人员的生命财产安全。
目前,我国煤矿冲击地压灾害监测预警技术还存在一些问题,比如监测手段单一,监测点位有限,预警响应速度慢等。
传统的监测手段主要依靠人工观察和采集数据,存在着监测不及时、准确性低等缺点,无法有效预防和控制煤矿冲击地压灾害。
发展先进的监测预警技术对于煤矿冲击地压灾害的防范和控制至关重要。
采用现代监测技术,借助物联网、人工智能和遥感技术等手段,实现对煤矿冲击地压灾害的实时监测和预警,可以提高预警的准确性和灵敏度,有助于及时发现灾害风险,采取有效措施保障煤矿安全生产。
【字数:274】2. 正文2.1 传统监测预警技术存在的问题1. 数据采集困难:传统监测预警技术往往依靠人工手动收集数据,这种方式效率低下且容易出现漏检、漏报情况。
由于煤矿工作环境的封闭性和危险性,很多地点无法直接到达,导致数据采集受限。
对于煤矿冲击地压灾害监测预警技术的几点思考1. 引言1.1 煤矿冲击地压灾害监测预警技术的重要性煤矿冲击地压灾害是煤矿生产中常见的一种地质灾害,严重威胁着矿工的生命安全和矿山的安全生产。
为了及时监测和预警煤矿冲击地压灾害,保障煤矿生产的安全和稳定,煤矿冲击地压灾害监测预警技术显得尤为重要。
煤矿冲击地压灾害监测预警技术的重要性不言而喻。
通过不断完善和创新监测预警技术,可以提高煤矿生产过程中的安全性和稳定性,减少煤矿冲击地压灾害带来的损失,为煤矿行业的可持续发展做出积极贡献。
1.2 煤矿冲击地压灾害的危害煤矿冲击地压灾害是煤矿生产过程中常见的一种灾害,它的危害主要表现在以下几个方面:1. 造成人员伤亡:煤矿冲击地压灾害往往会导致矿工被埋压、伤亡甚至死亡。
由于地压突发性强,瞬间就会对周围的工人造成严重威胁,因此及时的监测预警显得尤为重要。
2. 破坏矿井设备和工具:冲击地压的巨大压力会导致矿井内部设备和工具的损坏,进而影响矿井的正常生产运行。
这将不仅对煤矿的生产造成严重影响,还可能对整个矿区的安全产生威胁。
3. 影响矿山环境:冲击地压对地下空间的变化会使地表产生裂缝或塌陷,进而对周边环境造成污染和破坏。
这不仅对周边居民的生活造成影响,还可能对当地生态系统造成破坏。
4. 经济损失:煤矿冲击地压灾害会导致生产中断和矿山设备损坏,进而给矿区和相关企业带来巨大的经济损失。
由于灾害造成的人员伤亡和环境破坏也会产生额外的经济负担。
加强冲击地压监测预警技术研究显得尤为迫切。
2. 正文2.1 监测手段的种类及原理监测手段的种类及原理非常重要,可以帮助煤矿有效地监测地压灾害的情况并提前预警,从而减少灾害发生的可能性。
目前,常用的监测手段主要包括以下几种:1. 地表测量:地表测量是一种常见的监测手段,通过放置测点、测站等设备,定期进行测量,获取地表变形情况,从而判断地下岩层压力的变化情况。
2. Borehole监测:Borehole监测是在矿井内部钻孔设置监测仪器,实时监测岩层应力、变形等情况,通过长期观测数据的积累,可以准确地判断地压灾害的风险。
微地震监测系统在冲击地压预测预报中的应用摘要:微地震是一种小型的地震,在地下矿井深部开采过程中不可避免的发生岩石破裂和地震活动。
冲击地压是采矿诱发的矿井地震, 严重威胁着煤矿的安全生产。
微地震监测技术是一种新的地球物理探测技术,利用微地震监测系统是预测预报冲击地压的有效手段,分析微地震事件的分区性,指出应力积聚区域及冲击地压危险区域,成功预测了该工作面的冲击地压。
关键词:微地震监测手段冲击地压预测预报冲击地压,也称岩爆,它是在一定条件下一种岩体中聚积的弹性变形势能突然猛烈释放,导致岩石爆裂并弹射出来的现象。
冲击地压首次在英国南斯塔福煤田发生,所有采煤国家也都陆续出现冲击地压。
发生冲击地压的条件是岩体中有较高的地应力,岩石具有较高的脆性度和弹性,并且地应力超过了岩石本身的强度。
冲击地压具有突然性、瞬时震动性和破坏性,采煤井下生产安全和作业人员的生命安全受到严重威胁,现在已成为世界范围内矿井中最严重的自然灾害之一,对冲击地压进行预测的传统方法主要有采用微地震监测法,下面就谈谈自己对微地震监测系统对冲击地压预测预报的肤浅看法。
1 微地震监测技术以声发射学和地震学为基础的微地震监测系统,该方法集采矿学、地震学、信号采集与处理、信号传输等多学科知识于一体,是研究冲击地压、水害治理、煤与瓦斯突出等矿山灾害的有效手段。
通过观测分析矿井生产活动中所产生的微小地震事件来监测生产活动的影响效果及地下状态的地球物理技术。
地球物理学技术为研究小范围内信号微弱的微地震事件提供了技术支持。
2 微地震系统监测原理当地下岩石由于人为因素或应力作用下发生破裂、移动时,产生微地震和强大的声波向周围传播。
在地下岩土中布置微地震传感器,实现微震数据的自动化采集、传输和处理,利用定位原理确定岩石破坏发生的位置,且在三维空间上显示出来,记录这些微地震波的到达时间、传播方向等信息,利用恰当的计算方法可以确定岩石破裂点,即震源的位置。
(如图1所示)微地震监测技术能够根据震源分析地震破裂尺度和性质。