计量经济学1
- 格式:ppt
- 大小:323.00 KB
- 文档页数:42
1.经济变量: 经济变量是用来描述经济因素数量水平的指标。
2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。
3.被解释变量:是作为研究对象的变量。
它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
)4.内生变量:是由模型系统内部因素所决定的变量,表现为具有一定概率分布的随机变量,是模型求解的结果。
5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
它影响模型中的内生变量,其数值在模型求解之前就已经确定。
6.滞后变量:是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。
7.前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。
8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。
9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型, 是以数学形式对客观经济现象所作的描述和概括。
10.函数关系:如果一个变量y 的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y 与这个变量或这组变量之间的关系就是函数关系。
11.相关关系:如果一个变量y 的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y 与这个变量或这组变量之间的关系就是相关关系。
12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
13.高斯-马尔可夫定理:在古典假定条件下,OLS 估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。
14.总变差(总离差平方和):在回归模型中,被解释变量的观测值与其均值的离差平方和。
15•回归变差(回归平方和):在回归模型中,因变量的估计值与其均值的离差平方和,也就是由解释变量解释的变差。
计量经济学课后习题总结第一章绪论1、什么事计量经济学?计量经济学就是把经济理论、经济统计数据和数理统计学与其他数学方法相结合,通过建立经济计量模型来研究经济变量之间相互关系及其演变的规律的一门学科。
2、计量经济学的研究方法有那几个步骤?(1)建立模型:包括模型中变量的选取及模型函数形式的确定。
(2)模型参数的估计:通过搜集相关是数据,采用不同的参数估计方法,进行模型参数估计。
(3)模型参数的检验:包括经济检验、以及统计学方面的检验。
(4)经济计量模型的应用:经济预测、经济结构分析、经济政策评价。
3、经济计量模型有哪些特点?经济计量模型是一个代数的、随即的数学模型,它可以是线性或非线性(对参数而言)形式。
4、经济计量模型中的数据有哪几种类型(1)定量数据:时间序列数据、截面数据、面板数据(2)定型数据:虚拟变量数据第二章一元线性回归模型1、什么是相关关系?它有那几种类型?(书上没有确切的答案)(1)相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。
变量间的这种相互关系,称为具有不确定性的相关关系(2)相关关系的种类1.按相关程度分类:(1)完全相关:一种现象的数量变化完全由另一种现象的数量变化所确定。
在这种情况下,相关关系便称为函数关系,因此也可以说函数关系是相关关系的一个特例。
(2)不完全相关:两个现象之间的关系介于完全相关和不相关之间(3)不相关:两个现象彼此互不影响,其数量变化各自独立2.按相关的方向分类:(1)正相关:两个现象的变化方向相同(2)负相关:两个现象的变化方向相反3.按相关的形式分类(1)线性相关:两种相关现象之间的关系大致呈现为线性关系(2)非线性相关:两种相关现象之间的关系并不表现为直线关系,而是近似于某种曲线方程的关系4.按相关关系涉及的变量数目分类(1)单相关:两个变量之间的相关关系,即一个因变量与一个自变量之间的依存关系(2)复相关:多个变量之间的相关关系,即一个因变量与多个自变量的复杂依存关系(3)偏相关:当研究因变量与两个或多个自变量相关时,如果把其余的自变量看成不变(即当作常量),只研究因变量与其中一个自变量之间的相关关系,就称为偏相关。
高级计量经济学-1引言高级计量经济学是经济学领域中的一门重要的学科,它主要研究经济现象的测量与分析方法,并利用各种统计工具来揭示经济变量之间的关系。
本文将介绍高级计量经济学的基本概念、方法和应用。
一、基本概念1.1 计量经济学定义计量经济学是一门关于经济现象和经济变量的量化研究方法的学科。
它通过建立数学模型和利用统计推断的方法来解释和预测经济现象。
1.2 经济变量经济变量是指反映经济现象和经济活动的数量特征。
常见的经济变量包括国内生产总值、物价指数、劳动力市场数据等。
二、计量模型2.1 线性回归模型线性回归模型是计量经济学中最常用的模型之一,它假设解释变量和被解释变量之间存在线性关系。
该模型通常用最小二乘法来估计模型参数。
2.2 时间序列模型时间序列模型是一种特殊的计量经济模型,它研究的是同一变量随时间变化的模式。
常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
三、计量经济学方法3.1 最小二乘法最小二乘法是计量经济学中最常用的估计方法之一,它通过最小化观测值与模型预测值之间的差异来估计模型的参数。
3.2 极大似然估计极大似然估计是一种常用的参数估计方法,它通过寻找参数使得观测数据出现的概率最大化来估计模型的参数。
3.3 工具变量法工具变量法是一种常用的处理内生性问题的方法,它利用外生变量作为工具变量来消除内生性引起的估计偏误。
四、计量经济学应用4.1 动态面板数据模型动态面板数据模型是一种处理面板数据的方法,它结合了时间序列数据和横截面数据的特点,用于研究经济变量随时间的变化和个体之间的关系。
4.2 处理选择性偏误选择性偏误是指由于个体选择行为的特殊性质引起的估计偏误。
计量经济学可以通过处理选择性偏误来提高研究结果的准确性。
结论高级计量经济学是一门重要的经济学学科,它利用计量方法和统计工具来研究经济现象和经济变量之间的关系。
本文介绍了高级计量经济学的基本概念、模型、方法和应用,希望能为读者提供有关该领域的基础知识和理解。
计量经济学1、一元线性回归模型:建立两个变量的数学模型:Yi=β₁+β₂Xi +μi ,Yi 为被解释变量。
Xi 为解释变量。
μi 为随机误差项(随机扰动项或随机项、误差项)。
β₁,β₂为回归系数(待定系数、待定参数),这样的模型含有一个解释变量,而且变量之间的关系又是线性的,所以上式称为一元线性回归模型。
2、线性回归模型的基本假设:假设1、解释变量X 是确定性变量,不是随机变量;假设2、随机误差项μi 具有零均值、同方差和不序列相关性:E(μi )=0 i=1,2, …,n 。
V ar(μi )= δu² i=1,2, …,n 。
Cov(μi ,μj)=0,i≠j i,j= 1,2, …n,假设3、随机误差项μi 与解释变量X之间不相关:Cov(Xi,μi)=0 i=1,2, …,n,假设4、μi 服从零均值、同方差、零协方差的正态分布: μi -N(0,δu²)i=1,2, …,n 。
注意:1、如果假设1、2满足,则假设3也满足;2、如果假设4满足,则假设2也满足。
3、普通最小二乘法(OLS ):为了研究总体回归模型中变量X 和Y 之间的线性关系,需要求一条拟合直线,一条好的拟合直线应该是使残差平方和达到最小,以此为准则,确定X 与Y之间的线性关系。
4、回归系数:β₁=1/n ﹙∑Yi -β₂∑Xi ﹚,β₂=n∑XiYi -∑Xi∑Yi /n∑Xi²-﹙∑Xi ﹚²5、常用结果:1、∑ei=0即残差项ei 的均值为0,2、∑eiXi=0即残差项ei 与解释变量Xi 不相关。
3、样本回归方程可以写成Yi º-¯Y¯=β₂(Xi-¯X¯)即样本回归直线过点(¯X¯, ¯Y¯)4、¯Yi º¯=¯Y¯即被解释变量的样本平均值等于其估计值的平均值6、样本可决系数:对样本回归直线与样本观测值之间拟合程度的检验。