初一数学应用题1-销售问题
- 格式:doc
- 大小:34.00 KB
- 文档页数:6
某几关有三个部门,A部门有84人,B部门有56人,C 部门有60人。
如果每个部门按照相同的比例裁减人员,使这个几关留下150人。
求C 部门留下的人数是多少?某车间有60名工人,生产某种配套产品,该产品由一个螺栓赔两个螺母而成。
每个工人每天平均生产螺栓14个或螺母20个。
应该分配多少工人生产螺栓,多少工人生产螺母,才能使生产出的螺栓和螺母刚好配套?某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.椐《新化日报》消息,巴西医生马廷恩经过10年研究后得出结论:卷入腐败行为的人容易得癌症、心血管病,如果犯有贪污、受贿罪的580名官员与600名廉洁官员进行比较,可发现后者的健康人数比前者的健康人数多272人,两者患病(包括致死)共444人,试问犯有贪污、受贿罪的官员的健康人数占580名官员的百分之几,廉洁官员的健康人数占600名官员的百分之几?某塑料厂有工人200名,为改善经营,增设塑料雨衣的制衣项目,已知每名工人每天能织塑料布30米或者利用所织的塑料布制衣4件,制衣一件需布1.5米,获利25元;将布直接出售每米可获利2元,若每名工人一天只能做一项工作,且不记其他因素,设安排x名工人制衣。
初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
一、销售利润问题解答这类应用题除了遵循解答应用题的一般步骤之外,还必须注意抓住以下数量的概念及关系式:商品的进货价格叫做进价。
商品预售的价格叫做标价或原价。
商品实际卖出的价格叫做售价。
商品利润 =商品售价 -商品进价。
商品售价 =商品原价(或标价)×折数。
商品利润率 =商品利润 /商品进价 =(商品售价 -商品进价) /商品进价。
常见的利润问题有:(一)已知进价、售价、求利润率1.脑产品的进价是10000 元,售价为12000 元,此商品的利润率是多少?2.某商品的进价是250 元,按标价的9 折销售时,利润率为15.2% ,商品的标价是多少?(三)已知进价、标价及利润率,求标价或原价的折数3.某名牌西装进价是1000 元,标价是1500 元,某商场要以利润率不低于5% 的价格销售,问售货员可以打几折出售此商品?(四)已知利润率、标价求进价4.商场对某一商品调价,按原价的8 折出售,此时商品的利润率是10% ,已知商品标价为1375 元,求进价。
5.一商场将每台VCD 先按进价提高40% 标出销售价,然后再以八五折优惠价出售,结果还赚了228 元,那么每台 VCD 进价多少元?x% 出售,6.商店购进某种商品的进价是每件 8 元,销售价是每件 10 元,现为扩大销量,将每件的售价降低但要求卖出每一件商品所获利润是降低前所获利润的 90% ,问售价降低了多少?7.“五一”期间,某商场搞优惠促销,决定由顾客抽奖定折扣,某顾客购买甲、乙两种商品,分别抽七折和九折优惠券,共付款 386 元,这两种商品原销售价之和为500 元,这两种商品原销售价分别是多少?8.抗“非典”期间,个别商贩将原来每桶价格 a 元的过氧乙酸消毒液提高20%后出售,市政府及时采取措施,使每桶价格在涨价后以八五折出售,那么现在每桶价格是多少?9.某商店将每台彩电先按进价提高40 %标出售价,然后广告宣传将以八折的优惠价出售,结果每台彩电赚了300 元,则经销这种彩电的利润率是多少?10. 某商品的进价是 500 元,标价是 750 元,商品要求以利润率不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?11. 甲乙两件服装的成本共500 元,商店老板为获取利润,决定将甲服装按50 %的利润定价,乙服装按 40 %的利润定价,在实际出售时,应顾客要求,两件服装均按9 折出售,商店共获利157 元,求甲、乙两件服装的成本各是多少?12. 某商品把进价提高后标价为1200 元,为了吸引顾客,再按九折出售,利润能盈利10%,这件商品的进价是多少?13. 某商品的进价为800 元,标价为1200 元,由于商品积压,准备打折出售,但要保持利润率不低于 5 %,则最低可以打几折?14.某商店有进价不同的两个计算器都卖 64 元,其中一个盈利 60 %,另一个亏本 20%,在这次买卖中,这家商店是赚还是赔?。
七年级上册人教版一元一次方程应用之销售问题一、选择题1.某超市推出如下优惠方案:(1)购物款不超过200元不享受优惠;(2)购物款超过200元但不超过600元一律享受九折优惠;(3)购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款()元.A. 522.80B. 560.40C. 510.40D. 472.802. 一家商场将某种商品按成本价提高50%后标价出售,元旦期间,为答谢新老顾客对商场的光顾,打八折销售,每件商品仍可获利40元.请问这件商品的成本价是多少元?()A. 200元B. 60元C. 125元D. 100元3.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60-x)=87B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87D.0.9×2x+0.8×1.2(60-x)=874.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元5.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是()A. 8折B. 7.5折C. 6折D. 3.3折二、填空题6.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.7.元旦期间,某商业大厦推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了折优惠.8.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.9.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.如果设夹克衫的成本是x元,据题意可列得方程为.三、解答题10.为了丰富学生的课外活动,学校决定购买一批体育活动用品,经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每幅球拍多50元,两个篮球与三幅球拍的费用相等,经洽谈,甲商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球超过80个,则购买羽毛球拍打八折.(1)求每个篮球和每副羽毛球拍的价格是多少?(2)若学校购买100个篮球和a副羽毛球拍,请用含a的式子分别表示出到甲商店和乙商店购买体育活动用品所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商店购买比较合算?11.某校初一(1)、(2)两个班共104人去参观世界珍稀动物展览.每班人数都在60以内,其中(1)班人数较少,不到50人.该展览的门票价格规定:单张票价格为13元;购票人数在51-100人每人门票价为11元;100人以上每人门票价为9元.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.请问:①两班各有多少名学生?②两班联合起来购票能省多少钱?12.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?答案解析1.【答案】C【解析】(1)第一次购物显然没有超过200,即在消费168元的情况下,她的实质购物价值只能是168元.(2)第二次购物消费423元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:她消费超过200元但不足600元,这时候她是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=423,解得:x=470.第二种情况:她消费超过600元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=423,解得:x=528.75.不合题意. 即在第二次消费423元的情况下,她的实际购物价值是470元.综上所述,她两次购物的实质价值为168+470=638超过了600元.因此均可以按照8折付款:638×0.8=510.4元综上所述,她应付款510.4.故选C.2.【答案】A3.【答案】A【解析】设该铅笔卖出x支,则圆珠笔卖出(60-x)支,由题意得,0.8×1.2x+0.9×2(60-x)=87.故选A.4.【答案】C【解析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=135解得:x=108比较可知,第一件赚了27元第二件可列方程:(1-25%)x=135解得:x=180,比较可知亏了45元,两件相比则一共亏了18元.故选C.5.【答案】B【解析】设这件衣服的进价为a元,标价为a(1+60%)元,再设打了x折,再由打折销售仍获利20%,可得出方程,解出即可.解:设这件衣服的进价为a元,打了x折,依题意有a(1+60%)x-a=20%a,10解得:x=7.5.答:这件玩具销售时打的折扣是7.5折.故选B.6.【答案】18或46.8【解析】(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288-450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.7.【答案】九【解析】设用贵宾卡又享受了x折优惠,依题意得:1000-1000×80%?0.1x=280,解得:x=9即用贵宾卡又享受了九折优惠.故答案为:九.8.【答案】100【解析】设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.9.【答案】x+28=80%x(1+50%)【解析】设夹克衫的成本是x元,则标价是:(1+50%)x,以8折(标价的80%)出售则售价是:(1+50%)x×80%,根据等式列方程得:x+28=80%x(1+50%).10.【答案】解:(1)设每个篮球的定价是x元,则每幅羽毛球拍是(x+50)元,根据题意得 2(x+50)=3x,解得x=100,x+50=150.答:每副羽毛球拍150元,每个篮球100元.(2)到甲商店购买所花的费用为:150×100+100(a-10)=100a+14000(元);到乙商店购买所花的费用为:150×100+0.8×100×a=80a+15000(元);(3)当在两家商店购买一样合算时,有100a+14000=80a+15000,解得a=50.所以购买的球拍数等于50副时,则在两家商店购买一样合算;购买的球拍数多于50个时,则到乙商店购买合算;购买的球拍数少于50个时,则到甲商店购买合算.【解析】(1)设每个篮球的定价是x元,则每幅羽毛球拍是(x+50)元,根据两个篮球与三幅球拍的费用相等列出方程,解方程即可;(2)根据甲、乙两商店的优惠方案即可求解;(3)先求出到两家商店购买一样合算时篮球的个数,再根据题意即可求解.11.【答案】解:①设(1)班为x人,则(2)班为(104-x),根据题意得:13x+11(104-x)=1240,解得:x=48,104-48=56(人);②如果两班联合起来,作为一个团体购票9×104=936元,节省1240-936=304元.答:(1)班48人,(2)班56人,联合起来购票能省304元.【解析】①设(1)班为x人,则(2)班为(104-x)人,根据两班分别购票共花费1240元,列出方程进行求解即可;②由两班联合购票票价为9元得出总费用,再与两班分别购票的费用进行比较得出结果.12.【答案】解:(1)设每件服装标价为x元,0.5x+20=0.8x﹣40,0.3x=60,解得:x=200.故每件服装标价为200元;(2)设最多能打x折,由(1)可知成本为:0.5×200+20=120,=120,列方程得:200×x10解得:x=6.故最多能打6折.【解析】(1)设每件服装标价为x元,根据0.5x+20与0.8x﹣40相等列出方程求解即可;(2)设至少能打x折,根据打折后的价格等于成本列出方程求解即可.。
人教版七年级数学上册《实际问题与一元一次方程(销售问题)》练习题-附带有答案学校: 班级: 姓名: 考号:一、单选题1.一商店在某一时间以同样的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,则卖这两件衣服总的盈亏情况是( )A .盈利B .亏损C .不盈不亏D .不确定2.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为( )A .230元B .250元C .270元D .300元3.一件夹克衫先按成本提高50%标价,再以8折出售,结果获利28元.若这件夹克衫的成本为x 元,根据题意,可得到的方程是( ) A .()150%80%28x x +=-B .()150%80%28x x +=+C .()150%80%28x x +=-D .()150%80%28x x +=+4.商店元旦促销,某款衣服打9折销售,每件比标价少45元,仍获利55元,下列说法:①衣服标价为每件450元;①衣服促销单价为405元;①衣服的进价为每件350元;①不打折时商店的利润为每件100元,正确的共有( )A .4个B .3个C .2个D .1个5.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润20元,则标价为( )A .116元B .145元C .150元D .160元6.两件商品都卖84元,其中一件盈利40%,另一件亏损20%,则两件商品卖出后( )A .亏本3元B .盈利3元C .盈利6.8元D .不赢不亏7.郑州市某服装电商2022年12月份打折促销卖出了336件羽绒服,比11月份多卖出20%,设该服装电商11月份卖出x 件羽绒服,根据题意,下列方程正确的是( )A .20%336x =B .(120%)336x -=C .120%336x +=D .(120%)336x +=8.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x 元,列出如下方程:0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变二、填空题 9.某超市的某品牌水杯原价为每个x 元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天在第一天降价基础上每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,水杯原价为每个 元.10.某家具的标价是132元,若以8折售出,仍可获利10%,则该家具的进价是11.某商场元旦开展促销活动.规定:购物不超过200元不优惠;超过200元,而不超过500元的全部九折优惠;超过500元的,其中的500元按九折优惠,超过500元部分按八折优惠.某人两次购物分别付了134元和466元,若将两次购物合为一次购物,一共能节省 元.12.某校学生在辅导员老师的带领下,观看全国足球锦标赛,由于天气炎热辅导员安排生活委员为每位同学买一瓶矿泉水,生活委员发现如果买2.5元一瓶则少带10元钱,如果买2元一瓶,则多出7.5元钱,若设生活委员带去x 元,则列出关于x 方程为 .13.陈老师做市场调研发现,某商场按标价销售某种工艺品时,每件可获利40元,按标价的八五折销售该工艺品12件与将标价降低25元销售该工艺品8件所获利润相等.该工艺品每件的进价是 元. 14.商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为 元.15.“六一”期间某游乐场门票八五折优惠,某校“六一”期间购买了40张这个游乐场门票供学生去游玩,比原价节省了240元,每张门票的原价是 元.16.王老师用180元买了两种笔,共35支.钢笔每支8元钱,圆珠笔每支3元钱,原来他买了 支钢笔, 支圆珠笔.三、解答题的2倍,请问A 款净水器运来多少台?18.为了节能减排,赵玉家购买了某种品牌的节能灯,已知1只B 型节能灯比1只A 型节能灯贵3元,赵玉购买了3只A型节能灯和4只B型节能灯,一共花了54元,1只A型节能灯和1只B型节能灯的售价分别是多少元?19.小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一类服装.为了缓解资金压力,小张决定将这类服装打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装的标价和进价各是多少元?(2)该服装改款后,小张又以同样的进价进货500件,若标价不变,按标价销售了300件后,剩下的进行大甩卖,为了尽快减少库存,又要保证盈利2万元,请你告诉小张最低能打几折?20.某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)3565标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?参考答案1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】C6.【答案】B7.【答案】D。
一、利润问题(1)利润=售价-进价(2)利润率=进价利润=进价进价售价- (3)打折销售中的售价=标价×10折数 (4)售价=成本+利润+成本×(1+利润率)(5)利润=利润率×成本(6)利息=本金×利率1.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?解析:售价=标价⨯打折利润=售价-进价设商品的标价是x 元0.8x -600=120x =900答:商品的标价为900元2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:售价=标价⨯打折利润=售价-进价设可以打x 折出售3000 ⨯10x -2000=2000 ⨯5% x =7答:售货员最低可以打7折出售3.一家商店某种裢子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元,试求每条裤子的成本价是多少元?解析:售价=标价⨯打折利润=售价-进价设这条裤子的成本价为x元x(1+50%)⨯0.8-x=10x=50答:成本价为50元4.某商场甲、乙两个柜组1月份营业额共64万元,2月份甲增长了20%,乙增长了15%,营业额共达到75万元,试求两柜组2月份各增长多少万元?解析:设1月份甲柜x万元,则乙柜(64- x)万元x(1+20%)+(64- x)(1+15%)=75x=2864-x=64-28=36(万元)甲增长:28 ⨯20%=5.6(万元)乙增长:36 ⨯15%=5.4(万元)答:甲增长5.6万元,乙增长5.4万元。
5.某商店对一种商品调价,按原价的八折出售,打折后的利润率是20﹪,已知该商品的原价是63元,求该商品的进价。
解析:售价=标价⨯打折利润=售价-进价设进价x元63⨯0.8- x=20% xx=42答:商品的进价为42元。
6.国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息税4.5元,则小明一年前存入银行的钱为多少元?解析:利息=本金×利率设小明一年前存入银行的钱为x元2.25%x⨯20%=4.5x=1000答:小明一年前存入银行的钱为1000元。
数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。
原价为500元,打8折,即支付原价的80%。
计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。
2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。
答案:长方形的面积可以通过长乘以宽来计算。
计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。
3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。
根据题意,男生和女生的总人数为40人。
我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。
4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。
求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。
已知距离是2公里,速度是每小时5公里。
计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。
5. 问题:一个数的3倍加上4等于20,求这个数。
答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。
《一元一次方程:销售问题》应用题【基本知识】(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.(6)利润额=成本价×利润率;售价=成本价+利润额;新售价=原售价×折扣1、小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.图641--【解】设小明上次购买书籍的原价是x元,由题意,得0.82012x x+=-,解得160x=.因此,小明上次所买书籍的原价是160元,2、某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?[分析]通过列表分析已知条件,找到等量关系式【解】设标价是x 元,80%604060100x -=解之:x =105 优惠价为),(8410510080%80元=⨯=x 3、 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元【解】设进价为x 元,80%x (1+40%)—x =15,x =125 答:进价是125元。
4、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折. 【解】设至多打x 折,根据题意有1200800800x -×100%=5% 解得x =0.7=70%答:至多打7折出售.5、一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?【解】设成本为x元,则售价为x(1+50%)×80%,(获利28元,即售价-成本=28元),则x(1+50%)×80%-x=28解得x=140元。
数学销售问题通常涉及到比例关系、百分比计算和应用题解决能力。
以下是一道典型的七年级上册数学销售问题例子:某商店在促销活动中,对一种商品降价20%,售价为80元。
已知在降价后,每售出8件商品能获得240元的利润。
现在有一位投资商看中了该商品,并购买了一批准备转卖。
他打算以售价100元的价格转卖给消费者。
根据该投资商的销售额与利润,回答以下问题:1. 投资商每售出1件商品的利润是多少元?2. 投资商购入了多少件商品?3. 投资商的总利润是多少元?4. 投资商的总销售额是多少元?解答:1. 降价后每售出1件商品的利润是240元÷ 8件= 30元。
2. 降价前的售价是80元,投资商以售价100元购买,即利润为100元- 80元= 20元。
根据每售出1件商品的利润是30元,投资商购入的商品数量为:20元÷30元/件= 2/3件。
3. 总利润为购入的商品数量乘以每售出1件商品的利润:2/3件× 30元/件= 20元。
4. 总销售额与商品数成正比,假设投资商购买了x件商品,则总销售额为:100元/件×x 件。
所以,根据已知的降价情况,我们可以设立比例关系:80元: 100元= 8件: x件通过比例的解法,我们可以得到:80/100 = 8/x解方程可以找到x的值:100x = 8 × 80x = (8 × 80)/100x = 6.4因为商品数量必须是整数,所以投资商购买了6件商品。
总结回答:1. 投资商每售出1件商品的利润是30元。
2. 投资商购入了6件商品。
3. 投资商的总利润是20元。
4. 投资商的总销售额是100 × 6 = 600元。
通过这道问题,学生可以巩固比例、百分比计算以及应用题解决的能力。
人教版七年级上册数学应用题全集及答案1.一元一次方程应用题市场经济中,打折销售是一种常见的促销手段。
在此背景下,我们需要掌握以下知能点:1)商品利润=商品售价-商品成本价2)商品利润率=商品利润/商品成本价×100%3)商品销售额=商品销售价×商品销售量4)商品的销售利润=(销售价-成本价)×销售量5)商品打几折出售,即按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。
1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。
已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元。
这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。
这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:45%×(1+80%)x-x=504.某商品的进价为800元,出售时标价为1200元。
后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价。
知能点2:方案选择问题6.某蔬菜公司有一种绿色蔬菜。
若在市场上直接销售,每吨利润为1000元。
经粗加工后销售,每吨利润可达4500元。
经精加工后销售,每吨利润涨至7500元。
当地一家公司收购这种蔬菜140吨。
该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨;如果进行粗加工,每天可加工6吨。
但两种加工方式不能同时进行。
受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。
为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工。
二元一次方程组的应用-销售利润问题【知识点】1. 列二元一次方程组解应用题的一般步骤(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设未知数:找出题中的两个关键的未知量,并用字母表示出来.(3)找:挖掘题目中的关系,找出两个等量关系;(4)列方程组:列出方程组.(5)求解.(6)检验作答:检验所求解是否符合实际意义,并作答.注意:设未知数的方法:直接设未知数与间接设未知数.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设未知数.2. 用方程解决实际问题的几个注意事项(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。
3. 商品销售利润问题:(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 利润=售价-成本(进价) 售价-进价利润率进价=100%利润=成本(进价)×利润率 标价=成本(进价)×(1+利润率);实际售价=商品标价×打折率注意:折扣中打几折就是按标价的十分之几或百分之几十销售(例如八折就是按标价的十分之八即五分之四或者百分之八十)【典型例题】1. 某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为 .【考点】本题考查二元一次方程的应用,根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.【解答】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元;若售出甲x 件,则售出乙1.5x 件.0.4ax+0.6b×1.5x ax+1.5bx =0.5,解得a =1.5b ,∴售出的乙种商品的件数比甲种商品的件数少50%时,甲种商品的件数为y 时,乙种商品的件数为0.5y . 这个商人的总利润率为0.4ay+0.6b×0.5y ay+0.5by =0.4a+0.3b a+0.5b =0.9b 2b =45%.故答案为:45%.2.“重百”、“沃尔玛”两家超市出售 同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】此题考查了二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.【解答】解:(1)设一个保温壶售价为x 元,一个水杯售价为y 元.由题意,得:{x +y =602x +3y =130. 解得:{x =50y =10. 答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【练习】1.华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是元.2.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?3.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?4. 某专卖店有A,B两种商品.已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?5. 某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?6. 某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【练习解析】1. 解:设一支牙刷收入x 元,一盒牙膏收入y 元,由题意,得39x +21y =396,∴13x +7y =132,∴52x +28y =528,故答案为:528.2. 解:设甲种商品的销售单价为x 元/件,乙种商品的销售单价为y 元/件,根据题意得:{2x =3y 3x −2y =1500,解得:{x =900y =600. 答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.3. 解:设碳酸饮料在调价前每瓶的价格为x 元,果汁饮料调价前每瓶的价格为y 元,根据题意得:{x +y =73(1+10%)x +2(1−5%)y =17.5,解得:{x =3y =4. 答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.4. 解:设打折前A 商品的单价为x 元/件、B 商品的单价为y 元/件,根据题意得:{60x +30y =108050x +10y =840,解得:{x =16y =4, 500×16+450×4=9800(元),9800−19609800=0.8.答:打了八折.5. 解:(1)设随身听和书包的单价分别为x 元,y 元.由题意可得{x +y =452x =4y −8,解得{x =360y =92. 答:随身听和书包的单价分别为360元,92元;(2)A 超市需要:452×0.85=384.2(元);B 超市需要:先购买随身听花费360元,返券90元,还需要92﹣90=2(元),共花费360+2=362(元). 因为384.2>362,所以在B 超市购买省钱.6. 解:(1)设A种服装购进x件,B种服装购进y件,由题意,得{60x+100y=600040x+60y=3800,解得:{x=50y=30.答:A种服装购进50件,B种服装购进30件;(2)由题意,得:3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.。
七年级关于卖文具的数学问题
假设我们有一个小型的文具店,主要销售各种文具用品,包括笔、笔记本、橡皮擦、文具盒等。
我们的目标是尽可能多地销售,
同时保持利润最大化。
为了实现这个目标,我们需要制定一个合理
的销售策略。
首先,我们需要了解我们的目标客户。
一般来说,学生是文具的主要消费者,尤其是初中生和高中生。
他们通常有一定的零花钱,并且对学习有帮助的物品有一定的需求。
因此,我们的目标客户主
要是学生。
接下来,我们需要考虑价格策略。
一般来说,文具的价格相对较低,因此我们可以通过提供一些优惠来吸引更多的客户。
例如,
我们可以提供买一送一的优惠,即购买一支笔,可以得到另一支笔
作为赠品。
或者我们也可以提供满减优惠,例如购买满20元减5元等。
除了价格策略,我们还需要考虑库存管理。
我们需要根据每天的销售情况来决定第二天需要进货的文具种类和数量。
如果库存过多,会导致浪费;如果库存不足,会导致客户流失。
因此,我们需
要制定一个合理的库存管理策略。
此外,我们还可以考虑提供一些附加服务来吸引客户。
例如,我们可以提供免费快递服务,或者提供一些文具使用技巧的培训,这样不仅可以吸引更多的客户,还可以提高客户的忠诚度。
综上所述,我们的销售策略应该包括合理的价格策略、库存管理以及附加服务。
通过这些策略的实施,我们可以提高销售额,同时保持利润最大化。
当然,这只是一个基本的策略,具体实施还需要根据实际情况进行调整。
七年级数学打折销售问题(基础知识+拔高练习)七年级数学打折销售问题知识要点:商品打折销售中的相关关系式:1.利润=售价-进价2.利润=利润率×成本3.利润率=(售价-进价)/进价4.定价=成本×(1+期望的利润率)(利润率也称利润百分数,售价也称卖价)5.打折销售中的售价=标价×折数/10基础测试:1.售价=a×0.9元2.原价=a÷0.8元3.原定售价=14.8÷0.8元4.450元,x折是500÷(x/10)元5.售价=120+72元=192元6.利润=50×0.13元=6.5元7.进价=800元8.成本=60元牛刀小试:1.标价=1600÷(1-0.1)×0.8元2.总盈利=60×0.25元-60×0.25元=0元3.进价=600元4.标价=2400÷0.8×1.2元5.进价=100元6.最低打折率=1-0.05×(3000-2000)/3000=0.83337.学生数=22÷(1-0.2×0.8)=50人8.定价=100元9、甲乙两件衣服成本共500元,甲定价时按照50%的利润,乙则按照40%的利润定价。
由于生意不好,两件衣服都打九折,最终获利157元。
问甲乙两件衣服各多少元?10、学校准备组织教师和学生去旅游,其中有2名教师。
现有甲、乙两家旅行社,其定价相同,并且都有优惠条件。
甲旅行社表示教师免费,学生按照8折收费;乙旅行社表示教师和学生一律按照7.5折收费。
经核算后,甲、乙实际收费相同。
问共有多少学生参加旅游?11、某班将买一些乒乓球和乒乓球拍。
现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。
乒乓球拍每副定价30元,乒乓球每盒定价5元。
经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按照定价的9折优惠。
七年级上册解方程应用题销售问题
销售问题中基本量之间的关系:
商品利润=商品售价-商品进价
利润率= ×100%
商品售价=标价×
商品售价=商品进价+商品利润
=商品进价+商品进价×利润率
=商品进价×(1+利润率)
例题1:一家商店将某种服装成本提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?
解析:
解答:
例题2:一家商店将某商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1800元,那么这种商品的原价是多少?
解析:
解答:
例题3:一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25% ,另一件亏损25% ,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
售价=进价+利润=进价(1+利润率)解答:。
初一数学关于商品销售问题的常用公式和例题解析少?解析:根据题目中所给的信息,我们可以通过利润来计算出该电视机的成本。
因为题目中已知该商场按标价销售了10台电视机,共获利3000元,那么单个电视机的利润就是3000÷10=300元。
根据公式利润=售价-成本,我们可以得出:300=3000-成本,即成本=2700元。
所以该电视机的成本是2700元。
例3.某商店进货价为20元的商品,标价为50元,现在按照标价的六折出售,问商店能够获得多少利润率?解析:首先我们需要计算出该商品的售价,根据公式售价=标价×折扣×10我们可以得出:售价=50×6×1030(元)。
根据公式利润=售价-成本,我们可以得出:利润=30-20=10(元)。
利润率=利润÷成本×100%=10÷20×100%=50%。
所以商店能够获得50%的利润率。
总结:商品销售类应用题中涉及到的名词较多,初一学生容易混淆和理解错误。
因此在做题时,要注意根据题目所给的具体信息来确定各个概念的含义,并且熟练掌握利润、利润率等公式的使用方法。
只有掌握了正确的解题方法,才能在数学研究中更好地应用数学知识解决实际问题。
根据题意,一台售价为3000元的电视机的利润率是多少?我们可以通过以下的计算来得出答案。
假设有10台电视机的总利润为3000元,销售量为10台,那么根据公式“单个商品总利润=单个商品利润×单个商品销售量”,可以得出每台电视机的利润为300元。
接下来,根据公式“利润=售价-成本”,我们可以计算出该电视机的成本为2700元,即售价减去利润。
因此,该电视机的利润率为10%(300÷3000)。
简化后:一台售价为3000元的电视机的利润率是多少?假设10台电视机的总利润为3000元,销售量为10台,每台电视机的利润为300元。
根据公式“利润=售价-成本”,该电视机的成本为2700元。
初一数学商品销售问题公式
在初一数学中,商品销售问题是一个常见的应用题类型。
这种问题主要涉及到利润、售价和进价的关系。
以下是一些相关的公式:
1. 售价-进价=利润:这个公式用于计算商品的利润。
假设商品的售价为P,进价为C,则利润L = P - C。
2. 利润率=利润/进价:利润率是衡量盈利能力的指标。
利润率通常用百分比表示。
假设商品的利润率为r,则r = L/C。
3. 售价=进价×(1+利润率):这个公式用于计算商品的售价,已知商品的进价和预期的利润率。
4. 利润=进价×利润率:这个公式用于计算在固定进价和利润率下的最大利润。
5. 总利润=单件利润×销售数量:这个公式用于计算在一定销售数量下的总利润。
这些公式可以帮助你理解和解决商品销售问题。
记住,这些公式是建立在一些假设之上的,例如没有其他费用或折扣。
在实际情况中,可能需要考虑更多的因素。
七年级数学上册商品利润应用题解析对于初一学生来说,有这样一类问题困扰了他们很久,那就是商品出售的问题,因为商店出售某种商品会涉及到很多名词比如说:进价、原价、标价、获利、利润等等,因为这些词都是十分贴近生活的,所以对于没有和生活接轨的初一学生来说,是很难理解的,今天在这里就给大家详细讲解商品销售的相关应用题的解题方法。
商品销售类应用题用到的几个公式:利润=售价-成本×100%利润率=利润成本单个商品总利润=单个商品利润×单个商品销售量售价=标价×折扣×110商品销售题型会出现哪些名词商品销售类应用题主要会出现这些名词:进价、出厂价、原价、标价、定价、售价、折扣、获利、利润、利润率、销售量、总利润等。
学生容易分不清的主要是这几个概念:成本、售价(实际成交价格)这几个概念。
比如说某些商品它的标价是100元,那么这个100元代表的可能是售价也可能不是售价,要根据题目所给的具体信息来定:1、比如说标价100元的商品,如果按照标价出售,那么售价就是100元,如果按照标价的八折销售,售价就是100×0.8=80元。
也就是说标价不一定就是实际售价。
2、成本也是一个很容易让学生混淆的概念,对于销售方来说,商品的进价就是成本(有些时候就是出厂价),但是在给出利润率让学生计算利润的时候,很多学生会拿售价乘以利润率而不是成本乘以利润率,这样做的后果就所得的利润是错误的。
下面以几个典型的例题来详细说明这几个关于销售问题的公式使用方法:例1.某商店为了庆祝国庆节,决定将店内所有商品按照7折销售,已知某件商品标价是100元,这件商品出厂价是50元,那么小红想购买这件商品实际需要支付多少钱?商店老板能获得多少利润?解析:根据题目的意思我们首先应该清楚“出厂价”就是成本,也就是说这件商品的成本是50元。
商品标价是100元,七折出售,那么我们可以根据公式:来计算商品的实际售价售价=标价×折扣×110=70(元)也就是说小红如果购买这件商品需要支付70元。