硅溶胶型壳缺陷特征精品
- 格式:docx
- 大小:28.21 KB
- 文档页数:6
铸件常见缺陷的判定及形成原因一、毛刺:缺陷判定(1)铸件大部分或局部有圆形小疙瘩。
(2)浇口附近有圆形小疙瘩。
(面层用的锆浆质量)原因分析:1.1浆的粘度太低(粘浆越厚、越稠利于控制,不过过厚、过稠又不利于干燥)1.2滴浆时间太长,浆变的稀薄。
1.3配将搅拌不充分。
(锆浆+硅溶胶,面层要求40+2s)1.4锆浆老化:浆用的时间太长,出现胶凝(一般25天更换一次)超出有效期,强度变小。
1.5锆砂粒太粗,淋沙高度太高。
1.6化学粘砂:金属液与面层浆发生反应(Cro的含量多少)锆粉耐火度不够;浇注温度和培烧温度太高;局部过热。
1.7搅拌设备生锈(L型搅拌器)锆粉含铁磁性高。
1.8浇口附近有热点(一般浇口高15mm)1.9涂料对蜡膜的浸润性差。
即:控制毛刺的关键在于控制面层质量(锆浆质量)。
二、跑火:缺陷判定型壳在浇注时金属液穿透铸件形成不规则的金属凸起,铸件内腔,凹槽内有多余金属称外炮火。
原因分析:(1)型壳在空洞或狭缝处的强度太低。
1.1结构不合理(盲孔、细孔,高度/直径>时应无事)(5、5层型壳)1.2涂挂不良,欲湿、浮砂未清干净。
1.3干燥不良(物理硬化)1.4浆粘度太低。
(2)型壳整体强度太低(层数不够)2.1层数不够,一般大于4、5层或7、5层最大到10、5层。
2.2粘度太低。
(3)脱蜡裂(腊膨胀裂)(4)机械损伤。
(5)耐火材料热稳定性不好,高温强度低。
总论:跑火是因为所用型壳强度不够,或浇注时对型壳冲击力过大,或型壳急冷急热性差,或操作和运输过程中性壳撞击出现裂纹,在浇注时型壳开裂,钢液顺裂口外流造成。
内腔跑火则是由于内腔和凹槽等处局部未涂上涂料;涂料带气;未撒上砂使型壳存在孔隙,浇注时金属液进入空隙或穿透有缺陷的型壳形成。
三、剥落:缺陷判定:铸件表面上有大小不等的,形状不规则的疤片状凸起物。
原因分析:(1)制壳过程。
1.1面层裂与腊层的附着力太差。
1.2面层表面过度干燥,内外收缩力不同。
.铸件缺点剖析与防备铸件缺点剖析与防备内容概要1铸件尺寸超差模料及制模工艺对铸件尺寸的影响浇注条件对铸件尺寸的影响2铸件表面粗拙影响熔模表面粗拙度的要素影响型壳表面粗拙度的要素其余影响表面粗拙度的要素3铸件表面缺点粘砂夹砂、鼠尾和凹陷花纹麻点金属刺(毛刺)金属珠(铁豆)孔洞类缺点气孔(集中气孔)弥散型气孔缩孔、缩松缩陷5裂纹和变形热裂、冷裂铸件脆动和变形6其余缺点砂眼渣孔冷隔、浇不到跑火1、铸件质量超差1、模料及制模工艺对铸件尺寸的影响熔模尺寸误差主要因为制模工艺不稳固而造成的,如合型力大小、压蜡温度(压蜡温度越高,熔模线缩短率越大)、压注压力(压注压力越大,熔模线缩短率越小)、保压时间(保压时间越长其缩短越小)、压型温度(压型温度越高,线缩短也越大)、开型时间、冷却方式、室温等要素颠簸而造成熔模尺寸误差。
2、制壳资料及工艺对铸件尺寸的影响型壳热膨胀影响着铸件尺寸。
而型壳热膨胀又和制壳资料及工艺相关。
3、浇注条件对铸件尺寸的影响浇注时型壳温度、金属液浇注温度、铸件在型壳中的地点等均会影响铸件尺寸级配粉是依据必定要求配制的粒度散布合理的粉。
该种粉粒度有粗、有细,散布分别,均匀粒径适中,能使涂料在高粉液比条件下,仍拥有适合的粘度和优秀的流动性。
.3、影响金属液精准复型的要素1)型壳温度对金属液复型的要素2)浇注温度对金属液复型的要素金属液复印型壳工作表面细节的能力,即充型能力;在此简称为“复型”能力。
为使金属液能精准复型,就一定有足够高的型壳温度和金属液浇注温度,并保证金属液有足够的压力头。
提升型壳温度对改良金属液流动能力、复型能力均有优秀成效,故型壳温度是应该予以重视的要素。
熔模锻造铸钢件用硅溶胶型壳,其焙烧温度达1150-1175℃,型壳出炉后快速浇注,使铸件轮廓清楚,表面粗拙度低。
4、其余影响铸件粗拙度的要素浇注和金属液凝结过程中,因温度较高,铸件表面会氧化,且氧化层不均匀,加上铸件表面金属氧化物有可能与型壳中氧化物作用,促进铸件表面不均匀的零落,明显地增添铸件表面的粗拙度。
2022年6月清华大学熔模精密铸造技术培训总结范文-图文一.模料相关知识:1.模料基本要求(热物理性能、力学性能、工艺性能):①热物理性能:(熔化温度、热膨胀、耐热性)A:熔化温度:常用熔点、滴点、环球软化点等多种方法表示。
B:热膨胀:有体膨胀和线膨胀二种不同的表现形式,常用线收缩率、体膨胀率来衡量。
说明:收缩率没有标准值,主要根据产品结构和依靠工程技术人员的经验;现在已开始使用计算机模拟软件实验,但还没有取得成功。
C:耐热性:指模料承受较高环境温度而不变形的能力。
常用热变形量或软化点来衡量耐热。
②力学性能:(强度、硬度)A:强度:模料强度通常以抗弯强度(断裂模量)来衡量。
B:硬度(针入度):在设定温度(例如20或25℃)和固定载荷(如100g)作用下,标准针在在规定时间(5)刺入模料表面的深度(以0.1mm为单位)。
③工艺性能:(蜡液粘度、蜡膏流动性、灰分)A:模料在液态下(例如99℃)的粘滞性。
B:蜡膏流动性:蜡膏充填压型型腔的能力。
通常以设定温度(例如压注温度)和恒定载荷(2kg)作用下,试样的变形程度代表蜡膏的流动性C:灰分:模料经高温(900℃)焙烧后的残留物含量。
说明:铸件的表面质量主要靠原材料保证,一定要把原材料管起来并且确保原材料的质量一定要合格,公司一定要重视原材料的管理,蜡料较为重要(病从口入)。
2.模料常用原材料(蜡质材料、树脂、高分子聚合物):①蜡质材料:在常温下为不透明或半透明的固体,有固定的熔点或狭窄的凝A:矿物蜡(如石蜡、微晶蜡、地蜡、褐煤蜡等)。
B:动植物蜡(如蜂蜡、虫白蜡、棕榈蜡等)。
C:人造蜡(如硬脂酸)。
②树脂:指非晶态有机物,在常温下为透明的脆性固体,没有固定的熔点,熔融后粘度较大。
常用的有松香及其衍生物和其他天然或人造树脂(如石油树脂、萜烯树脂等)。
③高分子聚合物(高聚物):指分子量大于1万的高分子聚合物。
熔模铸造中常用的主要是聚烯烃,例如聚乙烯、EVA、聚苯乙烯等,其力学性能比蜡强韧得多,熔融后粘度大。
熔模铸造型壳六大缺陷分析入木三分水玻璃型壳常见的缺陷有裂纹、变形、鼓胀,蚁孔、蠕孔及气孔等,现分析如下。
一、型壳裂纹型壳裂纹有两种情况,一是浇口杯产生裂纹,如图1所示;二是型壳表面产生裂纹,如图2所示。
图1 浇口杯裂纹图2 型壳表面裂纹浇口杯裂纹特征:型壳的浇口杯有裂纹,严重时浇口杯开裂。
型壳表面裂纹:在型壳的表面上有弯曲的、深浅不等的裂纹。
1.产生原因(1)涂料中水玻璃的模数、密度过高或过低;涂料中的粉液比过低;或硬化剂的浓度、温度和硬化时间不当,硬化不充分;或型壳在硬化前的自然风干时间不够,不利于硬化剂的继续渗透硬化,影响了硅凝胶的连续性和致密性;或型壳的层数不够等原因,导致型壳的强度低,出现了裂纹。
(2)涂料层涂挂的不均匀,或撒砂层厚薄不均;尤其是浸涂料后没有撒上砂的部位,硅凝胶在收缩时受力不均匀,导致型壳产生裂纹。
(3)脱蜡液的温度低,脱蜡时间太长。
由于蜡料的热膨胀系数大于型壳的热膨胀系数,脱蜡缓慢将导致型壳在脱蜡的过程中受到各种应力的作用;如果超过此时型壳的强度极限,就会产生裂纹,甚至开裂。
(4)焙烧时,型壳入炉温度高,升温过快,或高温出炉急冷;或型壳多次焙烧,产生微裂纹,甚至裂纹,降低了强度;或型壳的高温强度低,使型壳在焙烧时产生裂纹。
(5)清理浇口杯时,机械损伤浇口杯。
2.防止措施(1)采用下列措施,型壳的高温强度就高。
①水玻璃的模数M=3.0~3.4,密度ρ=1.30~1.33 g/cm3配制的加固层涂料。
②采用合理的涂料配制工艺,并执行涂料的“配比-温度-粘度”曲线。
③采用合理的硬化工艺,控制硬化剂的“浓度-温度-硬化时间”;或选用氯化铝代替氯化铵硬化型壳。
④合理的制壳工艺,如涂料粘度与撒砂粒度的合理配合,硬化工艺参数要确保型壳充分硬化。
⑤采取措施增加型壳强度,如常用的增加型壳层数,或采用复合型壳等;必要时大件型壳可用铁丝加固等。
(2)蜡模浸入检验合格的涂料中,上下移动和不断地转动,提起后滴去多余的涂料,使涂料均匀地覆盖在模组的表面上;不能出现涂料的局部堆积或缺少涂料(漏涂);并及时、均匀撒砂。
硅溶胶型壳精铸件生产经验点滴自上世纪九十年代初引进硅溶胶型壳生产精铸件后,我国熔模精密铸造生产获得了飞速发展和长足进步。
至今采用中、低温蜡硅溶胶型壳工艺的工厂已近600多家,许多先进的工艺,高效的设备和优质的材料在精铸件生产中得到了应用和推广,铸件质量和生产率有了很大的提高。
近年来由于市场竞争,精铸行业的技术交流受到一定影响,许多工厂的技术革新和宝贵的生产实践经验未能及时推广和交流。
为此,作者收集了近年来国内部分硅溶胶型壳工艺精铸厂的生产经验、技术创造和小改小革,简要地向精铸同行介绍和推荐,希望有助于我国精铸件质量生产效率和工艺水平的提高。
限于篇幅和阅历,仅将在生产中已投入应用并取得实效的点滴经验摘要列出,期望能“抛砖引玉”,起到促进国内精铸业的经验交流广泛开展的作用。
以下内容按精铸件生产工序逐项进行介绍。
Ⅰ制蜡模(组)工序一.防止浇口杯“落砂”的措施1.“翻边”浇口杯的制作。
为减少铸件“砂孔”缺陷,无论中、低温蜡硅溶胶型壳均应采用“翻边”浇口(图一),在浇口(杯)模具上安放两个半圆镶圈,压蜡后浇口杯端面会形成凹槽(图二)。
制壳后浇口会形成光滑的“翻边”,能有效防止浇口杯边缘的砂壳落入型腔内造成铸件“落砂”。
2.“防砂盖”的合理结构。
大部分工厂应用碳钢平板(厚2毫米的冲压件)作浇口杯上的“防砂盖”。
在制壳后脱蜡前取下,经抛丸处理去除粘砂后再回用。
平板形盖易在抛丸后翘曲、变形。
若按图三形式采用凹凸的“帽式”盖,刚性大大提高,与浇口杯上平面接触面减少,制壳时不易出现缝隙防落砂效果更好,使用寿命可提高一倍以上。
3.低温蜡模组的浇口吊具。
由于硅溶胶型壳大多采用蒸汽脱蜡,故低温蜡组不宜沿用水玻璃型壳的木制浇口棒。
为能按放“防砂盖”及在脱蜡釜中便于安放模组,应与中温蜡一样采用可卸式手柄作浇口吊具。
低温蜡强度比中温蜡低,应根据浇口棒形式(直棒或丁字形、多叉型等)在制蜡棒时使用耐酸不锈钢制芯骨进行加固(图四、五、六),在使用长型芯骨时应在浇口棒模具上两端定位,防止芯骨移位。
对熔模铸造硅溶胶型壳清理问题的探讨申鹏帅发布时间:2023-06-15T01:59:17.468Z 来源:《中国电业与能源》2023年7期作者:申鹏帅[导读] 本文就熔模铸造硅溶胶型壳清理进行探究,最先阐述了熔模铸造硅溶胶型壳的常见清理方法,之后对影响熔模铸造硅溶胶型壳的清理因素进行分析,对制备过程与焙烧过程中的工艺进行分析,进一步降低清理难度,提高清理效率,实现良好的型壳清理。
上海万泽精密铸造有限公司 201400摘要:本文就熔模铸造硅溶胶型壳清理进行探究,最先阐述了熔模铸造硅溶胶型壳的常见清理方法,之后对影响熔模铸造硅溶胶型壳的清理因素进行分析,对制备过程与焙烧过程中的工艺进行分析,进一步降低清理难度,提高清理效率,实现良好的型壳清理。
关键词:熔模铸造;硅溶胶型壳;型壳焙烧引言铸造型壳是熔模铸造的关键部件,其性能好坏直接影响到铸件质量。
由于硅溶胶型壳的高强度、低密度、耐热性、耐腐蚀性和高耐磨性等优点,在熔模铸造中得到广泛应用。
但是,硅溶胶型壳在使用过程中,会产生一些缺陷,如型壳表面的积粉、粘砂、气孔等。
如果处理不当,会导致铸件质量下降。
因此,如何有效地清除型壳上的积粉和粘砂是非常重要的。
1.型壳清理的方法为了解决硅溶胶型壳清理的问题,人们进行了大量的研究,但目前还没有比较有效的方法。
目前,最常用的型壳清理方法有湿法、干法、化学法和机械法四种。
(1)湿法是用水、化学试剂或机械力去除型壳上的积粉和粘砂。
湿法清理型壳的主要特点是:(1)用水或化学试剂清除型壳上的积粉和粘砂很方便,一般用水就能达到目的。
(2)可以不留型壳上的残余涂料,因为在清理后型壳表面基本没有残留涂料。
(3)对于大直径的型壳,湿法清理成本很低。
干法清理型壳的主要特点是:(1)型壳上残留有大量的粉尘颗粒,有时会产生积粉和粘砂。
(2)清理后型壳表面很干净,不会留下残余涂料。
(3)由于型壳表面无残留涂料,因此型壳在使用过程中不易产生裂纹或裂纹倾向。
硅溶胶型壳为什么会裂?最近有一个上海的朋友在公众号留言,他说:我在使用硅溶胶作为粘结剂的涂料,阴干的过程中总是开裂,这是怎么回事?借用今天这个机会我想把这件事来聊一聊。
其实,硅溶胶涂料在阴干(按意思讲温度不高、估计没有风)情况下总是开裂,简单讲说明一个问题,硅溶胶在干燥过程中受阻,阻力大于硅溶胶胶膜的强度,最终阻力战胜胶膜,裂纹产生。
实际上硅溶胶收缩的过程与铸件凝固几乎是一个理。
铸件凝固时会产生收缩。
如果没有受到任何阻碍,铸件自由收缩,那么,最终铸件顺利凝固,完美成型。
但是,实际上不是那么回事。
铸件收缩时会受到铸件结构自身的牵制以及型壳(比如:型芯)的阻碍,所以它不可能正常收缩,于是热裂冷裂产生了。
硅溶胶收缩时受内部蜡模的阻力,如果收缩不均匀,不同步,那么势必会产生裂纹。
因此,硅溶胶的干燥要分两个方面,一个是均匀,一个是同步。
这两点非常重要。
实际上这跟铸件自由收缩一样。
但是,往往实际上干燥并不是那么回事。
因为铸件的形状千奇百怪,简单的铸件也许好做到均匀,同步,但复杂的铸件很难做到这一点。
比如,有复杂内腔的,内外干燥不同步,很容易就会造成面层开裂。
另外一点,均匀。
我们在铸件同时凝固的时候要求铸件各处温度基本上一致,当然这种情况基本上是理想状态。
这样铸件凝固下来就不存在凝固应力,就不会产生热冷裂;同样的,面层涂料如果说能够均匀收缩,那么,也不会产生收缩应力而导致面层开裂。
那么,这个均匀和同步靠什么来保证,就是靠恒温恒湿,低温高湿。
不能激烈干燥。
所以,在型壳产生裂纹的原因上,湿度、温度都是特别要命的因素。
另外,现在面层使用快干措施后采用风吹一样要求吹风要均匀,各个面都要吹到。
就像一句话所说,雨露均沾。
在跟这位朋友的聊天中,我觉得他又漏掉了一个重要的环节,配浆。
这是美国精铸协会在分析面层开裂时提到的两条,里面都无一例外地提到了浆液的配备、测试以及维护。
这也是面层不开裂的一个关键。
浆一定要配好,醒好,这是制好壳的关键。
熔模铸件砂眼缺陷成因分析及防止对策砂眼是熔模铸件常见的缺陷之一,在铸件的不良品中占有的比例较大。
铸件砂眼一般存在三种情况:如果砂眼在铸件的表面上,清砂后能被及时发现;如果砂眼在铸件的内部、距离表面较浅,可以在加工后被发现;如果砂眼在铸件的内部、距离表面较深,只能残留在铸件的内部,从而降低了铸件的有效承载面积,降低铸件的机械性能和使用寿命,甚至导致严重的事故。
1 砂眼1.1 砂眼特征铸件的表面或内部有型砂或耐火材料形成的孔穴,称之为砂眼,如图1所示。
图1 砂眼Fig.1 Sand holes1.2 产生部位砂眼产生的部位,如图2所示。
大部分砂眼是由于型腔中的型砂或耐火材料,被金属液流挤到型壳的底部或离浇口较远的端面,不能上浮而产生砂眼;有的型砂或耐火材料被金属液的涡流卷入铸件的内部,形成了砂眼;距离铸件表面较浅,在机械加工后就能被发现,见图3;或残留在铸件的较深的内部。
图2 砂眼产生的部位Fig.2 The area where a trachoma is produced图3 加工后砂眼Fig.3 Sand hole after processing2 砂眼产生原因砂眼产生的主要原因有两个方面:一是来源于型腔的外部,二是来源于型腔的内部。
2.1 来自型腔的外部(1)浇口芯棒不干净,粘有型砂或耐火材料,脱蜡后型砂或耐火材料残留型腔中。
(2)脱蜡液中残留型砂或耐火材料,在脱蜡过程中随脱蜡液卷入型腔。
(3)将浇口杯上的型砂或耐火材料卷入型腔,如图4所示。
(4)在型壳存放、搬运及焙烧时,不慎使型砂或耐火材料进入型腔,浇注前没有吸净残留在型腔中的型砂或耐火材料,如图5所示。
朱伟杰1,潘玉洪2(1.无锡市雪浪合金钢铸造厂,江苏 无锡 214161;2.无锡市凯斯特铸业有限公司,江苏 无锡 214161)摘要:介绍了砂眼的特征、产生的部位,分析了砂眼产生的内、外部原因,提出防止耐火材料从外部落入型腔、提高型壳的质量和改善产品结构及浇注系统是防止熔模铸件出现砂眼缺陷的主要对策。