(完整版)圆周运动知识点总结
- 格式:doc
- 大小:441.35 KB
- 文档页数:8
完整版)圆周运动知识点总结1.曲线运动是指轨迹是曲线的运动。
在研究曲线运动时,需要强调受力这一本质,并与直线运动进行比较。
曲线运动可以分为平抛运动和圆周运动两类。
2.曲线运动的运动学特征包括:轨迹是曲线,速度方向可能变化,取决于外力作用。
3.曲线运动的受力特征是:合力不等于零,且与速度不在同一直线上时为曲线运动,与速度在同一直线上时为直线运动。
以水平抛出小球为例,可以分解重力为水平和垂直两个分量,并根据其方向改变速度。
4.曲线运动的加速减速判断可以类比直线运动,即合力与速度夹角为锐角时为加速,为钝角时为减速,为直角时速度大小不变。
若合力恒定,则为匀变速曲线运动,如平抛运动;若合力变化,则为非匀变速曲线运动,如圆周运动。
5.运动的合成与分解可以对位移、速度、加速度进行分解与合成。
合运动与分运动的时间相等,具有独立性和等效性。
常见的运动的合成与分解问题包括小船过河,需要根据题目要求选择最短时间或最短位移的路径。
在进行船只渡河时,有三种情况需要考虑。
第一种情况是当船只速度与水流速度相等时,为了使渡河时间最短,船只需要将船头指向对岸。
第二种情况是当船只速度小于水流速度时,为了使渡河位移最短,船只需要将船头指向对岸上游,使用矢量三角形法可以求解。
第三种情况是当船只靠岸时,需要注意两个绳连接的物体沿绳子方向的速度大小相等,并且物体的实际运动为合运动,可以使用正交分解的方法来解决问题。
平抛运动是指物体在水平方向上抛出后,只在重力下进行匀变速曲线运动的过程。
在平抛运动中,轨迹是曲线,速度与水平方向不相等,受力特点为恒力,加速度为重力加速度,速度与合力垂直。
可以使用运动的合成与分解的方法来解决平抛运动问题,其中需要进行正交分解,将X、Y轴分别分解为匀速直线运动和自由落体运动。
圆周运动的轨迹是圆形,速度时刻改变,与半径垂直。
描述圆周运动的物理量有周期和频率,其中周期是一个完成圆周运动所需的时间,频率是单位时间内质点所完成的圈数。
物理必修二圆周运动知识点总结一、圆周运动的基本概念定义:质点以某点为圆心,半径为r在圆周上运动,其轨迹是圆周或圆弧的运动称为圆周运动。
圆周运动是曲线运动的一种,因此它一定是变速运动。
分类:圆周运动可分为匀速圆周运动和变速圆周运动。
匀速圆周运动指的是线速度大小处处相等的圆周运动,尽管线速度大小不变,但由于方向时刻改变,因此匀速圆周运动仍然是变速运动。
二、描述圆周运动的物理量线速度:描述质点沿圆周运动的快慢的物理量,其方向是质点在圆周上某点的切线方向。
在匀速圆周运动中,线速度大小不变,但方向时刻改变。
角速度:描述质点绕圆心转动的快慢的物理量,是矢量,其方向用右手螺旋定则确定。
在匀速圆周运动中,角速度大小和方向都不变。
周期和频率:周期是质点完成一次圆周运动所需的时间,频率是周期的倒数,表示单位时间内完成圆周运动的次数。
在匀速圆周运动中,周期和频率都不变。
向心力:使质点沿圆周运动的力,方向始终指向圆心。
向心力的大小与线速度、角速度和半径有关,其作用是改变质点的速度方向,使质点能够持续沿圆周运动。
三、圆周运动的规律和应用牛顿第二定律在圆周运动中的应用:通过向心力表达式,可以推导出圆周运动的线速度、角速度、周期等物理量之间的关系。
圆周运动在日常生活和科技领域中的应用:例如电动机转子、车轮、皮带轮等的运动都是圆周运动。
此外,人造卫星、行星运动等天体运动也可以视为圆周运动。
四、离心运动做圆周运动的物体,由于惯性,总有沿着切线方向飞去的倾向。
一旦受力突然消失或合力不足以提供所需的向心力时,物体就会做离心运动。
以上是物理必修二中关于圆周运动的主要知识点总结。
这些知识点是理解和分析圆周运动的基础,对于后续学习物理的其他部分以及应用物理知识解决实际问题具有重要意义。
圆周运动知识点总结一、圆周运动的定义物体沿着圆周的运动称为圆周运动。
在圆周运动中,物体的运动轨迹是一个圆或者一段圆弧。
二、线速度1、定义:物体通过的弧长与所用时间的比值,叫做线速度。
2、公式:\(v =\frac{\Delta s}{\Delta t}\)(\(\Delta s\)表示弧长,\(\Delta t\)表示时间)3、单位:米每秒(m/s)4、物理意义:描述物体沿圆周运动的快慢。
5、线速度是矢量,其方向沿圆周的切线方向。
三、角速度1、定义:连接物体与圆心的半径所转过的角度与所用时间的比值,叫做角速度。
2、公式:\(\omega =\frac{\Delta \theta}{\Delta t}\)(\(\Delta \theta\)表示角度,\(\Delta t\)表示时间)3、单位:弧度每秒(rad/s)4、物理意义:描述物体绕圆心转动的快慢。
四、周期和频率1、周期(T)定义:做圆周运动的物体运动一周所用的时间。
单位:秒(s)公式:\(T =\frac{2\pi r}{v}\)(r 为圆周运动的半径)2、频率(f)定义:单位时间内完成圆周运动的次数。
单位:赫兹(Hz)公式:\(f =\frac{1}{T}\)五、线速度、角速度、周期、频率之间的关系1、\(v =\omega r\)2、\(v =\frac{2\pi r}{T}\)3、\(\omega =\frac{2\pi}{T} = 2\pi f\)六、向心加速度1、定义:做圆周运动的物体,由于速度方向不断改变,必然存在加速度,这个加速度指向圆心,叫做向心加速度。
2、公式:\(a_n =\frac{v^2}{r} =\omega^2 r\)3、方向:始终指向圆心,与线速度方向垂直。
4、物理意义:描述线速度方向变化的快慢。
七、向心力1、定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2、公式:\(F_n = m \frac{v^2}{r} = m\omega^2 r\)3、方向:始终指向圆心,与速度方向垂直。
圆周运动知识点总结圆周运动是物体在原地绕着固定轴线做的运动,是物理学中的重要概念之一。
本文将对圆周运动的基本概念、相关定理以及应用进行总结。
一、圆周运动的基本概念1. 圆周:圆周指的是一个平面上的圆(或圆弧),在物体进行圆周运动时,物体的运动轨迹便是圆周。
2. 轴线:轴线是圆周运动的轴心,物体绕着该轴线做圆周运动。
轴线可位于物体的质心或其他特定位置。
3. 角度:角度是圆周运动的基本单位,常用弧度来表示。
一个完整的圆周等于2π弧度。
4. 角速度:角速度用来描述物体在单位时间内绕轴线转过的角度,通常用ω表示。
角速度的单位为弧度/秒(rad/s)。
5. 周期:周期是圆周运动完成一次所需要的时间,通常用T表示。
周期的倒数称为频率,即f = 1/T,单位为赫兹(Hz)。
6. 线速度:线速度指的是物体在圆周运动中某一点的速度,是该点的切线方向上的速度。
线速度的大小等于该点所对应圆心角的弧长除以时间。
7. 向心加速度:向心加速度是指物体在圆周运动中由于受到向心力的作用而产生的加速度。
向心加速度的大小等于线速度的平方除以半径,即a = v^2 / r。
二、圆周运动的相关定理1. 牛顿第二定律:对于圆周运动的物体,其向心加速度与向心力成正比。
根据牛顿第二定律可以得到向心力的大小为F = m * a = m * v^2 / r。
2. 角动量守恒定律:当物体在圆周运动中没有外力作用时,其角动量守恒。
角动量等于物体质量乘以线速度与半径之积,即L = m * v * r。
3. 力矩定律:力矩等于力与力臂的乘积,力臂是力在物体径向上的投影长度。
力矩的大小与角加速度成正比,即τ = I * α,其中I是物体的转动惯量,α是物体的角加速度。
三、圆周运动的应用1. 圆周运动在自然界和生活中广泛存在,如行星围绕太阳的运动、地球自转等。
2. 圆周运动的原理被广泛应用于各种机械设备中,如汽车、飞机的转向系统,摩托车的转弯等。
3. 在舞台灯光和音响系统中,旋转的灯光和音响设备往往采用圆周运动的原理来实现。
圆周运动知识点圆周运动是物体在圆的轨迹上做匀速运动的过程。
在日常生活和科学研究中,我们经常会遇到和使用圆周运动的知识。
本文将介绍一些与圆周运动相关的知识点。
1. 圆周运动的定义和特点圆周运动是指物体沿着圆形轨迹做匀速运动的过程。
在圆周运动中,物体的速度大小保持不变,但方向不断变化,沿圆形轨迹做匀速运动。
圆周运动中,物体的加速度的大小恒定,方向指向圆心。
这种运动通常是由一个力提供的,称为向心力。
2. 向心力与圆周运动的关系向心力是使物体保持圆周运动的力。
在圆周运动中,物体所受的向心力的大小等于物体的质量乘以向心加速度的大小。
向心力的方向始终指向圆心,使物体向圆心方向做加速运动,使物体保持圆周运动。
3. 圆周运动的周期和频率圆周运动的周期是指物体完成一次完整圆周运动所需的时间。
周期可以表示为T,通常以秒为单位。
频率是指单位时间内圆周运动发生的次数,通常以赫兹(Hz)为单位。
频率可以表示为f,计算方法为频率等于1除以周期。
4. 圆周运动的角速度和线速度角速度是指物体在圆周运动中单位时间内所转过的角度大小。
角速度可以表示为ω,通常以弧度/秒为单位。
角速度与圆周运动的周期之间有关系,角速度等于2π除以周期。
线速度是指物体在圆周运动中单位时间内所走过的弧长。
线速度可以表示为v,通常以米/秒为单位。
线速度等于物体在单位时间内所转过的角度大小乘以运动的半径。
5. 圆周运动的离心力和向心加速度离心力是指物体在圆周运动中受到的相对于圆心的向外的力。
离心力的大小等于物体的质量乘以向心加速度的大小。
向心加速度是指物体在圆周运动中的加速度大小。
向心加速度可以表示为ac,计算公式为向心加速度等于线速度的平方除以运动的半径。
6. 圆周运动的应用圆周运动在生活和科学研究中有许多应用。
例如,地球绕太阳的公转运动、行星绕太阳的公转运动等都是圆周运动。
此外,圆周运动还在机械工程、电子工程、天文学等领域广泛应用。
总结:圆周运动是物体沿圆形轨迹做匀速运动的过程。
高中物理必修二第六章圆周运动知识点总结归纳完整版单选题1、如图所示为走时准确的时钟面板示意图,M、N为秒针上的两点。
以下判断正确的是()A.M点的周期比N点的周期大B.N点的周期比M点的周期大C.M点的角速度等于N点的角速度D.M点的角速度大于N点的角速度答案:C由于M、N为秒针上的两点,属于同轴转动的两点,可知M与N两点具有相同的角速度和周期。
故选C。
2、如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。
若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvR B.mv2RC.mv2R2D.mvR2答案:B根据向心力公式得F 向=mv2R故选B。
3、如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针)。
某段时间内圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受摩擦力F f的方向的四种表示(俯视图)中,正确的是()A.B.C.D.答案:C因为圆盘转速不断增大,所以橡皮块将随圆盘一起进行加速圆周运动,此时摩擦力F f既要提供指向圆心的向心力,又要提供与运动方向相同的切向力,所以合力方向应该在轨道内侧且与速度成锐角,故选C。
4、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt解得水平位移x=2√3R故选A。
5、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,此时牵引秋千的轻绳绷直,小明相对秋千静止,下列说法正确的是()A.此时秋千对小明的作用力可能不沿绳的方向B.此时秋千对小明的作用力小于mgC.此时小明的速度为零,所受合力为零D.小明从最低点摆至最高点过程中先处于失重状态后处于超重状态答案:BABC.在最高点,小明的速度为0,设秋千的摆长为l,摆到最高点时摆绳与竖直方向的夹角为θ,秋千对小明的作用力一定沿绳的方向,设为F,则对人,沿摆绳方向受力分析有F−mgcosθ=0得F=mgcosθ<mg沿垂直摆绳方向有F合=mgsinθ=ma显然小明在最高点的合力不为零,加速度为a=gsinθ故B正确,AC错误;D.小明从从最低点摆至最高点过程中,做圆周运动,根据圆周运动的特点可推知小明加速度在竖直方向上的分量方向先向上,后向下,所以小明先处于超重状态后处于失重状态,故D错误。
圆周运动小结知识点总结一、圆周运动的基本概念1. 圆周运动的定义:圆周运动是一个物体或者一个系统绕着一个固定的圆心做圆周运动。
2. 圆周运动的特点:在圆周运动中,物体绕着一个固定的圆心做圆周运动,由于物体的运动方向和加速度方向垂直,因而圆周运动中的加速度称为向心加速度。
3. 向心加速度的方向:向心加速度的方向始终指向圆心。
4. 向心加速度的大小:向心加速度的大小与圆周运动的线速度的平方和圆的半径成正比,公式为 a = v²/r,其中 a 表示向心加速度,v 表示线速度,r 表示半径。
5. 圆周运动的周期:圆周运动完成一次运动所需的时间称为圆周运动的周期,用 T 表示。
6. 圆周运动的频率:圆周运动单位时间内完成的圆周运动次数称为圆周运动的频率,用 f 表示。
7. 圆周运动的角速度:圆周运动角度在单位时间内转过的角度称为角速度,用ω 表示。
二、圆周运动的运动规律1. 圆周运动的速度:圆周运动的速度是指物体绕圆心做圆周运动时在圆周上的线速度。
2. 圆周运动的线速度公式:圆周运动的线速度 v 与角速度ω 和圆的半径 r 成正比,公式为v = ωr。
3. 圆周运动的角速度公式:圆周运动的角速度ω 与圆周运动的周期 T 成反比,公式为ω = 2π/T。
4. 圆周运动的受力分析:在圆周运动中,物体受到向心力的作用,向心力一般由拉力、重力等提供。
5. 圆周运动的牛顿运动定律:在圆周运动中,牛顿第一定律和牛顿第二定律仍然成立,不过要根据实际情况进行修正。
6. 圆周运动的能量转化:在圆周运动中,由于向心力的作用,物体的机械能将发生转换,动能和势能将不断地进行转换。
三、圆周运动的相关公式1. 圆周运动的线速度公式:v = ωr。
2. 圆周运动的角速度公式:ω = 2π/T。
3. 圆周运动的向心加速度公式: a = v²/r。
4. 圆周运动的周期和频率之间的关系: f = 1/T。
5. 圆周运动的动能公式: KE = 1/2mv²。
圆周运动的知识点总结1. 圆周运动的基本概念圆周运动是指物体在固定半径的圆周轨道上运动的物理现象。
在圆周运动中,物体绕着某一点或轴以恒定的速度运动,运动轨迹为圆形或圆周。
2. 圆周运动的基本参数在圆周运动中,有一些基本的物理量和参数需要了解:1)角速度:角速度是指物体绕圆周轨道旋转的速度。
它的单位是弧度/秒或者转/秒。
2)线速度:线速度是物体在圆周运动中沿着轨道运动的速度。
它是物体每单位时间在圆周轨道上所走过的长度。
3)周期和频率:物体绕圆周轨道运动一周所需要的时间称为周期,而单位时间内完成的周期数称为频率。
4)向心加速度:向心加速度是指物体在圆周运动中指向轴心的加速度。
3. 圆周运动的运动规律在圆周运动中,物体遵循一些基本的运动规律:1)圆周运动的速度是恒定的,但是速度方向会不断变化,因此会产生向心加速度。
2)向心加速度的大小与角速度的平方成正比,与运动半径的倒数成反比。
3)圆周运动的线速度与角速度和运动半径成正比。
4)根据牛顿运动定律,物体在做圆周运动时会受到向心力的作用,从而产生向心加速度。
4. 圆周运动的应用圆周运动在自然界和日常生活中都有着广泛的应用:1)行星绕太阳的运动:行星在天体引力的作用下,绕太阳做圆周运动。
其运动规律和速度大小可以通过圆周运动的物理规律进行描述。
2)地球自转和公转:地球的自转和公转运动也是圆周运动的一种,它们决定了地球的昼夜交替和季节变化。
3)机械设备的转动运动:例如汽车的轮子和发动机的转动、电风扇的叶片转动等都是圆周运动的应用。
4)摩擦力和离心力的应用:圆周运动的物体会产生向心加速度,从而在运动过程中会受到摩擦力和离心力的作用。
这些力在机械设备和工程设计中有着重要的应用。
5. 圆周运动的相关问题在圆周运动中,会涉及到一些常见的问题和挑战:1)离心力与向心力的平衡:当物体在做圆周运动时,会受到向心力和离心力的相互作用,需要通过合适的设计来平衡这两种力。
2)材料的强度和耐久性:在圆周运动的机械设备中,材料的强度和耐久性对于长期运行和安全性有着重要的影响。
11 圆周运动1.两种传动方式(1)皮带传动(摩擦传动、齿轮传动):两轮边缘线速度大小相等. (2)同轴转动:轮上各点角速度相等. 2.匀速圆周运动(1)常见模型:物体随水平平台转动、火车或汽车转弯、圆锥摆模型、天体的运动、带电粒子在匀强磁场中的运动等.(2)向心力:由合外力提供,只改变速度的方向,不改变速度的大小. (3)动力学规律:F 向=ma =m v 2r =mrω2=mr 4π2T 2=mr 4π2n 2=mωv .3.竖直平面内的非匀速圆周运动(1)轻绳(圆轨道内侧)模型:物体能做完整圆周运动的条件是在最高点F +mg =m v 2R ≥mg ,即v ≥gR ,物体在最高点的最小速度(临界速度)为gR .(2)拱形桥模型:在最高点有mg -F =m v 2R <mg ,即v <gR ;在最高点,当v ≥gR 时,物体将离开桥面做平抛运动.(3)细杆(管形轨道)模型:在最高点的临界条件是v =0,当0<v <gR 时物体受到的弹力向上;当v >gR 时物体受到的弹力向下;当v =gR 时物体受到的弹力为零. (4)常利用动能定理来建立最高点和最低点的速度联系.1.两类临界问题(1)与摩擦力有关的临界极值图1由摩擦力及其他力的合力提供向心力,发生相对滑动的临界条件是静摩擦力达到最大值,如图1,小物体随倾斜圆盘匀速转动的最大角速度,就是在最下端时摩擦力达到最大静摩擦力,由μmg cos 30°-mg sin 30°=mω2r ,可求得ω的最大值. (2)与弹力有关的临界极值压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且无弹力或绳上拉力恰好为最大承受力. 2.两个结论(1)如图2,在同一水平面上做匀速圆周运动(圆锥摆)的两个小球,由mg tan θ=mω2h tan θ,知角速度(周期)相同.图2(2)如图3,小球能沿粗糙半圆周从P 经最低点Q 到R ,由于机械能的损失,在前半程的速度(摩擦力)总是大于后半程等高处的速度(摩擦力),P 到Q 克服摩擦力所做的功大于Q 到R 克服摩擦力所做的功.图3示例1 (描述圆周运动的物理量)(多选)(2019·江苏卷·6)如图4所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )图4A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R答案 BD解析 由题意可知座舱运动周期为T =2πω,线速度为v =ωR ,受到的合力为F =mω2R ,选项B 、D 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的向心力(即合力)大小不变,方向时刻变化,故座舱受摩天轮的作用力大小时刻在改变,选项C 错误.示例2 (水平面内圆周运动的临界问题)(多选)(2014·全国卷Ⅰ·20)如图5所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图5A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即F f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :F f a =mωa 2l ,当F f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b :F f b =mωb 2·2l ,当F f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω=2kg 3l 时,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 示例3 (竖直面内的圆周运动)(2020·全国卷Ⅰ·16)如图6,一同学表演荡秋千.已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计.当该同学荡到秋千支架的正下方时,速度大小为8 m/s ,此时每根绳子平均承受的拉力约为( )图6A .200 NB .400 NC .600 ND .800 N答案 B解析 取该同学与踏板为研究对象,到达最低点时,受力如图所示,设每根绳子中的平均拉力为F .由牛顿第二定律知:2F -mg =m v 2r ,代入数据得F =405 N ,故每根绳子平均承受的拉力约为405 N ,选项B 正确.示例4 (拋体与圆周的结合)(2018·全国卷Ⅲ·25改编)如图7所示,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图7(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球从C 点落至水平轨道所用的时间. 答案 (1)34mg5gR 2 (2)355Rg解析 (1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α① F 2=(mg )2+F 02②设小球到达C 点时的速度大小为v ,由牛顿第二定律得 F =m v 2R③由①②③式和题给数据得F 0=34mg ④v =5gR2⑤ (2)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ○10 v ⊥=v sin α⑪又CD =R (1+cos α)⑫ 由⑤⑦⑩⑪⑫式和题给数据得 t =355R g。
描述圆周运动的物理量及相互关系圆周运动 1 、定义:物体运动轨迹为圆称物体做圆周运动。
2、描述匀速圆周运动的物理量 (1 )轨道半径( r )(2 )线速度( v ): 定义式: v s 矢量:质点做匀速圆周运动某点线速度的方向就 t 在圆周该点切线方向上。
(3)角速度 ( ω,又称为圆频率):t 2T( φ是 t 时间内半径转过的圆心角 ) 单位:弧度每秒( rad/s )4 )周期( T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。
5)频率 ( f ,或转速 n ):物体在单位时间内完成的圆周运动的次数。
各物理量之间的关系:注意:计算时,均采用国际单位制,角度的单位采用弧度制。
6)向心加速度2 v 2 a nr (还有其它的表示形式,如: a n vr方向:其方向时刻改变且时刻指向圆心。
对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量, r 为 曲率半径;物体的另一加速度分量为切向加速度 a ,表征速度大小改变的快慢(对匀速圆 周运动而言, a =0 ) (7)向心力 匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的 力,常见的提供向心力的典型力有万有引力、洛仑兹力等。
对于一般的非匀速圆周运动, 物体受到的合力的法向分力 F n 提供向心加速度 (下式仍然适用),切向分力F 提供切向加 速度。
v 22向心力的大小为: F n ma n m m 2r (还有其它的表示形式,如:rs 2 r v tT2 rf 2 tT2fr vr t2f22r )2r m 2 f 2r );向心力的方向时刻改变且时刻指向圆心。
实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。
3. 分类:⑴ 匀速圆周运动(1) 定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。
(2) 性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动。
圆周运动知识点总结总结1. 圆周运动的基本概念在圆周运动中,物体沿着一个圆形轨道围绕一个点或轴线做运动。
这个点或轴线被称为圆周运动的中心。
在圆周运动中,物体离中心的距离被称为半径,用符号r表示。
围绕圆心的角度称为角度,通常用符号θ表示。
当物体在圆周运动中通过一个完整的圆周,它所围绕的角度是360度,或者用弧度表示为2π弧度。
2. 圆周运动的运动学描述在圆周运动中,物体在单位时间内通过的角度称为角速度,通常用符号ω表示。
角速度是一个矢量量,它的大小等于单位时间内旋转的角度。
角速度的单位通常是弧度每秒(rad/s)。
物体在圆周运动中所围绕的圆周的长度称为弧长,通常用符号s表示。
弧长和半径之间的关系可以用下面的公式描述:s = rθ在圆周运动中,物体在单位时间内通过的弧长称为线速度,通常用符号v表示。
线速度的大小等于弧长与时间的比值,即v = s/t。
线速度和角速度之间的关系可以用下面的公式描述:v = rω这个公式表明线速度和角速度是成正比的关系。
当半径增大时,线速度也会增大;当角速度增大时,线速度也会增大。
这也说明了在圆周运动中,线速度的方向是垂直于半径的方向。
线速度的方向与角速度的方向有一定的关系,具体关系可根据右手螺旋法则来确定。
3. 圆周运动的动力学描述在圆周运动中,物体所受的向心力(或者称为离心力)是造成它做圆周运动的根本原因。
向心力的大小等于物体的质量和其线速度的平方与半径的乘积之比,即F_c = mv^2/r其中F_c表示向心力,m表示物体的质量,v表示物体的线速度,r表示物体所围绕的圆周的半径。
向心力的方向始终指向圆周运动的中心。
向心力是一种虚拟力,它并不是真实存在的力,但是它却能够改变物体的运动状态,使得物体在圆周运动中始终保持向中心的方向运动。
圆周运动中的向心力和角速度之间有一定的关系。
向心力的大小和角速度的平方成正比,即F_c = mrω^2这个关系表明当角速度增大时,向心力也会增大,从而使得物体在圆周运动中的向中心的加速度也会增大。
圆周运动问题是高考考查的热点,物体在竖直面内的圆周运动中临界条件的考查在高考中多有出现圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。
另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
(一)匀速圆周运动1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2. 运动学特征:v 大小不变,T 不变,ω不变,向a 大小不变;v 和向a 的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。
3. 动力学特征:合外力大小恒定,方向始终指向圆心。
(二)描述圆周运动的物理量 1. 线速度(1)物理意义:描述质点沿圆周运动的快慢。
(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。
(3)大小:(s 是t 时间内通过的弧长)。
2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。
(s /rad ),ϕ是连接质点(2)大小:和圆心的半径在t 时间内转过的角度。
3. 周期T ,频率f 做匀速圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。
4. v 、ω、T 、f 的关系f 1T =f 2T 2π=π=ωω=π=r r T 2v5. 向心加速度(1)物理意义:描述线速度方向改变的快慢。
(2)大小:=a 0222222v r T 4r f 4r r v ω=π=π=ω=(3)方向:总是指向圆心(三)向心力向F1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。
2. 大小:rm r mv F 22ω==向3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。
高一物理《圆周运动》知识点总结一、线速度1.定义:物体做圆周运动,在一段很短的时间Δt 内,通过的弧长为Δs ,则Δs 与Δt 的比值叫作线速度的大小,公式:v =Δs Δt. 2.意义:描述做圆周运动的物体运动的快慢.3.方向:物体做圆周运动时该点的切线方向.4.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)性质:匀速圆周运动的线速度方向是在时刻变化的,所以它是一种变速运动,这里的“匀速”是指速率不变.二、角速度1.定义:连接物体与圆心的半径转过的角Δθ与所用时间Δt 之比叫作角速度,公式:ω=ΔθΔt. 2.意义:描述做圆周运动的物体绕圆心转动的快慢.3.单位:弧度每秒,符号是rad/s ,在运算中角速度的单位可以写为s -1.4.匀速圆周运动是角速度不变的圆周运动.三、周期1.周期T :做匀速圆周运动的物体,运动一周所用的时间.单位:秒(s).2.转速n :物体转动的圈数与所用时间之比.单位:转每秒(r/s)或转每分(r/min).3.周期和转速的关系:T =1n(n 的单位为r/s 时). 四、线速度与角速度的关系1.在圆周运动中,线速度的大小等于角速度的大小与半径的乘积.2.公式:v =ωr .五、向心力的大小向心力的大小可以表示为F n =mω2r 或F n =m v 2r . 六、匀速圆周运动的加速度大小1.向心加速度公式a n =v 2r或a n =ω2r . 2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.七、变速圆周运动和一般曲线运动的受力特点1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t:改变线速度的大小.(2)指向圆心的分力F n:改变线速度的方向.2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动.(2)处理方法:可以把曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理.。
圆周运动知识点总结一、基本概念1、圆周运动的定义圆周运动,是指物体在圆周轨道上做周期性的运动。
在圆周运动中,物体不断地沿着圆周轨道运动,其位置和速度都随时间而变化。
2、圆周运动的基本要素圆周运动的基本要素包括:圆周轨道、圆心、半径、角度和角速度等。
3、圆周运动的基本特征圆周运动的基本特征包括:圆周运动的速度、加速度和角度变化等。
二、规律1、圆周运动的速度在圆周运动中,物体的速度大小和方向都随着它在圆轨道上的位置不断变化。
当物体在圆周运动中处于不同的位置时,其速度大小和方向也不同。
通常情况下,圆周运动的速度大小是不断变化的,而其方向则始终是切线方向。
2、圆周运动的加速度在圆周运动中,物体的加速度是指它在圆轨道上的加速度。
圆周运动的加速度由两部分组成:切向加速度和向心加速度。
切向加速度是指物体在圆周运动中在切向方向上的加速度,它决定了物体在圆周轨道上的速度变化;向心加速度是指物体在圆周运动中朝向圆心的加速度,它决定了物体在圆周轨道上的加速度大小。
3、圆周运动的角度变化在圆周运动中,物体在单位时间内绕圆心旋转的角度称为角速度。
角速度是圆周运动的重要参数,它决定了物体在圆周轨道上的位置和速度。
通常情况下,角速度大小与圆周运动的速度大小成正比。
4、圆周运动的动力学规律在圆周运动中,物体受到的合外力是向心力,向心力与物体在圆周轨道上的质量、半径和角速度等参数有关。
根据牛顿定律,向心力与物体在圆周轨道上的加速度成正比,从而得出了向心力的计算公式。
三、应用1、圆周运动在自然界中的应用在自然界中,圆周运动广泛存在于各种物体的运动中,如:行星绕太阳的公转、月球绕地球的公转、地球自转等。
圆周运动在自然界中的应用非常丰富,它决定了各种天体运动的规律和周期。
2、圆周运动在工程技术中的应用在工程技术领域,圆周运动也有着广泛的应用。
例如,机械工程中的齿轮传动、涡轮机械中的叶轮运动、航天器的轨道设计等,都是基于圆周运动的规律和原理进行设计和改进的。
《圆周运动》知识清单一、圆周运动的定义物体沿着圆周运动的轨迹进行的运动就叫做圆周运动。
生活中圆周运动的例子随处可见,比如转动的风扇叶片、汽车行驶时车轮的运动、游乐场里的摩天轮等等。
二、线速度1、定义:物体通过的弧长与所用时间的比值,叫做线速度。
线速度用符号 v 表示。
2、公式:v =Δl /Δt ,其中Δl 表示物体在Δt 时间内通过的弧长。
3、单位:米每秒(m/s)4、线速度是矢量,其方向就是圆周上该点的切线方向。
三、角速度1、定义:连接物体与圆心的半径所转过的角度与所用时间的比值,叫做角速度。
角速度用符号ω 表示。
2、公式:ω =Δθ /Δt ,其中Δθ 表示半径在Δt 时间内转过的角度。
3、单位:弧度每秒(rad/s)4、角速度也是矢量,但其方向在高中阶段不做深入研究。
四、周期和频率1、周期(T)定义:做圆周运动的物体运动一周所用的时间叫做周期。
单位:秒(s)公式:T =2πr / v (r 为圆周运动的半径,v 为线速度)2、频率(f)定义:单位时间内完成圆周运动的次数叫做频率。
单位:赫兹(Hz)公式:f = 1 / T五、线速度、角速度、周期和频率的关系1、 v =ωr ,即线速度等于角速度乘以半径。
2、ω =2π / T3、 f = 1 / T六、向心加速度1、定义:做圆周运动的物体,由于速度方向不断改变,必然存在加速度。
指向圆心的加速度叫做向心加速度。
2、公式:an = v²/ r =ω²r3、向心加速度的方向始终指向圆心,其作用是改变线速度的方向。
七、向心力1、定义:做圆周运动的物体受到的指向圆心的合力叫做向心力。
2、公式:Fn = m v²/ r =m ω²r3、向心力是根据力的作用效果命名的,它可以由一个力提供,也可以由几个力的合力提供,还可以由某个力的分力提供。
八、生活中的圆周运动实例1、汽车在弯道上行驶汽车在水平弯道上行驶时,摩擦力提供向心力,以保证汽车不向外滑出弯道。
圆周运动知识点总结圆周运动是物体沿着圆形轨迹运动的一种基本运动形式。
这种运动常常出现在日常生活中的各种场景中,如地球的自转和公转、自行车轮子的旋转等等。
本文将重点总结圆周运动的相关知识点,并探讨其在科学和技术中的应用。
一、圆周运动的基本概念圆周运动是物体围绕一个确定的轴心按照圆形轨迹做直线运动的一种运动形式。
在圆周运动中,轴心是确定的,但是圆周运动的速度、半径、角度等参数可以不同。
二、圆周运动的基本量1. 弧长(S):物体在圆周上移动的路径长度,单位为米(m)。
2. 角度(θ):物体绕轴旋转的弧度数,用弧度(rad)或角度(°)表示。
3. 弧度(rad):表示角度的单位,1弧度等于沿单位圆对应圆心角的弧长。
4. 角速度(ω):单位时间内物体绕轴旋转的角度变化,单位为弧度/秒(rad/s)。
5. 周期(T):物体绕轴一周所需的时间,单位为秒(s)。
6. 频率(f):单位时间内物体绕轴旋转的次数,单位为赫兹(Hz)。
三、圆周运动的相关公式1. 圆周运动的速度(v):速度等于物体在圆周上运动的长度与所需时间的比值,即v = S/T = rω。
2. 圆周运动的加速度(a):加速度等于速度的变化率,即 a =Δv/Δt = ω^2r。
3. 圆周运动的周期与频率之间的关系:T = 1/f。
四、圆周运动的应用1. 地球的自转和公转:地球自转一周的周期为约24小时,而公转一周的周期为约365.25天。
这两个运动共同决定了地球的自然日、季节和年份等现象。
2. 车轮的旋转:自行车、汽车等车辆通过轮子的圆周运动来产生动力和行进。
利用圆周运动的变化,可以实现转向、制动等操作。
3. 常用物理实验:圆周运动也经常在物理实验中应用,如离心机、圆周运动的惯性等。
离心机可以通过圆周运动的离心力来分离物质,而圆周运动的惯性则可以用来研究物体在非惯性参考系中的运动规律。
总结:圆周运动是物体按照圆形轨迹绕轴旋转的一种基本运动形式。
圆周运动知识点总结圆周运动是物体沿圆周路径运动的一种形式,它在物理学中占有重要地位。
以下是关于圆周运动的一些关键知识点:1. 圆周运动的基本概念:圆周运动是指物体沿圆周轨迹运动的过程,其中物体的速度方向时刻变化,始终指向圆心。
2. 圆周运动的类型:圆周运动可以分为匀速圆周运动和变速圆周运动。
匀速圆周运动是指物体以恒定速度沿圆周轨迹运动,而变速圆周运动则是指物体的速度大小或方向在运动过程中发生变化。
3. 圆周运动的描述:描述圆周运动时,通常使用线速度、角速度、周期、频率等物理量。
线速度是物体沿圆周轨迹的切线方向的速度,角速度是物体绕圆心转过的角度与时间的比值,周期是物体完成一次圆周运动所需的时间,频率是单位时间内物体完成圆周运动的次数。
4. 圆周运动的物理量关系:对于匀速圆周运动,线速度v、角速度ω、周期T和频率f之间的关系为v = ωr = 2πr/T = 2πf,其中r是圆周运动的半径。
5. 向心力:物体做圆周运动时,需要一个指向圆心的力来维持运动,这个力称为向心力。
向心力的大小与物体的质量、速度和半径有关,其公式为F_c = mω^2r = mv^2/r。
6. 向心加速度:物体做圆周运动时,由于速度方向时刻改变,会产生向心加速度,其大小为a_c = vω = ω^2r = v^2/r,方向始终指向圆心。
7. 圆周运动的实例:生活中的许多现象都涉及到圆周运动,如行星绕太阳的运动、车轮的旋转、钟摆的摆动等。
8. 圆周运动的动力学分析:在分析圆周运动时,需要考虑物体所受的所有力,包括向心力、摩擦力、重力等,并通过牛顿第二定律进行动力学分析。
9. 圆周运动的稳定性:圆周运动的稳定性与物体的质量和速度有关,质量越大、速度越小,圆周运动越稳定。
10. 圆周运动的实验研究:通过实验可以研究圆周运动的规律,例如使用旋转圆盘实验来测量角速度和线速度的关系,或者通过测量物体在圆周运动中的向心力来验证物理定律。
这些知识点为理解和分析圆周运动提供了基础,对于深入学习物理学中的动力学和运动学问题至关重要。
圆周运动知识点总结1.描述圆周运动的物理量圆周运动的定义:物体的运动轨迹是圆的运动叫做圆周运动。
(1)线速度①定义:质点沿圆周运动所通过的弧长Δl 与所需时间Δt 的比值,即单位时间所通过的弧长,叫做线速度。
②物理意义:描述质点沿圆周运动的快慢。
③定义式:v =Δl /Δt④单位:在国际单位制中,线速度的单位是米每秒,符号是m/s如果Δt 取得很小,v 就为瞬时线速度,此时的Δs 方向就与半径垂直,即沿该点的切线方向。
(2)角速度①定义:做圆周运动的质点,连接质点和圆心的半径所转过的角度与所用时间的比值,即单位时间所转过的角度就是质点的角速度。
②物理意义:描述质点绕圆心转动的快慢。
③定义式:ω=Δθ/Δt④单位:在国际单位制中,角速度的单位是弧度每秒,符号是rad/s(3)周期T ,频率f 和转速n周期:做圆周运动的物体运动一周所用的时间,用符号T 表示,在国际单位制中,周期的单位是秒(s )。
频率:做圆周运动的物体在1秒内沿圆周绕圆心转过的圈数,用符号f 表示,在国际单位制中,频率的单位是赫兹(Hz )转速:做圆周运动的物体在单位时间内所转过的圈数,用符号n 表示,单位有转每秒(r/s )或转每分(r/min ),其国际单位制单位为弧度每秒。
当单位时间取1秒时,f =n(4)线速度、角速度、周期、转速之间的关系:①线速度与角速度的关系: R v ω=②角速度与周期的关系: T πω2=③线速度与周期的关系:T Rv π2=④周期和转速的关系: nT 1= ⑤角速度与转速的关系: n πω2=(5)向心加速度①定义:做匀速圆周运动的物体的加速度总指向圆心,这种加速度称为向心加速度。
②物理意义:描述线速度方向改变的快慢。
③大小:④方向:总是沿着圆周运动的半径指向圆心,(6)向心力①定义:做匀速圆周运动的物体受到的合力方向总是指向圆心的,这个合力叫做向心力。
②大小:R m Rmv F 22ω== ③方向:总是沿着半径指向圆心,方向时刻改变,所以向心力是变力。
高二物理《圆周运动》知识点总结
一、匀速圆周运动、角速度、线速度、向心加速度
1.匀速圆周运动
(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动;(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动;
(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心;
2.描述匀速圆周运动的物理量
3.模型处理
(1)竖直面内圆周运动两类模型
一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.
(2)竖直平面内圆周运动的两种模型特点及求解方法
最高点无支撑最高点有支撑。
圆周运动知识点总结圆周运动知识点总结(上)圆周运动是物理学中的一个重要概念,指的是物体以固定圆心做圆周运动的运动形式。
下面是圆周运动的相关知识点总结:1. 角度和弧度角度和弧度是描述圆周运动的两种常见单位。
角度用度(°)来表示,一个圆的360°被分成了一周,每度的角度大小为360°/一周=1°。
角度还可以表示为弧长所对应的圆周角度数,即θ=(L/R)×(π/180°),其中L 为圆弧长度,R为圆的半径。
弧度常用符号“rad”表示,一个圆的周长为2πR,若将其分成2π份,则每份对应的弧度为1。
2. 角速度和角加速度角速度是指单位时间内物体旋转的弧度数,通常使用符号“ω”来表示,其单位为弧度/秒,用下式来计算:ω=θ/t。
其中,θ为物体在时间t内旋转的角度,t为单位时间。
角加速度是角速度的变化率,通常使用符号“α”表示,其单位为弧度/秒²。
3. 切线速度和切线加速度切线速度是指物体在圆周运动中任一点的速度大小,其方向与切线方向相同。
切线速度的大小可以用下面的公式来计算:v=Rω,其中v为切线速度,R为圆的半径。
切线加速度是指物体在圆周运动中任一点的加速度大小,其方向与切线方向相同。
切线加速度的大小可以用下面的公式来计算:a=Rα,其中a为切线加速度,R为圆的半径。
4. 合外力作用下的圆周运动合外力作用下的圆周运动又被称为“非自由圆周运动”,其物理本质是运动质点受到某些外力的作用,必须沿指定轨道做非自由圆周运动。
在合外力作用下的圆周运动中,物理学家可以通过牛顿第二定律来研究物体的运动规律。
牛顿第二定律的公式为F=ma,其中F为物体所受合力的大小,m为物体的质量,a为物体的加速度。
5. 圆周运动的应用圆周运动在日常生活和工业中都有广泛的应用。
例如,电子设备如计算器、手表、手机等的计时模块就会使用圆周运动的原理来计时;汽车轮胎的转动和各种机器的运动过程中,也使用到了圆周运动的原理;通信中的螺线管、微波突破等无线电设备也用到了圆周运动和震动的原理。
曲线运动 圆周运动---章节知识点总结§1 曲线运动1、曲线运动:轨迹是曲线的运动分析学习曲线运动,应对比直线运动记忆,抓住受力这个本质。
2、分类:平抛运动 圆周运动 3、曲线运动的运动学特征: (1)轨迹是曲线(2)速度特点:①方向:轨迹上该点的切线方向 ②可能变化可能不变(与外力有关)4、曲线运动的受力特征 ①F 合不等于零②条件:F 合与0v 不在同一直线上(曲线);F 合与0v 在同一直线上(直线)例子----分析运动:水平抛出一个小球对重力进行分解:x g 与A v 在同一直线上:改变A v 的大小 y g 与A v 为垂直关系:改变A v 的方向③F 合在曲线运动中的方向问题:F 合的方向指向轨迹的凹面 (请右图在箭头旁标出力和速度的符号) 5、曲线运动的加速减速判断(类比直线运动) F 合与V 的夹角是锐角-------加速 F 合与V 的夹角是钝角-------减速F 合与V 的夹角是直线-------速度的大小不变拓展:若F 合恒定--------匀变速曲线运动(典型例子:平抛运动) 若F 合变化--------非匀变速曲线运动(典型例子:圆周运动)§2 运动的合成与分解1、合运动与分运动的基本概念:略2、运动的合成与分解的实质:对s 、v 、a 进行分解与合成--------高中阶段仅就这三个物理量进行正交分解。
3、合运动与分运动的关系:等时性---合运动与分动的时间相等(解题的桥梁) 独立性---类比牛顿定律的独立性进行理解 等效性:效果相同所以可以合成与分解4、几种合运动与分运动的性质①两个匀速直线运动合成---------匀速直线运动②一个匀速直线运动与一个匀变速直线运动合成-------匀变速曲线运动③两个匀变速直线运动合成-----------可能是匀变速直线运动可能是匀变速曲线运动 分析:判断物体做什么运动,一定要抓住本质-----受力!v 水v 船 θ v重要思想:由以上例子可以知道,处理复杂运动特别是曲线运动时,可以把运动分解为两个简单的直线运动。
5、常见的运动的合成与分解问题(1)小船过河(此问题考试的模式较为固定,记住以下两种典型问题)①若水船v v >:a 、渡河时间最短,船应该怎么走?b 、渡河位移最短,船应怎样走? 渡河时间t 最短:船头垂直指向对岸:1v dt =(d 为河宽)渡河位移s 最短:船头指向对岸上游:船水v v =θcos②若水船v v <:a 、渡河时间最短,船应该怎么走?b 、渡河位移最短,船应怎样走?渡河时间t 最短:船头垂直指向对岸:1v dt =(d 为河宽)(同上①) 渡河位移s 最短:船头指向对岸上游:水船v v =θcos (矢量三角形法)(2)小船靠岸 此问题明确两点:1、沿绳子方向两个绳连接的物体沿绳子方向的速度大小相等。
如上图中0v =1v2、物体的实际运动为合运动。
如图中A v (合运动作为对角线,高中阶段为正交分解) 如右图所示,已知人匀速走动,问船做什么运动?V 水 V 合V 船分解可得θθcos cos 01v v v A ==因为0v 不变,θ变大,可知船做加速运动。
§3 平抛物体的运动一、平抛运动------水平抛出,只在重力下的匀变速曲线运动。
1、运动特点:轨迹是曲线;00≠v 水平方向;a=g 2、受力特点mg F =合(恒力);a=g ;0v 与F 合垂直 3、解决平抛运动的方法--------运动的合成与分解 首先对平抛运动进行分解,怎样分解?---正交分解 X 、Y 轴分别可以分解为什么运动? X 轴:0=合F -----匀速直线运动 Y 轴:mg F =合-----自由落体运动 可求解以下物理量:(如右图所示) ①速度:某时刻P 点速度 大小:2222)(gt v v v v y x p +=+=方向:0tan v gtv v xy ==β β为速度偏转角----末速度与初速度的夹角 ②位移:O 点到P 点的位移 大小:222022)21()(gt t v y x s +=+=方向:002221tan v gtt v gt x y ===α注意此处角度α不等于偏转角β,两角关系为αβtan tan 2= ③飞行时间: a 、由221gt y =可求:gy t 2= (时间由高度决定)b 、 b 、由gt v y =,可求gv t y =c 、由txv =0,可求:0v x t =d 、由几何关系002221tan v gtt v gt x y ===α和0tan v gt v v x y ==β求出。
§4 圆周运动的基本概念一、概念:轨迹是圆的运动;速度时刻改变,与半径垂直。
二、描述圆周运动的物理量: 1、周期、频率:周期T :一个完成圆周运动所需的时间。
国际单位:秒(s )f T=1频率f :单位时间内质点所完成的圈数。
单位:赫兹(Hz)转速n :做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做转速,(与频率不同)。
单位:r/s2、线速度v :T rt s v π2==单位:m/s 方向:沿该点的切线方向 3、角速度Tt πθω2== 单位:rad/s4、线速度和角速度的关系:r v ω=5、向心力F :指向圆心的力(效果力)6、向心加速度a : ωππωv r f Tr r r v a =====22222244 三、两种圆周运动1、匀速圆周运动①运动特点:v 的大小不变,但方向时刻改变(“匀”的含义) ②受力特点:向合F F = 合外力完全提供向心力,始终指向圆心 2、变速圆周运动(典型:竖直平面内的圆周运动) ①运动特点:v 大小和方向都变化②受力特点:向合F F ≠ 受力较为复杂,所以在竖直平面的圆周运动中只研究最高点和最低点,这两点的合力方向指向圆心,合外力等于向心力。
3、典型题型:(1)圆周运动的动力学问题:皮带传送问题a 、皮带不打滑,传送带上各点线速度相等(如图C A v v =)b 、同轴转动上各点角速度相等(如图B A ωω=)若已知2:1:2::=C B A r r r ,求C B A ωωω::和C B A v v v ::(提示:利用r v ω=和上面的两个结论进行转换)(2)圆周运动的动力学问题①基本规律:向合F F =(核心:向心力的来源)ωππωv r f Tr r r v a =====22222244 ωππωmv r f m Tr m r m r v m F =====22222244合 T tπθω2==Tt πθω2== r v ω= ②几种常见的匀速圆周运动的实例图形受力分析以向心加速度方向建立坐标系利用向心力公式θGFF N解题步骤:明确研究对象,分析运动状态;确定圆心与轨道半径;受力分析,确定向心力的来源;列式求解。
三、实例1、汽车拐弯(匀速圆周运动的一部分) ①城市内:道路水平rv m f 2= mfrv =可得到拐弯时的最大速度 ②高速公路θθθtan tan tan 020g v mg rv m mg F F =∴=⇒==合向 讨论:a 、若θtan 01g v v => 车有向外的趋势------摩擦力沿斜面向下,它的分力弥补向心力的不足b 、若θtan 02g v v =< 消过大的向心力③火车拐弯-----匀速圆周圆周运动的一部分θθθtan tan tan 020g v mg rv m mg F F =∴=⇒==合向讨论:a 、若θtan 01g v v => 向心力不足-----外轨提供b 、若θtan 02g v v =< 向心力过大-----内轨提供拓展:相似实例---场地自行车赛,场地赛车等三、离心运动和向心运动 1、定义:略2、原因:①离心:某时刻,质点速度v 增大,r v m F 2=向,此时向心力不足,远离圆心。
②向心:某时刻,质点速度v 减小,rv m F 2=向,此时向心力过大,靠近圆心。
§5 竖直平面内的圆周运动一、受力特点:0≠合F ,v 的大小变化如右图所示,只研究特殊位置--最高点和最低点,因为最高点和最低点的受力指向圆心,与匀速圆周运动的受力一样,可以用相同的方法解决。
二、典型模型------绳模型和杆模型 (1)绳模型“绳模型”如图所示,小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力)a b①小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2vmRv临界②小球能过最高点条件:v≥(当v③不能过最高点条件:v(2)杆模型“杆模型”如图所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
)(1)小球能最高点的临界条件:v = 0,F = mg(F为支持力)(2)当0< v时,F随v增大而减小,且mg > F > 0(F为支持力)(3)当v=时,F=0(4)当vF随v增大而增大,且F >0(F为拉力)b。