2019年高考物理一轮复习专题5.3双星问题千题精练
- 格式:doc
- 大小:445.50 KB
- 文档页数:9
专题5.3 双星问题一.选择题1.(2018高考全国I)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星A.质量之积B.质量之和C.速率之和D.各自的自转角速度【参考答案】BC2.(2018·南昌一模)火星被认为是太阳系中最有可能存在地外生命的行星,对人类来说充满着神秘。
为了更进一步探究火星,发射一颗火星的同步卫星,已知火星的质量为地球质量的p倍,火星自转周期与地球自转周期相同,均为T,地球表面的重力加速度为g,地球的半径为R,则火星的同步卫星与火星中心的距离为( )A. 3gR2T24π2p B.3gRT2p4π2C. 3pgR2T24π2D.3gRT24π2p【参考答案】C3.(2016·湖北黄冈高三月考)两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如图所示,以下说法正确的是( )A .线速度与质量成反比B .线速度与质量成正比C .向心力与质量的乘积成反比D .轨道半径与质量成正比【参考答案】A【名师解析】设两星之间的距离为L ,轨道半径分别为r 1、r 2,根据万有引力提供向心力得,G m 1m 2L 2=m 1ω2r 1,G m 1m 2L 2=m 2ω2r 2,则m 1r 1=m 2r 2,即轨道半径和质量成反比,D 错误;根据v =ωr 可知,线速度与轨道半径成正比,故线速度与质量成反比,A正确,B错误;由万有引力公式可知,向心力与质量的乘积成正比,C错误。
4.(2016辽宁丹东模拟)2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角。
双星和多星问题1.考点及要求:(1)万有引力定律的应用(Ⅱ);(2)力的合成与分解(Ⅱ);(3)匀速圆周运动的向心力(Ⅱ).2.方法与技巧:(1)“双星问题”的隐含条件是两者的向心力相同、周期相同、角速度相同;双星中轨道半径与质量成反比;(2)多星问题中,每颗行星做圆周运动所需的向心力是由它们之间的万有引力的合力提供,即F 合=m v 2r,以此列向心力方程进行求解.1.(双星问题)(多选)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( ) A .这两颗恒星的质量必定相等 B .这两颗恒星的质量之和为4π2R 1+R 23GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2R 1+R 23GT 22.(多星问题)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图1所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G ,下列说法正确的是( )图1A .每颗星做圆周运动的角速度为3GmL 3B .每颗星做圆周运动的加速度与三星的质量无关C .若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D.若距离L和每颗星的质量m都变为原来的2倍,则线速度变为原来的4倍3.(多选)宇宙间存在一个离其他星体遥远的系统,其中有一种系统如图2所示,四颗质量均为m的星体位于正方形的顶点,正方形的边长为a,忽略其他星体对它们的引力作用,每颗都在同一平面内绕正方形对角线的交点O做匀速圆周运动,引力常量为G,则( )图2A.每颗星做圆周运动的线速度大小为1+24GmaB.每颗星做圆周运动的角速度大小为Gm 2a3C.每颗星做圆周运动的周期为2π2a3 GmD.每颗星做圆周运动的加速度与质量m有关4.2002年四月下旬,天空中出现了水星、金星、火星、木星、土星近乎直线排列的“五星连珠”的奇观.假设火星和木星绕太阳做匀速圆周运动,周期分别是T1和T2,而且火星离太阳较近,它们绕太阳运动的轨道基本上在同一平面内,若某一时刻火星和木星都在太阳的同一侧,三者在一条直线上排列,那么再经过多长的时间将第二次出现这种现象( )A.T1+T22B.T1T2C.T1T2T2-T1D.T21+T2225.宇宙中存在一些离其他恒星较远的两颗星组成的双星系统,通常可忽略其他星体对它们的引力作用.已知双星系统中星体1的质量为m,星体2的质量为2m,两星体相距为L,同时绕它们连线上某点做匀速圆周运动,引力常量为G.求该双星系统运动的周期.6.宇宙中存在质量相等的四颗星组成的四星系统,这些系统一般离其他恒星较远,通常可忽略其他星体对它们的引力作用.四星系统通常有两种构成形式:一是三颗星绕另一颗中心星运动(三绕一),二是四颗星稳定地分布在正方形的四个顶点上运动.若每个星体的质量均为m,引力常量为G.(1)分析说明三绕一应该具有怎样的空间结构模式.(2)若相邻星球的最小距离为a,求两种构成形式下天体运动的周期之比.答案解析1.BC [对m 1有:G m 1m 2R 1+R 22=m 1R 14π2T 2,解得m 2=4π2R 1R 1+R 22GT 2,同理可得m 1=4π2R 2R 1+R 22GT 2,故两者质量不相等,故选项A 错误;将两者质量相加得m 1+m 2=4π2R 1+R 23GT 2,故选项B 正确;m 1∶m 2=R 2∶R 1,故选项C 正确;两者质量之和为4π2R 1+R 23GT 2,则不可能其中一个的质量为4π2R 1+R 23GT 2,故选项D 错误.]2.C [任意两星间的万有引力F =G m 2L2,对任一星受力分析,如图所示.由图中几何关系和牛顿第二定律可得:3F =ma =mω2L3,联立可得:ω= 3GmL 3,a =ω2L3=3GmL 2,选项A 、B 错误;由周期公式可得:T =2πω=2πL 33Gm ,当L 和m 都变为原来的2倍,则周期T ′=2T ,选项C 正确;由速度公式可得:v =ωL3=GmL,当L 和m 都变为原来的2倍,则线速度v ′=v ,选项D 错误.]3.AD [由星体均围绕正方形对角线的交点做匀速圆周运动可知,星体做匀速圆周运动的轨道半径r =22a ,每颗星体在其他三个星体万有引力的合力作用下围绕正方形对角线的交点做匀速圆周运动,由万有引力定律和向心力公式得:Gm 22a2+2G m 2a 2cos 45°=m v 222a,解得v =1+24Gm a ,角速度为ω=vr=2+22Gm a 3,周期为T =2πω=2π2a34+2Gm,加速度a =v 2r =22+1Gm 2a 2,故选项A 、D 正确,B 、C 错误.] 4.C [根据万有引力提供向心力得:GMm r 2=m 4π2rT2,解得T =2πr 3GM,火星离太阳较近,即轨道半径小,所以周期小.设再经过时间t 将第二次出现这种现象,此为两个做匀速圆周运动的物体追及相遇的问题,虽然不在同一轨道上,但是当它们相遇时,运动较快的物体比运动较慢的物体多运行2π弧度.所以2πT 1t -2πT 2t =2π,解得t =T 1T 2T 2-T 1,选项C 正确.]5.2πLL3Gm解析 双星系统围绕两星体间连线上的某点做匀速圆周运动,设该点距星体1为R ,距星体2为r对星体1,有G 2mm L 2=m 4π2T2R对星体2,有G 2mm L2=2m 4π2T2r根据题意有R +r =L ,由以上各式解得T =2πLL 3Gm6.(1)见解析 (2) 4+23-34解析 (1)三颗星绕另一颗中心星运动时,其中任意一个绕行的星球受到的另三个星球的万有引力的合力提供向心力,三个绕行星球的向心力一定指向同一点,且中心星受力平衡,由于星球质量相等,具有对称关系,因此向心力一定指向中心星,绕行星一定分布在以中心星为中心的等边三角形的三个顶点上,如图甲所示.(2)对三绕一模式,三颗星绕行轨道半径均为a ,所受合力等于向心力,因此有 2Gm 23a2cos 30°+G m 2a 2=m 4π2T 21a 解得T 21=23-3π2a3Gm对正方形模式,如图乙所示,四星的轨道半径均为22a ,同理有 2G m 2a2cos 45°+G m 22a2=m 4π2T 22·22a 解得T 22=44-2π2a37Gm故T 1T 2=4+23-34。
高考物理一轮复习专项训练及答案解析—卫星变轨问题、双星模型1.(多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是()A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于稀薄气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服稀薄气体阻力做的功小于引力势能的减小量2.2021年5月15日,中国火星探测工程执行探测任务的飞船“天问一号”着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区.若飞船“天问一号”从地球上发射到着陆火星,运动轨迹如图中虚线椭圆所示,飞向火星过程中,太阳对飞船“天问一号”的引力远大于地球和火星对它的吸引力,认为地球和火星绕太阳做匀速圆周运动.下列说法正确的是()A.飞船“天问一号”椭圆运动的周期小于地球公转的周期B.在与火星会合前,飞船“天问一号”的向心加速度小于火星公转的向心加速度C.飞船“天问一号”在无动力飞向火星过程中,引力势能增大,动能减少,机械能守恒D.飞船“天问一号”在地球上的发射速度介于第一宇宙速度和第二宇宙速度之间3.(2023·重庆市模拟)我国2021年9月27日发射的试验十号卫星,轨道Ⅱ与Ⅰ、Ⅲ分别相切于A、B两点,如图所示,停泊轨道Ⅰ距地面约200 km,卫星沿轨道Ⅰ过A点的速度大小、加速度大小分别为v1、a1;卫星沿转移椭圆轨道Ⅱ过A点的速度大小、加速度大小分别为v 2、a 2,过B 点的速度大小、加速度大小分别为v 3、a 3;同步轨道 Ⅲ 距地面约36 000 km ,卫星沿轨道 Ⅲ 过B 点的速度大小、加速度大小分别为v 4、a 4.下列关于试验十号卫星说法正确的是( )A .a 1<a 2 v 1<v 2B .a 2>a 3 v 2=v 3C .a 3=a 4 v 3<v 4D .a 2=a 4 v 2<v 44.一近地卫星的运行周期为T 0,地球的自转周期为T ,则地球的平均密度与地球不因自转而瓦解的最小密度之比为( ) A.T 0T B.T T 0 C.T 02T 2 D.T 2T 02 5.(多选)宇宙中两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统A 、B 绕其连线上的某固定点O 做匀速圆周运动,如图所示.若A 、B 两星球到O 点的距离之比为3∶1,则( )A .星球A 与星球B 所受引力大小之比为1∶1B .星球A 与星球B 的线速度大小之比为1∶3C .星球A 与星球B 的质量之比为3∶1D .星球A 与星球B 的动能之比为3∶16.(2023·安徽蚌埠市检测)2022年7月24日14时22分,中国“问天”实验舱在海南文昌航天发射场发射升空,准确进入预定轨道,任务取得圆满成功.“问天”实验舱入轨后,顺利完成状态设置,于北京时间2022年7月25日3时13分,成功对接于离地约400 km 的“天和”核心舱.“神舟”十四号航天员乘组随后进入“问天”实验舱.下列判断正确的是( )A .航天员在核心舱中完全失重,不受地球的引力B .为了实现对接,实验舱和核心舱应在同一轨道上运行,且两者的速度都应大于第一宇宙速度C .对接后,组合体运动的加速度大于地球表面的重力加速度D .若对接后组合体做匀速圆周运动的周期为T ,运行速度为v ,引力常量为G ,利用这些条件可估算出地球的质量7.2021年6月17日,神舟十二号载人飞船与天和核心舱完成对接,航天员聂海胜、刘伯明、汤洪波进入天和核心舱,标志着中国人首次进入了自己的空间站.对接过程的示意图如图所示,天和核心舱处于半径为r 3的圆轨道Ⅲ;神舟十二号飞船处于半径为r 1的圆轨道Ⅰ,运行周期为T 1,通过变轨操作后,沿椭圆轨道Ⅱ运动到B 处与天和核心舱对接.则神舟十二号飞船( )A .在轨道Ⅰ和轨道Ⅱ运动经过A 点时速度大小相等B .沿轨道Ⅱ从A 运动到对接点B 过程中速度不断增大C .沿轨道Ⅱ运行的周期为T 1(r 1+r 32r 1)3 D .沿轨道Ⅰ运行的周期大于天和核心舱沿轨道Ⅲ运行的周期8.(2023·贵州省贵阳一中高三检测)宇宙中有很多恒星组成的双星运动系统,两颗恒星仅在彼此的万有引力作用下绕共同点做匀速圆周运动,如图所示.假设该双星1、2的质量分别为m 1、m 2,圆周运动的半径分别为r 1、r 2,且r 1小于r 2,共同圆周运动的周期为T ,引力常量为G .则下列说法正确的是( )A .恒星1做圆周运动所需的向心加速度大小为G m 2r 12B .恒星1表面的重力加速度一定大于恒星2表面的重力加速度C .恒星1的动量一定大于恒星2的动量D .某些双星运动晚期,两者间距逐渐减小,一者不断吸食另一者的物质,则它们在未合并前,共同圆周运动的周期不断减小9.(多选)(2023·广东省模拟)如图所示为发射某卫星的情景图,该卫星发射后,先在椭圆轨道Ⅰ上运动,卫星在椭圆轨道Ⅰ的近地点A 的加速度大小为a 0,线速度大小为v 0,A 点到地心的距离为R ,远地点B 到地心的距离为3R ,卫星在椭圆轨道的远地点B 变轨进入圆轨道Ⅱ,卫星质量为m ,则下列判断正确的是( )A .卫星在轨道Ⅱ上运行的加速度大小为13a 0 B .卫星在轨道Ⅱ上运行的线速度大小为3a 0R 3C .卫星在轨道Ⅱ上运行周期为在轨道Ⅰ上运行周期的33倍D .卫星从轨道Ⅰ变轨到轨道Ⅱ发动机需要做的功为ma 0R 6-m v 021810.(多选)如图为一种四颗星体组成的稳定系统,四颗质量均为m 的星体位于边长为L 的正方形四个顶点,四颗星体在同一平面内围绕同一点做匀速圆周运动,忽略其他星体对它们的作用,引力常量为G .下列说法中正确的是( )A .星体做匀速圆周运动的圆心不一定是正方形的中心B .每颗星体做匀速圆周运动的角速度均为(4+2)Gm 2L 3C .若边长L 和星体质量m 均是原来的两倍,星体做匀速圆周运动的加速度大小是原来的两倍D .若边长L 和星体质量m 均是原来的两倍,星体做匀速圆周运动的线速度大小不变11.黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.已知某黑洞的逃逸速度为v =2GM R,其中引力常量为G ,M 是该黑洞的质量,R 是该黑洞的半径.若天文学家观测到与该黑洞相距为r 的天体以周期T 绕该黑洞做匀速圆周运动,光速为c ,则下列关于该黑洞的说法正确的是( )A .该黑洞的质量为GT 24πr3 B .该黑洞的质量为4πr 3GT2 C .该黑洞的最大半径为4π2r 3c2 D .该黑洞的最大半径为8π2r 3c 2T2 12.质量均为m 的两个星球A 和B ,相距为L ,它们围绕着连线中点做匀速圆周运动.观测到两星球的运行周期T 小于按照双星模型计算出的周期T 0,且T T 0=k .于是有人猜想在A 、B 连线的中点有一未知天体C ,假如猜想正确,则C 的质量为( )A.1-k 24k2m B.1+k 24k 2m C.1-k 2k 2m D.1+k 2k2m答案及解析1.BD 2.C 3.C 4.D 5.AD 6.D7.C8.D [对于恒星1,根据万有引力提供向心力有Gm 1m 2(r 1+r 2)2=m 1a n1,则恒星1的向心加速度大小a n1=Gm 2(r 1+r 2)2,故A 错误;由mg =GMm R 2,解得g =GM R 2,由于不能确定两恒星半径R 的大小,故不能确定表面重力加速度的大小,故B 错误;对于双星运动有m 1r 1=m 2r 2,又因为角速度相同,根据角速度与线速度关系有m 1ωr 1=m 2ωr 2,即m 1v 1=m 2v 2,则动量大小相等,故C 错误;设两恒星之间距离为L ,对恒星1,有Gm 1m 2L 2=m 1(2πT )2r 1,对恒星2,有Gm 1m 2L 2=m 2(2πT)2r 2,上述两式相加得Gm 2L 2+Gm 1L 2=(2πT )2r 1+(2πT )2r 2,解得T =2πL 3G (m 1+m 2),可以看到当两者间距逐渐减小,总质量不变时,双星做圆周运动的共同周期逐渐减小,故D 正确.]9.BD [设卫星在轨道 Ⅱ 上运行的加速度大小为a 1,由GMm r 2=ma 得a =GM r 2,则a 1=R 2(3R )2a 0=19a 0,故A 错误;设卫星在轨道 Ⅱ 上运行的线速度大小为v 1,有a 1=v 123R ,解得v 1=13a 0R =3a 0R 3,故B 正确;根据开普勒第三定律有T 22T 12=(3R )3(2R )3,解得T 2T 1=364,故C 错误;设卫星在椭圆轨道远地点B 的线速度大小为v ,根据开普勒第二定律有v 0R =v ×3R ,解得v =13v 0,卫星从轨道Ⅰ变轨到轨道Ⅱ发动机需要做的功为W =12m v 12-12m v 2=ma 0R 6-m v 0218,故D 正确.] 10.BD [四颗星体在同一平面内围绕同一点做匀速圆周运动,所以星体做匀速圆周运动的圆心一定是正方形的中心,故A 错误;由2G m 2L 2+G m 2(2L )2=(12+2)G m 2L 2=mω2·22L ,可知ω=(4+2)Gm 2L 3,故B 正确;由(12+2)G m 2L 2=ma 可知,若边长L 和星体质量m 均为原来的两倍,星体做匀速圆周运动的加速度大小是原来的12,故C 错误;由(12+2)G m 2L 2=m v 222L 可知星体做匀速圆周运动的线速度大小为v =(4+2)Gm 4L,所以若边长L 和星体质量m 均是原来的两倍,星体做匀速圆周运动的线速度大小不变,故D 正确.]11.D [天体绕黑洞运动时,有GMm r 2=m (2πT )2r ,解得M =4π2r 3GT2,选项A 、B 错误;黑洞的逃逸速度不小于光速,则有2GM R ≥c ,解得R ≤2GM c 2=8π2r 3c 2T2,选项C 错误,D 正确.] 12.A [两星球绕连线的中点转动,则有G m 2L 2=m ·4π2T 02·L 2,所以T 0=2πL 32Gm ,由于C 的存在,星球所需的向心力由两个力的合力提供,则G m 2L 2+G Mm (L 2)2=m ·4π2T 2·L 2,又T T 0=k ,联立解得M =1-k 24k2m ,可知A 正确,B 、C 、D 错误.]。
7.6 双星、三星(一)课前研读课本,梳理基础知识:一、双星模型分析转动方向、周期、角速度相同,运动半径一般不等转动方向、周期、角速度、线速度大小均相同,圆周运动半径相等诺贝尔物理学奖。
飞马座51b 与恒星相距为L ,构成双星系统(如图所示),它们绕共同的圆心O 做匀速圆周运动。
设它们的质量分别为m 1、m 2且(m 1<m 2),已知万有引力常量为G 。
则下列说法正确的是( ) A.飞马座51b 与恒星运动具有相同的线速度B.飞马座51b 与恒星运动所受到的向心力之比为m 1∶m 2C.飞马座51b 与恒星运动轨道的半径之比为m 2∶m 1D.飞马座51b 与恒星运动的周期之比为m 1∶m 2 答案 C解析 双星系统属于同轴转动的模型,具有相同的角速度和周期,两者之间的万有引力提供向心力,故两者向心力相同,故B 、D 错误;根据m 1ω2r 1=m 2ω2r 2,则半径与质量成反比,即r 1∶r 2=m 2∶m 1,故C 正确;由v =ωr 知线速度之比等于半径之比,即v 1∶v 2=m 2∶m 1,故A 错误。
【小试牛刀2】(多选)如图所示,质量相等的三颗星体组成三星系统,其他星体对它们的引力作用可忽略.设每颗星体的质量均为m ,三颗星体分别位于边长为r 的等边三角形的三个顶点上,它们绕某一共同的圆心O 在三角形所在的平面内以相同的角速度做匀速圆周运动.已知引力常量为G ,下列说法正确的是( ) A .每颗星体所需向心力大小为2G m 2r 2B .每颗星体运行的周期均为2πr 33GmC .若r 不变,星体质量均变为2m ,则星体的角速度变为原来的2倍D .若m 不变,星体间的距离变为4r ,则星体的线速度变为原来的14答案 BC解析 任意两颗星体间的万有引力大小F 0=G m 2r 2,每颗星体受到其他两个星体的引力的合力为F =2F 0cos 30°=3G m 2r 2,A 错误;由牛顿第二定律可得F =m (2πT )2r ′,其中r ′=r 2cos 30°=3r3,解得每颗星体运行的周期均为T =2πr 33Gm ,B 正确;星体原来的角速度ω=2πT=3Gmr 3,若r 不变,星体质量均变为2m ,则星体的角速度ω′=2πT ′=6Gmr 3,则星体的角速度变为原来的2倍,C 正确;星体原来的线速度大小v =2πr ′T,若m 不变,星体间的距离变为4r ,则星体的周期T ′=2π(4r )33Gm=16πr 33Gm=8T ,星体的线速度大小v ′=2πT ′×4r ′=πr ′T ,则星体的线速度变为原来的12,D 错误.【小试牛刀3】宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用。
高考重点难点热点快速突破1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图3甲所示).②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).典例分析【例1】 (多选)(2017年昆明模拟)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2R 1+R 23GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2R 1+R 23GT 2【答案】 BC【例2】:2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105 m,太阳质量M=2×1030 kg,引力常量G=6.67×10-11N·m2/kg2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )A.102 Hz B.104 Hz C.106 Hz D.108 Hz【答案】 A【例3】:.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动.(1)计算出该双星系统的运动周期T;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.【答案】 (1)πL2L GM (2)3N -1M2πL3 【解析】 (1)双星均绕它们连线的中点做圆周运动,万有引力提供向心力,则G M 2L 2=M ⎝⎛⎭⎪⎫2πT 2·L 2,解得T =πL2L GM.【例4】:由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案 】 (1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm【解析】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a2(3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT)2R C ,可得T =πa 3Gm. 专题练习1:宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3GmR 3C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 【答案】 ABC【解析】由图可知,每颗星做匀速圆周运动的半径r =R2cos 30°=33R .由牛顿第二定律得Gm 2R 2·2cos 30°=m v 2r =mω2r =m 4π2T2r =ma ,可解得v =GmR,ω= 3GmR 3,T =2πR 33Gm ,a =3GmR2,故A 、B 、C 均正确,D 错误. 2.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G.关于宇宙四星系统,下列说法错误的是( )A . 四颗星围绕正方形对角线的交点做匀速圆周运动B . 四颗星的轨道半径均为C . 四颗星表面的重力加速度均为D . 四颗星的周期均为2πa【答案】B3.宇宙中存在一些离其他恒星较远,由质量相等的三个星体组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在的一种形式是三个星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图所示.设每个星体的质量均为m,相邻的两个星体之间的距离为L,引力常量为G,则( )A.该圆形轨道的半径为3 2 LB.每个星体的运行周期均为3πL3 2GmC.每个星体做圆周运动的线速度均为Gm LD.每个星体做圆周运动的加速度均与星体的质量无关【答案】:C4.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动,研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化,若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2B.n 3k T C.n 2kT D.n kT 【答案】:B【解析】:设m 1的轨道半径为r 1,m 2的轨道半径为r 2,由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同,两星之间的万有引力提供两星做圆周运动的向心力,即Gm 1m 2r 1+r 22=m 1r 1⎝⎛⎭⎪⎫2πT 2,Gm 1m 2r 1+r 22=m 2r 2⎝ ⎛⎭⎪⎫2πT 2,可得T =2πr 1+r 23G m 1+m 2,故当两恒星总质量变为原来的k倍,两星间距变为原来的n 倍时,圆周运动的周期变为n 3kT ,B 正确. 5.经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2.则可知( )A .m 1、m 2做圆周运动的角速度之比为2∶3B .m 1、m 2做圆周运动的线速度之比为3∶2C .m 1做圆周运动的半径为r 1=25LD .m 2做圆周运动的半径为r 2=25L【答案:】C6. (多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统P、Q绕其连线上的O点做匀速圆周运动,如图所示.若PO>OQ,则( )A.星球P的质量一定大于Q的质量B.星球P的线速度一定大于Q的线速度C.双星间距离一定,双星的质量越大,其转动周期越大D.双星的质量一定,双星之间的距离越大,其转动周期越大【答案】BD7. (多选)宇宙中两个相距较近的星球可以看成双星,它们只在相互间的万有引力作用下,绕两球心连线上的某一固定点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是( ) A.双星相互间的万有引力不变B.双星做圆周运动的角速度均增大C.双星做圆周运动的速度均减小D.双星做圆周运动的半径均增大【答案】CD【解析】双星间的距离在不断缓慢增加,由万有引力定律,F=G,知万有引力减小,A错误;根据万有引力提供向心力得G=m1r1ω2=m2r2ω2,可知m1r1=m2r2,知轨道半径比等于质量之反比,双星间的距离变大,则双星的轨道半径都变大,B 错误,D 正确;根据G=m 1v 1ω=m 2v 2ω,可得线速度减小,C 正确8. (多选)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.若某双星系统中两星做圆周运动的周期为T ,两星总质量为M ,两星之间的距离为r ,两星质量分别为m 1、m 2,做圆周运动的轨道半径分别为r 1、r 2,则下列关系式中正确的是( )A . M =B . r 1=rC . T =2πD . =【答案】AC【解析】由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:对m 1:=m 1ω2r 1① 对m 2:=m 2ω2r 2②;由①②式可得:m 1r 1=m 2r 2 ,即=,D 错误.r 1+r 2=r ,得:r 1=r =r ,B 错误.将ω=,r 1=r 代入①式,可得:=m 1·r,得:T =2π,M =,A 、C 正确.9.宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T 2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比T 1T 2.【答案】T 1T 2=6+634+2【解析】:对于第一种形式,一个星体在其它三个星体的万有引力作用下围绕正方形对角线的交点做匀速圆周运动,其轨道半径为:r1=22a.。
【专题解读】1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球(中心)相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.2.学好本专题有助于学生加深万有引力定律的灵活应用,加深力和运动关系的理解.3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.考向一地球同步卫星1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由GMmR+h2=m4π2T2(R+h)得地球同步卫星离地面的高度h=3.6×107 m.(5)速率一定:v=GMR+h=3.1×103 m/s.(6)向心加速度一定:由GMmR+h2=ma得a=GMR+h2=g h=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.【例1】利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A.1 h B.4 h C.8 h D.16 h【答案】 B卫星的轨道半径为r =Rsin 30°=2R由r 31T 21=r 32T22得 6.6R 3242=2R3T 22.解得T 2≈4 h.解决同步卫星问题的“四点”注意1.基本关系:要抓住:G Mm r 2=ma =m v 2r =mrω2=m 4π2T2r .2.重要手段:构建物理模型,绘制草图辅助分析. 3.物理规律(1)不快不慢:具有特定的运行线速度、角速度和周期. (2)不高不低:具有特定的位置高度和轨道半径.(3)不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上. 4.重要条件(1)地球的公转周期为1年,其自转周期为1天(24小时),地球的表面半径约为6.4×103km ,表面重力加速度g 约为9.8 m/s 2.(2)月球的公转周期约27.3天,在一般估算中常取27天.(3)人造地球卫星的运行半径最小为r =6.4×103km ,运行周期最小为T =84.8 min ,运行速度最大为v =7.9 km/s .阶梯练习1. 如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )A.v 1v 2=r 2r 1B.v 1v 2=r 1r 2C.v 1v 2=⎝ ⎛⎭⎪⎫r 2r 12D.v 1v 2=⎝ ⎛⎭⎪⎫r 1r22【答案】A.2.(2016·高考四川卷) 国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3【答案】D.【解析】由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,可得:a =ω2r ,由于r 2>r 3,则可以得出:a 2>a 3;又由万有引力定律有:G Mmr2=ma ,且r 1<r 2,则得出a 2<a 1.故选项D 正确.3.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转的周期大于火星公转的周期B .地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度【答案】D.4.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大【答案】 A【解析】地球的自转周期变大,则地球同步卫星的公转周期变大.由GMmR+h2=m4π2T2(R+h),得h=3GMT24π2-R,T变大,h变大,A正确.由GMmr2=ma,得a=GMr2,r增大,a减小,B错误.由GMmr2=mv2r,得v=GMr,r增大,v减小,C错误.由ω=2πT可知,角速度减小,D错误.5.(多选)地球同步卫星离地心的距离为r,运行速率为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,地球的第一宇宙速度为v2,半径为R,则下列比例关系中正确的是( )A.a1a2=rRB.a1a2=(rR)2C.v1v2=rRD.v1v2=Rr【答案】AD。
第3讲专题提升:天体运动的四大问题基础对点练题组一卫星的变轨和对接问题1.(七省适应性测试贵州物理)天宫空间站运行过程中因稀薄气体阻力的影响,每经过一段时间要进行轨道修正,使其回到原轨道。
修正前、后天宫空间站的运动均可视为匀速圆周运动,则与修正前相比,修正后天宫空间站运行的( )A.轨道半径减小B.速率减小C.向心加速度增大D.周期减小2.我国在海南文昌航天发射场,用长征五号遥五运载火箭成功将嫦娥五号探测器送入预定轨道。
嫦娥五号在进入环月圆轨道前要进行两次“刹车”,如图所示,第一次“刹车”是在P点让其进入大椭圆轨道,第二次是在P点让其进入环月轨道。
下列说法正确的是( )A.探测器在不同轨道上经过P点时所受万有引力相同B.探测器完成第二次“刹车”后,运行过程线速度保持不变C.探测器在环月轨道上运行周期比在大椭圆轨道上运行周期大D.探测器在环月轨道上运动的机械能比在大椭圆轨道上运动的机械能大3.“天舟五号”货运飞船仅用2小时就与“天宫”空间站快速交会对接,创造了世界纪录。
飞船从预定轨道Ⅰ的A点第一次变轨进入椭圆轨道Ⅱ,到达椭圆轨道的远地点B时,再次变轨进入空间站的运行轨道Ⅲ,与空间站实现对接,假设轨道Ⅰ和Ⅲ都近似为圆轨道,不计飞船质量的变化,则飞船( )A.在轨道Ⅰ的线速度大于第一宇宙速度B.在轨道Ⅰ上的运行周期小于空间站的运行周期C.第一次变轨需加速,第二次变轨需减速D.在圆轨道Ⅰ上A点与椭圆轨道Ⅱ上A点的加速度不同题组二双星和多星问题4.天文学家发现了一对被称为“灾变变星”的罕见双星系统,约每51 min 彼此绕行一圈,通过天文观测的数据,模拟该双星系统的运动,推测在接下来的7 000万年里,这对双星彼此绕行的周期逐渐减小至18 min。
如果将该双星系统简化为理想的圆周运动模型,如图所示,两星球在万有引力作用下,绕O点做匀速圆周运动。
不考虑其他天体的影响,两颗星球的质量不变,在彼此绕行的周期逐渐减小的过程中,下列说法正确的是( )A.每颗星球的角速度都在逐渐变小B.两颗星球的距离在逐渐变大C.两颗星球的轨道半径之比保持不变D.每颗星球的加速度都在变小题组三卫星的追及和相遇问题5.如图所示,卫星甲、乙均绕地球做匀速圆周运动,轨道平面相互垂直,乙3倍。
高效演练1.(2018·山西晋城质检)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.若某双星的质量分别为M 、m ,间距为L ,双星各自围绕其连线上的某点O 做匀速圆周运动,其角速度分别为ω1、ω2,质量为M 的恒星轨道半径为R ,已知引力常量为G ,则描述双星运动的上述物理量满足( )A.ω1<ω2B.ω1>ω2C.GM =ω22(L -R )L 2D.Gm =ω12R 3【答案】C【解析】双星系统中两颗星的角速度相同,ω1=ω2,则A 、B 项错误.由GMm L 2=m ω22(L -R ),得GM =ω22(L-R )L 2,C 项正确.由GMmL2=Mω12R ,得Gm =ω12RL 2,D 项错误.2.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( )A.a 1a 2=r RB.a 1a 2=(r R )2C.v 1v 2=r RD.v 1v 2=R r【答案】AD3研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大【答案】A【解析】地球自转的周期变大,则地球同步卫星的公转周期变大.由GMm (R +h )2=m 4π2T 2(R +h ),得h =3GMT 24π2-R ,T 变大,h 变大,A 正确.由GMm r 2=ma ,得a =GMr2,r 增大,a 减小,B 错误. 由GMm r 2=mv 2r,得v =GMr,r 增大,v 减小,C 错误. 由ω=2πT可知,角速度减小,D 错误.4.石墨烯是目前世界上已知的强度最高的材料,它的发现使“太空电梯”的制造成为可能,人类将有望通过“太空电梯”进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低成本发射绕地人造卫星.如图2所示,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比较( )图2A.B 的线速度大于C 的线速度B.B 的线速度小于C 的线速度C.若B 突然脱离电梯,B 将做离心运动D.若B 突然脱离电梯,B 将做近心运动 【答案】BD5.(多选)如图3所示,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C 为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是( )图3A.v B >v A >v CB.ωA >ωB >ωCC.F A >F B >F CD.T A =T C >T B【答案】AD6. “嫦娥三号”探月卫星于2013年12月2日顺利发射升空,已知“嫦娥三号”探月卫星绕月球表面做匀速圆周运动,飞行N 圈用时为t ;地球的质量为M ,半径为R ,表面重力加速度为g ;月球半径为r ,地球和月球间的距离为L ,则( )A.“嫦娥三号”绕月球表面匀速飞行的速率为2πNr tB.月球的平均密度为3πMN 2gr 2t 2C.“嫦娥三号”的质量为4π2r 3N 2gR 2t 2D.月球受地球的引力为4π2Mr 3N 2L 2t 2【答案】AD【解析】由题知“嫦娥三号”绕月球表面运行的周期为T =t N ,由v =2πr T 得v =2πNr t ,A 对;由G mm ′r2=m ′⎝⎛⎭⎫2πT 2r ,m =ρ·43πr 3,GM =gR 2得月球的平均密度为3πMN 2gR 2t2,B 错;卫星运行中只能估算中心天体的质量,无法估算卫星的质量,C 错;由万有引力公式F =G Mm L 2,G mm ′r 2=m ′⎝⎛⎭⎫2πT 2r 得月球受到地球的引力为4π2Mr 3N 2L 2t 2,D对.7.在发射一颗质量为m 的地球同步卫星时,先将其发射到贴近地球表面运行的圆轨道Ⅰ上(离地面高度忽略不计),再通过一椭圆轨道Ⅱ变轨后到达距地面高度为h 的预定圆轨道Ⅲ上.已知它在圆轨道Ⅰ上运行时的加速度为g ,地球半径为R ,图4中PQ 长约为8R ,卫星在变轨过程中质量不变,则( )图4A.卫星在轨道Ⅲ上运行的加速度为⎝⎛⎭⎫hR +h 2gB.卫星在轨道Ⅲ上运行的线速度为v =gR 2R +hC.卫星在轨道Ⅲ上运行时经过P 点的速率大于在轨道Ⅱ上运行时经过P 点的速率D.卫星在轨道Ⅲ上的动能大于在轨道Ⅰ上的动能 【答案】BC8. “行星冲日”是指当地球恰好运行到某地外行星和太阳之间且三者排成一条直线的天文现象.2014年4月9日发生了火星冲日的现象.已知火星和地球绕太阳公转的方向相同,轨迹都可近似为圆,火星公转轨道半径为地球的1.5倍,以下说法正确的是( )A.火星的公转周期比地球的大B.火星的运行速度比地球的大C.每年都会出现火星冲日现象D.2015年一定不会出现火星冲日现象 【答案】AD【解析】已知火星公转轨道半径为地球的1.5倍,则由T =4π2r 3GM,可知火星的公转周期比地球的大,又由v =GMr,知火星的运行速度比地球的小,故A 对,B 错.据T =4π2r 3GM ,得T 火T 地=r 3火r 3地=1.5 1.5,又T 地=1年,则T 火≈1.8年,由(ω地-ω火)·t =2π,得距下一次火星冲日所需时间t =2πω地-ω火=2.25年,故C错,D 对.9.最近我国连续发射了多颗北斗导航定位卫星,使我国的导航定位精度不断提高.北斗导航卫星有一种是处于地球同步轨道,假设其离地高度为h ,地球半径为R ,地面附近重力加速度为g ,则有( )A.该卫星运行周期为24 hB.该卫星所在处的重力加速度为⎝⎛⎭⎫RR +h 2gC.该卫星周期与近地卫星周期之比为231h R ⎛⎫+ ⎪⎝⎭D.该卫星运动动能为mgR 22(R +h )【答案】ABD10.如图5所示,某极地轨道卫星的运行轨道平面通过地球的南北两极,已知该卫星从北纬60°的正上方按图示方向第一次运行到南纬60°的正上方时所用时间为1 h ,则下列说法正确的是( )图5A.该卫星与同步卫星的运行半径之比为1∶4B.该卫星与同步卫星的运行速度之比为1∶2C.该卫星的运行速度一定大于7.9 km/sD.该卫星的机械能一定大于同步卫星的机械能 【答案】A【解析】由题意知卫星运行的轨迹所对圆心角为120°,即运行了三分之一周期,用时1 h ,因此卫星的周期T =3 h ,由G Mm r 2=m 4π2T 2r 可得T ∝r 3,又同步卫星的周期T 同=24 h ,则极地轨道卫星与同步卫星的运行半径之比为1∶4,A 正确;由G Mm r 2=m v 2r,可得v ∝1r,故极地轨道卫星与同步卫星的运行速度之比为2∶1,B 错误;第一宇宙速度v =7.9 km/s ,是近地卫星的运行速度,所以该卫星的运行速度要小于7.9 km/s ,故C 错误;因卫星的质量未知,则机械能无法比较,D 错误.11.如图6所示,A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h .已知地球半径为R ,地球自转的角速度为ω0,地球表面的重力加速度为g ,O 为地心.图6(1)求卫星B 的运行周期.(2)若卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】见解析12.(2018·安徽安庆模拟)发射宇宙飞船的过程要克服引力做功,已知将质量为m 的飞船在距地球中心无限远处移到距地球中心为r 处的过程中,引力做功为W =GMmr,飞船在距地球中心为r 处的引力势能公式为E p =-GMmr ,式中G 为引力常量,M 为地球质量.若在地球的表面发射一颗人造地球卫星,发射的速度很大,此卫星可以上升到离地心无穷远处(即地球引力作用范围之外),这个速度称为第二宇宙速度(也称逃逸速度).(1)试推导第二宇宙速度的表达式.(2)已知逃逸速度大于真空中光速的天体叫黑洞,设某黑洞的质量等于太阳的质量M =1.98×1030 kg ,求它可能的最大半径?【答案】(1)v =2GMR(2)2.93×103 m(2)由题意知v >c ,即2GMR>c 得R <2GM c 2=2×6.67×10-11×1.98×10309×1016m≈2.93×103 m 则该黑洞可能的最大半径为2.93×103 m.。
35 双星与多星问题[方法点拨] (1)核心问题是“谁”提供向心力的问题.(2)“双星问题”的隐含条件是两者的向心力相同、周期相同、角速度相同;双星中轨道半径与质量成反比;(3)多星问题中,每颗行星做圆周运动所需的向心力是由它们之间的万有引力的合力提供,即F 合=m v 2r,以此列向心力方程进行求解.1.(2018·如皋市质量检测)“双星体系”由两颗相距较近的恒星组成,每个恒星的半径远小于两个星球之间的距离,而且双星系统一般远离其他天体.如图1所示,相距为L 的A 、B 两恒星绕共同的圆心O 做圆周运动,A 、B 的质量分别为m 1、m 2,周期均为T .若有间距也为L 的双星C 、D ,C 、D 的质量分别为A 、B 的两倍,则( )图1A .A 、B 运动的轨道半径之比为m 1m 2B .A 、B 运动的速率之比为m 1m 2C .C 运动的速率为A 的2倍D .C 、D 运动的周期均为22T 2.(多选)太空中存在一些离其他恒星很远的、由三颗星体组成的三星系统,可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是直线三星系统——三颗星体始终在一条直线上;另一种是三角形三星系统——三颗星体位于等边三角形的三个顶点上.已知某直线三星系统A 每颗星体的质量均为m ,相邻两颗星中心间的距离都为R ;某三角形三星系统B 的每颗星体的质量恰好也均为m ,且三星系统A 外侧的两颗星体做匀速圆周运动的周期和三星系统B 每颗星体做匀速圆周运动的周期相等.引力常量为G ,则( )A .三星系统A 外侧两颗星体运动的线速度大小为v =GmRB .三星系统A 外侧两颗星体运动的角速度大小为ω=12R5GmRC .三星系统B 的运动周期为T =4πRR 5GmD .三星系统B 任意两颗星体中心间的距离为L =3125R3.(多选)(2017·镇江市3月质检)冥王星和其附近的星体卡戎的质量分别为M 、m (m <M ),两星相距L ,它们只在相互间的万有引力作用下,绕球心连线的某点O 做匀速圆周运动.冥王星与星体卡戎到O 点的距离分别为R 和r .则下列说法正确的是( ) A .可由G Mm R2=MR ω2计算冥王星做圆周运动的角速度B .可由G Mm L 2=M v 2L 计算冥王星做圆周运动的线速度C .可由G Mm L2=mr (2πT)2计算星体卡戎做圆周运动的周期D .冥王星与星体卡戎绕O 点做圆周运动的动量大小相等4.2015年12月17日我国发射了“悟空”探测卫星,这期间的观测使人类对暗物质的研究又进了一步.宇宙空间中两颗质量相等的星球绕其连线中心转动时,理论计算的周期与实际观测周期不符,且T 理论T 观测=k (k >1);因此,科学家认为,在两星球之间存在暗物质.假设以两星球球心连线为直径的球体空间中均匀分布着暗物质,两星球的质量均为m ,那么,暗物质的质量为( )A.k 2-14mB.k 2-28mC .(k 2-1)mD .(2k 2-1)m5.(2017·锦屏中学模拟)2016年2月11日,科学家宣布“激光干涉引力波天文台(LIGO)”探测到由两个黑洞合并产生的引力波信号,这是在爱因斯坦提出引力波概念100周年后,引力波被首次直接观测到.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图2所示,黑洞A 、B 可视为质点,它们围绕连线上O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响.下列说法正确的是( )图2A .黑洞A 的向心力大于B 的向心力 B .黑洞A 的线速度大于B 的线速度C .黑洞A 的质量大于B 的质量D .两黑洞之间的距离越大,A 的周期越小6.(多选)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2(R 1+R 2)3GT2答案精析1.D [对于双星A 、B ,有Gm 1m 2L 2=m 1(2πT )2r 1=m 2(2πT )2r 2,r 1+r 2=L ,得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,T =2πLLG (m 1+m 2),A 、B 运动的轨道半径之比为r 1r 2=m 2m 1,A 错误;由v =2πr T 得,A 、B运动的速率之比为v 1v 2=r 1r 2=m 2m 1,B 错误;C 、D 运动的周期T ′=2πLLG (2m 1+2m 2)=22T ,D正确;C 的轨道半径r 1′=2m 22m 1+2m 2L =r 1,C 运动的速率为v 1′=2πr 1′T ′=2v 1,C 错误.]2.BCD [三星系统A 中,三颗星体位于同一直线上,两颗星体围绕中央星体在同一半径为R 的圆轨道上运行.其中外侧的一颗星体由中央星体和另一颗外侧星体的合万有引力提供向心力,有:G m 2R 2+G m 2(2R )2=m v 2R,解得v = 5Gm 4R ,A 错误;三星系统A 中,周期T =2πR v =4πR R5Gm,则其角速度为ω=2πT =12R5GmR,B 正确;由于两种系统周期相等,则三星系统B 的运行周期为T =4πRR5Gm,C 正确;三星系统B 中,三颗星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图所示,对某颗星体,由万有引力定律和牛顿第二定律得:2Gm 2L 2cos 30°=m L 2cos 30°·4π2T 2,解得L =3125R ,D 正确.]3.CD [冥王星与星体卡戎之间的万有引力提供各自做圆周运动的向心力:可由G Mm(R +r )2=MR ω2计算冥王星做圆周运动的角速度,故A 错误;同理,可由G Mm L 2=M v 2R计算冥王星做圆周运动的线速度,故B 错误;冥王星与其附近的星体卡戎可视为双星系统.所以冥王星和星体卡戎做圆周运动的周期是相等的,可由G Mm L2=mr (2πT)2计算星体卡戎做圆周运动的周期,故C正确;因G Mm(R +r )2=MR ω2=mr ω2,由于它们的角速度的大小是相等的,所以:MR ω=mr ω,又:v m =ωr ,v M =ωR ,p m =mv m ,p M =Mv M ,所以冥王星与星体卡戎绕O 点做圆周运动的动量大小相等,故D 正确.]4.A [两星球均绕它们的连线的中点做圆周运动,设它们之间的距离为L ,由万有引力提供向心力得:G m 2L 2=m 4π2T 理论2·L2,解得:T 理论=πL2L Gm .根据观测结果,星体的运动周期T 理论T 观测=k ,这种差异是由两星球之间均匀分布的暗物质引起的,均匀分布在两星球之间的暗物质对双星系统的作用与一质量等于暗物质的总质量m ′、位于中点O 处的质点的作用相同.则有:G m 2L 2+Gmm ′(L 2)2=m 4π2T 观测2·L 2,解得:T 观测=πL2L G (m +4m ′),又T 理论T 观测=k ,所以:m ′=k 2-14m ,故A正确,B 、C 、D 错误.]5.B [两黑洞靠相互间的万有引力提供向心力,根据牛顿第三定律可知,A 对B 的作用力与B 对A 的作用力大小相等、方向相反,则黑洞A 的向心力等于B 的向心力,故A 错误;两黑洞靠相互间的万有引力提供向心力,具有相同的角速度,由题图可知A 的轨道半径比较大,根据v =ωr 可知,黑洞A 的线速度大于B 的线速度,故B 正确;由于m A ω2r A =m B ω2r B ,由于A 的轨道半径比较大,所以A 的质量小,故C 错误;两黑洞靠相互间的万有引力提供向心力,所以G m A m B L 2=m A 4π2T 2r A =m B 4π2T 2r B ,又:r A +r B =L ,得r A =m B L m A +m B ,L 为二者之间的距离,所以得:G m A m B L 2=m A 4π2T 2·m B L m A +m B ,即:T 2=4π2L 3G (m A +m B ),则两黑洞之间的距离越小,A 的周期越小,故D 错误.]6.BC [设两星质量分别为m 1、m 2.对m 1有:G m 1m 2(R 1+R 2)2=m 1R 14π2 T 2,解得m 2=4π2R 1(R 1+R 2)2GT 2,同理可得m 1=4π2R 2(R 1+R 2)2GT2,故两者质量不相等,故选项A 错误;将两者质量相加得m 1+m 2=4π2(R 1+R 2)3GT 2,则不可能其中一个的质量为4π2(R 1+R 2)3GT2,故选项D 错误,选项B 正确;m 1∶m 2=R 2∶R 1,故选项C 正确.]本文档仅供文库使用。
测量速度和加速度的方法【纲要导引】此专题作为力学实验的重要基础,高考中有时可以单独出题,16年和17年连续两年新课标1卷均考察打点计时器算速度和加速度问题;有时算出速度和加速度来验证牛二或动能定理等。
此专题是力学实验的核心基础,需要同学们熟练掌握。
【点拨练习】考点一打点计时器利用打点计时器测加速度时常考两种方法:(1)逐差法纸带上存在污点导致点间距不全已知:(10年重庆)点的间距全部已知直接用公式:,减少偶然误差的影响(奇数段时舍去距离最小偶然误差最大的间隔)(2)平均速度法,两边同时除以t,,做stt图,斜率二倍是加速度,纵轴截距是开始计时点0的初速0v。
1.【10年重庆】某同学用打点计时器测量做匀加速直线运动的物体的加速度,电源频率f=50H z 在线带上打出的点中,选出零点,每隔4个点取1个计数点,因保存不当,纸带被污染,如是22图1所示,A 、B 、C 、D 是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离:A S =16.6mmB S =126.5mm D S =624.5mm若无法再做实验,可由以上信息推知:① 相信两计数点的时间间隔为__________S② 打C 点时物体的速度大小为____________m/s(取2位有效数字)③ 物体的加速度大小为__________(用A S 、B S 、D S 和f 表示)【答案】①0.1s ②2.5 ③【解析】①打点计时器打出的纸带每隔4个点选择一个计数点,则相邻两计数点的时间间隔为T=0.1s .②根据间的平均速度等于点的速度得v c ==2.5m/s . ③利用逐差法:,两式相加得,由于,,所以就有了,化简即得答案。
2.【15年江苏】(10分)某同学探究小磁铁在铜管中下落时受电磁阻尼作用的运动规律,实验装置如题11-1图所示,打点计时器的电源为50Hz 的交流电(1)下列实验操作中,不正确的有________A.将铜管竖直地固定在限位孔的正下方B.纸带穿过限位孔,压在复写纸下面C.用手捏紧磁铁保持静止,然后轻轻地松开让磁铁下落D.在磁铁下落的同时接通打点计时器的电源(2)该同学按照正确的步骤进行试验(记为“实验①”),将磁铁从管口处释放,打出一条纸带,取开始下落的一段,确定一合适的点为O点,每隔一个计时点取一个计数点,标为1、2、3…….8,用刻度尺量出各计数点的相邻计时点到O点的距离,记录在纸带上,如题11-2图所示计算相邻计时点间的平均速度v,粗略地表示各计数点的速度,抄入下表,请将表中的数据补充完整(3)分析上表的实验数据可知:在这段纸带记录的时间内,磁铁运动速度的变化情况是________;磁铁受到阻尼作用的变化情况是____________.(4)该同学将装置中的铜管更换为相同尺寸的塑料管,重复上述实验操作(记为实验②),结果表明磁铁下落的运动规律与自由落体运动规律几乎相同,请问实验②是为了说明说明?对比实验①和②的结果得到什么结论?【答案】(1)CD(2)39.0 (3)逐渐增大到39.8 cm/ s 逐渐增大到等于重力(4)为了说明磁铁在塑料管中几乎不受阻尼作用,磁铁在铜管中受到的阻尼作用主要是电磁阻尼作用.【解析】根据速度计算速度。
2019高考物理一轮选练习题(5)(含解析)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考物理一轮选练习题(5)(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考物理一轮选练习题(5)(含解析)新人教版的全部内容。
2019高考物理一轮选练习题(5)李仕才一、选择题1、(2017·合肥模拟)某同学欲估算飞机着陆时的速度,他假设飞机在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x,从着陆到停下来所用的时间为t,实际上飞机的速度越大,所受的阻力越大,则飞机着陆时的速度应是()A.v=错误!B.v=错误!C.v>错误! D.错误!<v<错误!解析:选C。
飞机着陆后若做匀减速直线运动,末速度为零,则飞机着陆时的速度应是v=错误!,实际上,飞机速度越大,所受阻力越大,飞机着陆后做的是加速度减小的减速直线运动.结合v.t图象可知,飞机着陆后的总位移x<v2t,故v>错误!,C正确.【链接】距地面高5 m的水平直轨道上A、B两点相距3 m,在B点用细线悬挂一大小可忽略的小球,离地高度为h,如图。
小车始终以6m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地。
不计空气阻力,取重力加速度的大小g=10 m/s2。
可求得细线长为 ( )A.1.25 m B.2.25 m C.3.75 m D.4.75 m【答案】C【解析】小车上的小球自A点自由落地的时间t1=,小车从A到B的时间t2=;小车运动至B点时细线轧断,小球下落的时间t3=;根据题意可得时间关系为t1=t2+t3,即=+解得h=1.25 m,即细线长为3。
专题5.5 卫星的发射和回收一.选择题1.(2018广东湛江质检).三颗相同的质量都是M 的星球位于边长为L 的等边三角形的三个顶点上。
如果它们中的每一颗都在相互的引力作用下沿外接于等边三角形的圆轨道运行而保持等边三角形不变,下列说法正确的是AB .其中一个星球受到另外两个星球的万有引力的合力指向圆心OCD【参考答案】B【名师解析】根据万有引力定律,任意两颗星球之间的万有引力为F 1=G 22M L ,方向沿着它们的连线。
其中一个星球受到另外两个星球的万有引力的合力为F=2 F 1cos30°22M L,方向指向圆心,选项A 错误B正确;由r cos30°=L/2,解得它们运行的轨道半径r=3L ,选项C 错误;22M L =M 2v r 可得选项D 错误。
2. (2017·广州执信中学检测)(多选)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式(如图9):一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行。
设这三颗星的质量均为M ,并设两种系统的运动周期相同,则( )图9A.直线三星系统中甲星和丙星的线速度相同B.直线三星系统的运动周期T =4πRR 5GMC.三角形三星系统中星体间的距离L =3125RD.三角形三星系统的线速度大小为125GMR【参考答案】BC3.(2016·苏北五校联考)某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F .则( )A .每颗小星受到的万有引力为(3+9)FB .每颗小星受到的万有引力为⎝⎛⎭⎪⎫32+9F C .母星的质量是每颗小星质量的2倍 D .母星的质量是每颗小星质量的3 3 倍 【参考答案】A4.(2016·西安联考)如图,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R 的圆轨道上运行,若三颗星质量均为M ,引力常量为G ,则( )A .甲星所受合外力为5GM24R2B .乙星所受合外力为GM 2R2C .甲星和丙星的线速度相同D .甲星和丙星的角速度相同 【参考答案】AD5.宇宙中存在着这样一种四星系统,这四颗星的质量相等,远离其他恒星,因此可以忽略其他恒星对它们的作用。
专题5.3 双星问题一.选择题1.(2018高考全国I)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星A.质量之积 B.质量之和C.速率之和 D.各自的自转角速度【参考答案】BC2.(2018·南昌一模)火星被认为是太阳系中最有可能存在地外生命的行星,对人类来说充满着神秘。
为了更进一步探究火星,发射一颗火星的同步卫星,已知火星的质量为地球质量的p倍,火星自转周期与地球自转周期相同,均为T,地球表面的重力加速度为g,地球的半径为R,则火星的同步卫星与火星中心的距离为( )A. 3gR2T24π2pB.3gRT2p4π2C. 3pgR2T24π2D.3gRT24π2p【参考答案】C3.(2016·湖北黄冈高三月考)两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如图所示,以下说法正确的是( )A .线速度与质量成反比B .线速度与质量成正比C .向心力与质量的乘积成反比D .轨道半径与质量成正比 【参考答案】A【名师解析】设两星之间的距离为L ,轨道半径分别为r 1、r 2,根据万有引力提供向心力得,Gm 1m 2L2=m 1ω2r 1,Gm 1m 2L2=m 2ω2r 2,则m 1r 1=m 2r 2,即轨道半径和质量成反比,D 错误;根据v =ωr 可知,线速度与轨道半径成正比,故线速度与质量成反比,A 正确,B 错误;由万有引力公式可知,向心力与质量的乘积成正比,C 错误。
4.(2016辽宁丹东模拟)2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角。
在如图所示的双星系统中,A 、B 两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A 的质量为太阳质量的29倍,恒星B 的质量为太阳质量的36倍,两星之间的距离L=2×105m ,太阳质量M=2×1030kg ,万有引力常量G=6.67×10-11N·m 2/kg 2。
若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是A .102HzB .104HzC .106HzD .108Hz 【参考答案】A5 .2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋转的超大质量双黑洞系统,如图所示。
这也是天文学家首次在正常星系中发现超大质量双黑洞。
这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有十分重要的意义。
我国今年底也将发射全球功能最强的暗物质探测卫星。
若图中双黑洞的质量分别为M 1和M 2,它们以两者连线上的某一点为圆心做匀速圆周运动。
根据所学知识,下列选项正确的是( )A.双黑洞的角速度之比ω1∶ω2=M 2∶M 1B.双黑洞的轨道半径之比r 1∶r 2=M 2∶M 1C.双黑洞的线速度之比v 1∶v 2=M 1∶M 2D.双黑洞的向心加速度之比a 1∶a 2=M 1∶M 2 【参考答案】B【名师解析】双黑洞绕连线上的某点做圆周运动的周期相等,角速度也相等,选项A 错误;双黑洞做圆周运动的向心力由它们之间的万有引力提供,向心力大小相等,设双黑洞间的距离为L ,由GM 1M 2L2=M 1r 1ω2=M 2r 2ω2,得双黑洞的轨道半径之比r 1∶r 2=M 2∶M 1,选项B 正确;由v =ωr 得双黑洞的线速度之比v 1∶v 2=r 1∶r 2=M 2∶M 1,选项C 错误;由a =ω2r 得双黑洞的向心加速度之比为a 1∶a 2=r 1∶r 2=M 2∶M 1,选项D 错误。
6.美国宇航局利用开普勒太空望远镜发现了一个新的双星系统,命名为“开普勒-47”,该系统位于天鹅座内,距离地球大约5 000光年。
这一新的系统有一对互相围绕运行的恒星,运行周期为T ,其中一颗大恒星的质量为M ,另一颗小恒星质量只有大恒星质量的三分之一。
已知引力常量为G ,则下列判断正确的是( )A.两颗恒星的转动半径之比为1∶1B.两颗恒星的转动半径之比为1∶2C.两颗恒星相距3GMT 23π2D.两颗恒星相距3GMT 24π2【参考答案】C7.冥王星与其附近的另一星体“卡戎”可视为双星系统,质量比约为7∶1,两星体绕它们连线上某点O 做匀速圆周运动。
由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍 【参考答案】A【名师解析】冥王星、星体“卡戎”依靠彼此间的万有引力提供向心力而做匀速圆周运动,因此轨道圆心一定始终在两星体的连线上,所以两星体具有相同的角速度,B 错误;两星体彼此间的万有引力是作用力与反作用力,故向心力大小相等,因此有m 1ω2r 1=m 2ω2r 2,所以r 1r 2=m 2m 1=17,A 正确,D 错误;由v =ωr 知v 1v 2=r 1r 2=17,C 错误。
8.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T ,,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为A BC. D.【参考答案】B8.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统。
在浩瀚的银河系中,多数恒星都是双星系统。
设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图4所示。
若AO>OB,则( )A.星球A的质量一定大于星球B的质量B.星球A的线速度一定大于星球B的线速度C.双星间距离一定,双星的质量越大,其转动周期越大D.双星的质量一定,双星之间的距离越大,其转动周期越大【参考答案】BD二.计算题1. 如图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L 。
已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
(1)求两星球做圆周运动的周期:(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期为T 1。
但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2。
已知地球和月球的质量分别为5.98×1024kg 和7.35×1022kg 。
求T 2与T 1两者平方之比。
(结果保留3位小数)【名师解析】(1)A 和B 绕O 点做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 所受的向心力相等。
且A 、B 和O 始终共线,说明A 和B 有相同的角速度和周期。
则有:mr ω2= MR ω2,r+R=L , 联立解得R=mL /(M+m ),r=ML /(M+m )。
对星球A ,根据牛顿第二定律和万有引力定律得G 2L m M =mr 22⎪⎭⎫ ⎝⎛T π解得T =2π()m M G L 3+。
2.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′的表达式(用m 1、m 2表示);(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=2.7×105m/s ,运行周期T=4.7π×104s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=6.67×10-11N·m 2/kg 2,m s =2.0×1030kg)【名师解析】(1)设A 、B 圆轨道半径分别为r 1、r 2,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为ω.由牛顿运动定律,有F A =m 1ω2r 1, F B =m 2ω2r 2, F A =F B设A 、B 之间的距离为r ,又r=r 1+r 2,由上述各式得r=122m m m +r 1 ①比较可得m′=()32212m m m +.② (2)由牛顿第二定律,有G 121'm m r =m 1 21v r ③ 又可见星A 的轨道半径r 1= vT /2π . ④由②③④式解得()32212m m m +=32v T Gπ. ⑤(3)将m 1=6m s 代入⑤式,得:()32226s m m m +=32v T Gπ. 代入数据得()32226s m m m +=6.9×1030kg=3.45m s ⑥设m 2=nm s (n >0),将其代入⑥式,得()32226s m m m +=261n n ⎛⎫+ ⎪⎝⎭m s =3.5m s ⑦可见,()32226s m m m +的值随n 的增大而增大,试令n =2,得261n n ⎛⎫+ ⎪⎝⎭m s =0.125m s <3.5m s ⑧若使⑦式成立,则n 必大于2,即暗星B 的质量m 2必大于2m s ,由此得出结论:暗星B 有可能是黑洞.。