图形证明题
- 格式:doc
- 大小:179.50 KB
- 文档页数:8
图形证明题训练1.已知△ABC 是等边三角形,点D 、F 分别在边BC 、AC 上,且DF ∥AB ,过点A 平行于BC 的直线与DF 的延长线交于点E ,连结CE 、BF . (1)求证:△ABF ≌△ACE ;(2)若D 是BC 的中点,判断△DCE 的形状,并说明理由.2.如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC 。
求证:△CDE ≌△EAF3.如图,在四边形ABCD 中,AB =DC ,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点.(1)求证:四边形EGFH 是菱形;(2)若AB =1,则当∠ABC +∠DCB =90°时,求四边形EGFH的面积.4.如图,已知点E ,C 在线段BF 上,BE EC CF ==,AB DE ∥,ACB F ∠=∠.(1)求证:ABC DEF △≌△;(2)试判断:四边形AECD 的形状,并证明你的结论.FE DCBA5.已知△ABC 是等边三角形,点D 、F 分别在边BC 、AC 上,且DF ∥AB ,过点A 平行于BC 的直线与DF 的延长线交于点E ,连结CE 、BF . (1)求证:△ABF ≌△ACE ;(2)若D 是BC 的中点,判断△DCE 的形状,并说明理由.FEDCBAAB CDEF G HFEDCBA6.如图,在等边△ABC 中,点D 是BC 边的中点,将△ADC 沿AC 边翻折得到△AEC ,连接DE .(1)证明△ADE 是等边三角形;(2)取AB 边的中点F ,连结CF 、CE ,证明四边形AFCE 是矩形.7.已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC .点E ,F ,G 分别在边AB ,BC ,CD 上,AE =GF =GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC =2∠EFB 时,求证:四边形AEFG 是矩形.EF DABCABCFD E G。
初二数学图形与证明试题1.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【答案】D【解析】在△ABC中,∠A=36°,AB=AC,求得∠ABC=∠C=72°,且△ABC是等腰三角形.因为BD是△ABC的角平分线所以∠ABD=∠DBC=36°所以△ABD是等腰三角形.在△BDC中有三角形的内角和求出∠BDC=72°所以△BDC是等腰三角形.所以BD=BC=BE 所以△BDE是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE是等腰三角形.共5个.故选D.【考点】角平分线的定义,三角形内角和、外角和,平角的定义.2.(本题满分8分)如图,已知□ABCD的对角线AC、BD相交于点O,四边形OCED为菱形.(1)求证:□ABCD是矩形;(2)连接AE、BE,AE与BE相等吗?请说明理由.【答案】(1)参见解析;(2)相等,理由参见解析.【解析】(1)利用对角线相等的平行四边形是矩形证得结论.(2)证明AE,BE,所在的三角形:△ADE≌△BCE,证得结论.试题解析:(1)∵四边形ABCD为平行四边形∴ AC=2OC,BD=2OD,∵四边形OCED是菱形∴OC=OD∴AC=BD又∵四边形ABCD为平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠BCD=90º,∵四边形OCED是菱形,∴ DE=CE,∴∠EDC=∠ECD,∴∠EDC+∠ADC =∠ECD+∠BCD,∴∠ADE=∠BCE,∴△ADE≌△BCE (SAS),∴AE=BE.【考点】1.矩形性质与判定;2.菱形性质的应用;3.证线段相等的方法.3.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且,四边形DCFE是平行四边形,则图中阴影部分的面积为().A.8B.6C.4D.3【答案】A.【解析】如图,过点A作AM⊥BC于点M,根据三角形的面积公式可得图中阴影部分的面积为,,由四边形DCFE是平行四边形可得DE=CF,又因,DE=CF可得BC=3DE,所以,即.所以图中阴影部分的面积为=8.故答案选A.【考点】平行四边形的性质;三角形的面积公式.4.如图,在□ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2B.3C.4D.5【答案】A.【解析】由平行四边形的性质可得AD=BC=6,AB=CD=4,再由平行线的性质和角平分线的定义可证得∠CED=∠CDE,所以CE=CD=4,即可得BE=BC-CE=6-4=2.故答案选A.【考点】平行四边形的性质;平行线的性质;等腰三角形的性质.5.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)【答案】①③【解析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再根据AO=CO得出△AOD≌△COB,从而得出BO=DO,最后根据对角线互相平分的四边形是平行四边形可得答案.【考点】平行四边形的判定6.(3分)如图,在正方形ABCD的内部作等边△ADE,连接BE,CE,则∠BEC的度数为.【答案】150°.【解析】由等边三角形的性质可得AD=DE,∠ADE=60°,由正方形的性质可得AD=DC,∠ADC=90°,所以DE=DC,CDE=∠ADC﹣∠ADE=90°﹣60°=30°,再根据等边对等角和三角形的内角和定理可得∠CED=∠ECD=(180°﹣30°)=75°,同理可得∠AEB=75°,所以∠BEC=360°﹣75°×2﹣60°=150°.【考点】正方形的性质;等边三角形的性质.7.若一个正方形的面积为8,则这个正方形的边长为()A.4B.2C.D.8【答案】B【解析】正方形的面积等于正方形边长的平方,设正方形的边长为x,根据题意可得:=8,则x==2.【考点】正方形的性质8.(3分)下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.1.5,2,2.5C.,1,D.40,50,60【答案】D【解析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、72+242=625=252,故是直角三角形,不符合题意;B、1.52+22=6.25=2.52,故是直角三角形,不符合题意;C、12+()2==()2,故是直角三角形,不符合题意;D、402+502=4100≠602,故不是直角三角形,符合题意.故选:D.【考点】勾股定理的逆定理.9.已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.【答案】详见解析.【解析】如图,连接AC、BD交于点O,连接OE,已知AE⊥CE,BE⊥DE,根据直角三角形斜边上的中线等于斜边的一半得到OE=AC=BD,进而得到AC=BD,根据对角线相等的平行四边形是矩形即可判定平行四边形ABCD是矩形..试题解析:证明:连接AC、BD交于点O,连接OE,∵AE⊥CE,BE⊥DE,∴OE=AC=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD为矩形.【考点】平行四边形的性质;矩形的判定.10.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.11【答案】C.【解析】∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO=,∴BD=2BO=10,故选C.【考点】1.平行四边形的性质;2.勾股定理.11.(8分)如图,已知平行四边形ABCD,延长BC至E,使CE=BC,连接AC,DE,求证:AC=DE.【答案】见试题解析【解析】根据平行四边形的判定和性质定理即可得到结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD∥BC,∵CE=BC,∴AD∥CE,AD=CE,∴四边形ACED是平行四边形,∴AC=DE.【考点】平行四边形的判定与性质.12.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.【答案】【解析】设DE=xcm,在折叠的过程中,BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).【考点】勾股定理;翻折变换(折叠问题).13.如图,在平四边形ABCD中,对角线AC与BD相交于点O,P为线段BC上一点(除端点外),连接PO并延长交AD于点Q,延长BC到点E,使CE=BC,连接DE.(1)求证:BP=DQ;(2)已知AB=5,AC=6,若CD=BE,求△BDE的周长.【答案】见试题解析【解析】(1)由平行四边形的性质得出AD∥BC,OB=OD,AD=BC,CD=AB,得出∠OBP=∠ODQ,由ASA证明△BOP≌△DOQ,得出对应边相等即可;(2)先证明四边形ACED是平行四边形,得出DE=AC=6,再证明△BDE是直角三角形,根据勾股定理求出BD,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,AD=BC,CD=AB,∴∠OBP=∠ODQ,在△BOP和△DOQ中,,∴△BOP≌△DOQ(ASA),∴BP=DQ;(2)解:∵AD=BC,CE=BC,∴AD=CE=BC,∵AD∥BC,∴AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∵CD=BE,∴∠BDE=90°,BE=2CD=2AB=10,∴BD===8,∴△BDE的周长=BD+BE+DE=8+10+6=24.【考点】平行四边形的性质;全等三角形的判定与性质;勾股定理.14.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)CD的长;(2)作出△ABC的边AC上的中线BE,并求出△ABE的面积.(10分)【答案】(1)cm;(2)15cm2.【解析】(1)由勾股定理求得AB==13cm,再由S△ABC=×BC×AC=AB•CD即可求得CD的长;(2)已知BE为△ABC的边AC上的中线,根据S△ABE =S△ABC即可得△ABE的面积.试题解析:解:∵∠ACB=90°,BC=12cm,AC=5cm,∴AB==13cm,∵S△ABC=×BC×AC=30cm2,∴AB•CD=30,∴CD=cm;如图∵E为AC的中点,∴S△ABE =S△ABC=×30=15cm2.【考点】勾股定理;直角三角形面积的两种表示法;三角形的中线的性质.15.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求EC的长。
初一数学图形与证明试题1.(9分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.【答案】(1)△ADE≌△A‘DE ,则∠A=∠A’,∠AED=∠A‘ED,∠ADE=∠A‘DE(2)∠1=180°;∠2=180°(3)∠∠1+∠2)【解析】①△ADE≌△A‘DE ,则∠A=∠A’,∠AED=∠A‘ED,∠ADE=∠A‘DE (3分)②∠1=180°;∠2=180°(6分)③∠∠1+∠2)(9分)2.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(10分)(1)请在图中画出平移后的△A′B′C′。
(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC的面积.【答案】(1)画图见解析;(2)画图见解析,8.【解析】(1)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据三角形的高线的定义作出即可;根据扇形的面积公式列式计算即可得解.试题解析:(1)△A′B′C′如图所示;(2)△A′B′C′的高C′D′如图所示;△ABC的面积=×4×4=8..【考点】作图-平移变换.3.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG= .【答案】(1)50°;(2)见解析(3)40°.【解析】(1)先由AB∥CD得到∠EHD=∠1=50°,然后再根据对顶角相等可得到∠2的度数;(2)由GM⊥EF,HN⊥EF得到∠MGH=90°,∠NHF=90°,然后可证HN∥GM;(3)先由HN⊥EF得到∠NHG=90°,然后可得∠NGH=∠1=50°,然后根据互余可计算出∠HNG=40°.试题解析:(1)∵AB∥CD,∴∠EHD=∠1=50°,∴∠2=∠EHD=50°;(2)∵GM⊥EF,HN⊥EF,∴∠MGH=90°,∠NHF=90°,∴∠MGH=∠NHF,∴HN∥GM;(3)∵HN⊥EF,∴∠NHG=90°∵∠NGH=∠1=50°,∴∠HNG=90°﹣50°=40°.故答案为40°.【考点】平行线的判定与性质.4.如图给出的分别有射线、直线、线段,其中能相交的图形有()A.①②③④B.①C.②③④D.①③【答案】D【解析】因为直线是向两方无限延伸的,射线是向一方无限延伸的,线段不能向任何一方无限延伸,所以能相交的图形有①③.故选:D.【考点】直线、射线、线段.5.下列命题中是假命题的是()A.对顶角相等B.同位角相等C.邻补角互补D.平行于同一条直线的两条直线平行【答案】B.【解析】根据正确的命题叫真命题,错误的命题叫做假命题可知:选项A,对顶角相等是真命题;选项B,同位角相等是假命题,只有两直线平行,同位角才相等;选项C,邻补角互补是真命题;选项D,平行于同一条直线的两条直线平行是真命题;故答案选B.【考点】真假命题.6.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°【答案】C【解析】如图,根据平行线的性质可得∠1=∠4=75°,然后根据三角形的外角等于不相邻两内角的和,可知∠4=∠2+∠3,因此可求得∠3=75°-35°=40°.故选C【考点】平行线的性质,三角形的外角性质7.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为.【答案】20.【解析】分两种情况:第1种情况,腰长为8,底边长为4,等腰三角形的周长为20;第2种情况,腰长为4,底边长为8,这种情况不存在,故答案为20.【考点】分类讨论;等腰三角形的性质.8.(8分)如图,若AD∥BC,∠A=∠D.(1)猜想∠C与∠ABC的数量关系,并说明理由;(2)若CD∥BE,∠D=50°,求∠EBC的度数.【答案】(1)详见解析;(2)∠EBC=50°.【解析】(1)已知AD∥BC,根据平行线的性质可得∠D+∠C=180°,∠A+∠ABC=180°,又因∠A=∠D,根据同角的补角相等即可得∠C=∠ABC;(2)已知CD∥BE,根据平行线的性质可得∠D=∠AEB=50°,又因AD∥BC,所以∠AEB=∠EBC=50°,即可得∠D=∠EBC=50°.试题解析:解:(1)∵AD∥BC,∴∠D+∠C=180°,∠A+∠ABC=180°,∵∠A=∠D,∴∠C=∠ABC;(2)∵CD∥BE,∴∠D=∠AEB.∵AD∥BC,∴∠AEB=∠EBC,∴∠D=∠EBC=50°.【考点】平行线的性质.9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B.【解析】如图,根据平行线的性质可得∠1=∠3=20°,由题意知∠3+∠2=45°,所以∠2=25°.故答案选B.【考点】平行线的性质.10.如图,已知,∠AOE=∠COD,且射线OC平分∠AOE的补角∠EOB.∠EOD=30°,求∠AOD的度数.【答案】50°.【解析】根据已知和射线OC平分∠AOE的邻补角和图形,得出∠AOD=∠COE=∠BOC.已知∠DOE=30°,由图形得:∠AOB=∠AOD+∠DOE+∠COE+∠BOC=180°,从而∠AOD的度数.试题解析:∵∠AOB=180°∠EOD=30°∴∠AOD+∠EOC+∠COB=150°∵∠AOE=∠COD∴∠AOD=∠EOC∵OC平分∠EOB∴∠EOC=∠COB∴∠EOC=∠COB=∠AOD= 50°【考点】余角和补角.11.如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD,如果∠BAD=80°,则∠CBD的度数为.【答案】10°【解析】因为BAD=80°,由翻折的性质可得∠BAC=∠DAC=40°,AB=AD,所以∠ABD=∠ADB=50°,又因为AC=BC,所以∠CBA=∠CAB=40°,所以∠CBD=10°.【考点】折叠的性质等腰三角形的性质12.已知如图所示,正方形ABCD的边长为1,以AB为直径作半圆,以点A为圆心,AD为半径画弧.那么图中阴影部分的面积为.【答案】.【解析】S阴影=π×12-π×()2=π-π=π;【考点】1.扇形的面积;2.整式加减法.13.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.【答案】三角形的稳定性【解析】用窗钩固定窗户采用的三角形的稳定性原理.【考点】三角形的稳定性14.如图,平面内有A,B,C,D四点,按下列语句画图.(1)画射线AB,直线BC,线段AC;(2)连接AD与BC相交于点E.【答案】作图见解析.【解析】(1)画射线AB,以A为端点向AB方向延长;画直线BC,连接BC并向两方无限延长;画线段AC,连接AB即可;(2)连接各点,其交点即为点E.试题解析:画射线AB;画直线BC;画线段AC;连接AD与BC相交于点E.【考点】作图—基本作图.15.(2014秋•市中区期末)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.【解析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.解:如图所示:【考点】作图-三视图;由三视图判断几何体.16.(2014秋•东台市期末)(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.【答案】(1)见解析;(2)5;7.【解析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.解:(1)作图如下:;(2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案是:5;7.【考点】作图-三视图.17.将下列图形绕直线l旋转一周,可以得到下图所示的立体图形的是()【答案】D【解析】根据面动成体以及圆台的特点进行逐一分析:A、可以得到一个不规则的立体图形,故本选项不符合;B、绕直线l旋转一周,可以得到一个倒立的圆台,故本选项不符合;C、绕直线l旋转一周,可以得到一个球,故本选项不符合;D、绕直线l旋转一周,可以得到右图所示的圆台,故本选项符合.故选D.【考点】面动成体18.A、B、C三点在同一条直线上,M、N分别为AB、BC的中点,且AB=60,BC=40,则MN 的长为【答案】50或10.【解析】试题解析:(1)当C在线段AB延长线上时,∵M、N分别为AB、BC的中点,∴BM=AB=30,BN=BC=20;∴MN=50.(2)当C在AB上时,同理可知BM=30,BN=20,∴MN=10;所以MN=50或10.【考点】比较线段的长短.19.(2015秋•平定县期末)如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【答案】4cm.【解析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.【考点】比较线段的长短.20.(2015秋•平顶山校级期中)用一个平面去截长方体、三棱柱、圆柱和圆锥,其中截面不能截成三角形的是,不能截出圆形的几何体是.【答案】圆柱;长方体、三棱柱.【解析】首先当截面的角度和方向不同时,圆柱体的截面不相同,无论什么方向截取圆柱都不会截得三角形,再利用长方体、圆柱、三棱柱、圆锥的形状判断即可,可用排除法.解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.故截面不能截成三角形的是圆柱;长方体截面形状不可能是圆,符合题意;圆柱截面形状可能是圆,不符合题意;三棱柱截面形状不可能是圆,符合题意;圆锥截面形状可能是圆,不符合题意.故不能截出圆形的几何体是:长方体、三棱柱;故答案为:圆柱;长方体、三棱柱.【考点】截一个几何体.21.(2015秋•端州区期末)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.肇D.庆【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“建”与“庆”是相对面,“美”与“肇”是相对面.故选D.【考点】专题:正方体相对两个面上的文字.22.(2011秋•镇江期末)如图,线段AB=12cm,C是线段AB上任意一点,M,N分别是AC,BC的中点,MN的长为 cm,如果AM=4cm,BN的长为 cm.【答案】6、2.【解析】理解线段的中点的概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系.解:由题意知,MN=AB=×12=6cm,AM=4cm,则BM=AC﹣AM=12﹣4=8cm,BN=MB﹣MN=8﹣6=2cm.故答案为6、2.23.一个角的余角是这个角的4倍,则这个角的度数是.【答案】18°【解析】首先设这个角的度数为x°,则根据题意可得:4x=90-x,解得:x=18°.【考点】余角的性质24.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【答案】C【解析】三角形第三边的长度大于两边之差小于两边之和,根据题意得:6<第三边<14,∴选择C.【考点】三角形三边的关系.25.如图,直线AB与CD相交于点O,.(1)如图1,若OC平分,求的度数;(2)如图2,若,且OM平分,求的度数.【答案】(1)∠AOD=135°;(2)∠MON=54°.【解析】(1)根据角平分线的性质求出∠AOC的度数,然后根据∠AOC+∠AOD=180°求出∠AOD的度数;(2)首先设∠NOB=x°,则∠BOC=4x°,∠CON=3x°,根据角平分线的性质可得∠MON=x°,根据∠MON+∠NOB=90°求出x的值,然后计算.试题解析:(1)∵∠AOM=90°,OC平分∠AOM∴∠AOC=∠AOM=45°∵∠AOC+∠AOD=180°∴∠AOD=180°-∠AOC=180°-45°=135°.(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°∴∠CON=∠COB-∠BON=4x°-x°=3x°∵OM平分∠CON∴∠COM=∠MON=∠CON=x°∵解得:x=36∴∠MON=x°=×36°=54°即∠MON的度数为54°【考点】角度的计算.26.(2015秋•新泰市期末)如图,在△ABC中,∠C=90°,∠BDC=30°,AD=2BC,则∠A=()A.15°B.20°C.16°D.18°【答案】A【解析】根据在△ABC中,∠C=90°,∠BDC=30°,AD=2BC,可以求得DB与BC的关系,从而可以求得∠A与∠DBA的关系,进而可以求得∠A的度数.解:∵在△ABC中,∠C=90°,∠BDC=30°,∴BD=2BC,又∵AD=2BC,∴AD=DB,∴∠A=∠DBA,∵∠BDC=∠A+∠DBA,∠BDC=30°,∴∠A=15°.故选A.【考点】含30度角的直角三角形;等腰三角形的判定与性质.27.(2004•青海)如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′【答案】D【解析】根据角平分线性质、对顶角性质、互余、互补角的定义,逐一判断.解:A、由OE⊥AB,可知∠AOE=90°,OF平分∠AOE,则∠2=45°,正确;B、∠1与∠3互为对顶角,因而相等,正确;C、∠AOD与∠1互为邻补角,正确;D、∵∠1+75°30′=15°30′+75°30′=91°,∴∠1的余角等于75°30′,不成立.故选D.【考点】垂线;角平分线的定义;对顶角、邻补角.28.(2015秋•禹州市期末)某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转90°,则结果指针的指向是.(指向用方位角表示)【答案】南偏东40°.【解析】根据南偏西50°逆时针转90°,可得指针的指向.解:一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转90°,则结果指针的指向是南偏东40°,故答案为:南偏东40°.【考点】方向角.29.(2015秋•满城县期末)如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国【答案】C【解析】利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选C.【考点】正方体相对两个面上的文字.30.(2015秋•满城县期末)如图,点O是直线AB上一点,OC是∠AOD的平分线,已知∠AOC的补角是150°20′,则∠AOD的度数是.【答案】59°20′【解析】先根据补角的定义求得∠AOC的度数,然后由角平分线的定义可知∠AOD=2∠AOC,从而可求得∠AOD的度数.解:∵∠AOC的补角是150°20′,∴∠AOC=180°﹣150°20′=29°40′.∵OC是∠AOD的平分线,∴∠AOD=2∠AOC=2×29°40′=59°20′.故答案为:59°20′.【考点】余角和补角;度分秒的换算;角平分线的定义.31.(2015秋•吴中区期末)下列说法中,正确的个数是()(1)同角的余角相等(2)相等的角是对顶角(3)在同一平面内,不相交的两条直线叫平行线(4)直线外一点与直线上各点连接的所有线段中,垂线段最短.A.1B.2C.3D.4【答案】C【解析】根据余角定义,对顶角定义,垂线段最短,平行线定义逐个判断即可.解:同角的余角相等,故(1)正确;如图:∠ACD=∠BCD=90°,但两角不是对顶角,故(2)错误;在同一平面内,不相交的两条直线叫平行线,故(3)正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故(4)正确;即正确的个数是3,故选C.【考点】余角和补角;对顶角、邻补角;垂线段最短;平行线.32.(2015秋•岳池县期末)如图,C、D是线段AB上两点,巳知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=24cm,求线段MN的长.【答案】16cm【解析】根据题意分别求出AC、CD、DB的长,根据中点的性质计算即可.解:∵AC:CD:DB=1:2:3,AB=24cm,∴AC=4cm,CD=8cm,DB=12cm,∵M、N分别为AC、DB的中点,∴MC=AC=2cm,DN=BD=6cm,∴MN=MC+CD+DN=16cm.【考点】两点间的距离.33.比较:28°15′ 28.15°(填“>”、“<”或“=”).【答案】>【解析】首先利用度分秒换算法则进行转化,再比较大小.解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.【考点】角的大小比较;度分秒的换算.34.(2015秋•莒县期末)如图所示,线段AB=10,M为线段AB的中点,C为线段MB的中点,N为线段AM的一点,且MN=1,线段NC的长()A.2B.2.5C.3D.3.5【答案】D【解析】根据线段中点的定义分别求出MB、MC的长,结合图形计算即可.解:∵线段AB=10,M为线段AB的中点,∴MB=AB=5,∵C为线段MB的中点,∴MC=BM=2.5,∴NC=NM+MC=3.5.故选:D.【考点】两点间的距离.35.(2015秋•利川市期末)如图,图中小于平角的角共有()A.7个B.6个C.5个D.4个【答案】B【解析】按一定的规律数平角的个数:先数出以一条射线为一边的角,再数出以其余三条射线为一边的角,然后把他们加起来;或者根据公式来计算.解:先数出以OA为一边的角,再数出以OB、OC、OD为一边的角,把他们加起来.也可根据公式:来计算,其中,n指从点O发出的射线的条数.∵图中共有四条射线,∴图中小于平角的角共有=6(个);故选B.【考点】角的概念.36.(2015秋•利川市期末)如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)【答案】(1)158°;(2)北偏西20°.【解析】(1)利用方向角分别求出∠1=42°,则∠2=48°,以及∠COM=65°,∠4=25°,再结合角平分线的性质得出∠COE=45°,即可得出答案;(2)利用(1)中所求得出:∠EOM=20°,即可得出答案.解:(1)如图所示:∵A村位于学校南偏东42°方向,∴∠1=42°,则∠2=48°,∵C村位于学校北偏西65°方向,∴∠COM=65°,∵B村位于学校北偏东25°方向,∴∠4=25°,∴∠BOC=90°,∵OE(射线)平分∠BOC,∴∠COE=45°,∴∠EOM=65°﹣45°=20°,∴∠AOE=20°+90°+48°=158°;(2)由(1)可得:∠EOM=20°,则车站D相对于学校O的方位是:北偏西20°.【考点】方向角.37.如图,从A到B有①,②,③三条路线,最短的路线是①的理由是:A.因为它最直B.两点确定一条直线C.两点的距离的概念D.两点之间,线段最短【答案】D.【解析】两点之间,线段最短.故选D.【考点】线段的性质.38.若∠A=64°,则它的余角等于()A.116°B.26°C.64°D.50°【答案】B【解析】根据两个角的和为90°,则这两个角互余计算即可.解:∵∠A=64°,∴90°﹣∠A=26°,∴∠A的余角等于26°,故选:B.【考点】余角和补角.39.一个正方体其平面展开图如图所示,那么在该正方体中和“义”相对的字是()A.礼B.智C.信D.孝【答案】D【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“义”字相对的字是“孝”.故选:D.【考点】正方体相对两个面上的文字.40.如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是度.【答案】18【解析】根据三角形内角和定理求得∠BAC的度数,再根据角平分线的定义可求得∠BAE的度数,由三角形内角和定理可求得∠BAD的度数,从而不难求得∠DAE的度数.解:∵△ABC中,∠B=70°,∠C=34°.∴∠BAC=180°﹣(70°+34°)=76°.∵AE平分∠BAC,∴∠BAE=38°.∵Rt△ABD中,∠B=70°,∴∠BAD=20°.∴∠DAE=∠BAE﹣∠BAD=38°﹣20°=18°41.如图,AB∥DE,∠1=∠2,则AE与DC的位置关系是()A.相交B.平行C.垂直D.不能确定【答案】B.【解析】根据平行线的性质得出∠1=∠AED,推出∠AED=∠2,根据平行线的判定推出即可.解:AE∥DC,理由是:∵AB∥DE,∴∠1=∠AED,∵∠1=∠2,∴∠AED=∠2,∴AE∥DC,故选B.【考点】平行线的判定与性质.42.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【答案】1.【解析】设AB为2x,则CD=4x=8,得出x=2,再利用MC=MD﹣CD求解.解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD=x,则CD=4x=8,x=2,MC=MD﹣CD=﹣4x==×2=1.【考点】比较线段的长短.43.一个几何体的表面展开图如图所示,则这个几何体是.【答案】四棱锥.【解析】根据四棱锥的侧面展开图得出答案.解:如图所示:这个几何体是四棱锥;故答案为:四棱锥.【考点】几何体的展开图.44.把命题“同角的余角相等”改写成“如果…那么…”的形式.【答案】如果两个角是同一个角的余角,那么这两个角相等.【解析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.【考点】命题与定理.45.如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3【答案】C【解析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是邻补角,故A错误;B、∠1和∠3是邻补角,故B错误;C、∠1和∠4是同位角,故C正确;D、∠2和∠3是对顶角,故D错误.故选:C.【考点】同位角、内错角、同旁内角.46.如图所示,直线a∥b,则∠A= 度.【答案】22【解析】依题意由平行线的性质,结合三角形外角及外角性质,可以得到∠A=∠C﹣∠B,易求∠A的度数.解:∵a∥b,∴∠ADE=50°,∵∠ABE=28°,根据三角形外角及外角性质,∴∠A+∠ABE=∠ADE,∴∠A=∠C﹣∠B=22°.∴∠A=22°.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.47.如图,不能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°【答案】C【解析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b;故本选项正确,不符合题意;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b;故本选项正确,不符合题意;C、∵∠2与∠3是同旁内角,∴∠2=∠3,不能证明两直线平行;故本选项错误,符合题意;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b.故本选项正确,不符合题意;故选C.【考点】平行线的判定.48.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6B.8C.10D.12【答案】B【解析】设多边形的边数为n,则=135,解得:n=8【考点】多边形的内角.49.如图,在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°.(1)求∠CAD、∠AEC和∠EAD的度数.(2)若图形发生了变化,已知的两个角度数改为:当∠B=30°,∠C=60°则∠EAD= °;当∠B=50°,∠C=60°时,则∠EAD= °;当∠B=60°,∠C=60°时,则∠EAD= °;当∠B=70°,∠C=60°时,则∠EAD= °.(3)若∠B和∠C的度数改为用字母α和β来表示,你能找到∠EAD与α和β之间的关系吗?请直接写出你发现的结论.【答案】(1)、∠CAD=30°,∠AEC=70°,∠EAD=20°;(2)、15°,5°,0°,5°;(3)、当α<β时,∠EAD=(β﹣α)°;当α>β时,∠EAD=(α﹣β)°【解析】(1)、根据∠B和∠C的度数得出∠BAC的度数,根据角平分线的性质得出∠EAC的度数,根据高线的性质得出∠CAD的度数,根据∠EAD=∠EAC﹣∠DAC、∠AEC=180°﹣∠EAC﹣∠C得出角度;(2)、根据∠EAD=∠EAC﹣∠DAC或者∠EAD=∠DAC﹣∠EAC求出角度;(3)、当α<β时,根据∠EAD=∠EAC﹣∠DAC得出角度;当α>β时,根据∠EAD=∠DAC﹣∠EAC得出角度.试题解析:(1)、∵∠B=20°,∠C=60°,∴∠BAC=180°﹣20°﹣60°=100°,∵AE是角平分线,∴∠EAC=50°,∵AD是高,∴∠ADC=90°,∴∠CAD=30°,∴∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°,∴∠AEC=180°﹣∠EAC﹣∠C=180°﹣50°﹣60°=70°;(2)、①∠EAD=∠EAC﹣∠DAC=45°﹣30°=15°;②∠EAD=∠EAC﹣∠DAC=35°﹣30°=5°;③∠EAD=∠EAC﹣∠DAC=30°﹣30°=0°;④∠EAD=∠DAC﹣∠EAC=30°﹣25°=5°;(3)当α<β时,∴∠EAD=∠EAC﹣∠DAC=[(90﹣)°﹣(90°﹣β°)]=(β﹣α)°当α>β时,∴∠EAD=∠DAC﹣∠EAC=[(90°﹣β°)﹣(90﹣)°]=(α﹣β)°【考点】(1)、角度的计算;(2)、分类讨论思想.50.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【答案】(1)、30°;(2)、4.【解析】(1)、根据等边三角形的性质得出∠B=60°,根据DE∥AB得出∠EDC=60°,根据垂直得出∠DEF=90°,根据三角形内角和定理可得∠F的度数;(2)、根据∠ACB=∠EDC=60°得出△EDC为等边三角形,则ED=DC=2,根据∠DEF=90°,∠F=30°得出DF=2DE=4.试题解析:(1)、∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°(2)、∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°∴DF=2DE=4.【考点】等边三角形的性质51.探究:如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,直线l3有一点P,(1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?并说明理由.【答案】(1)∠APB=∠PAC+∠PBD,理由见解析;(2)当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB;当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.理由见解析.【解析】(1)过点P作PE∥l1根据l1∥l2得出PE∥l2∥l1,从而得出∠PAC=∠1,∠PBD=∠2,然后得出答案;(2)分点P在C、D两点的外侧运动,在l1上方和在l2下方时两种情况,分别根据(1)的方法得出答案.试题解析:(1)当点P在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)ⅰ)当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB, ∴∠PBD=∠PAC+∠APB.ⅱ)当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【考点】平行线的性质52.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD= .【答案】80°【解析】由多边形的内角和公式,即可求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=440°,即可求得∠GBC+∠C+∠CDG的度数,继而求得答案.解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC+∠C+∠CDG=720°﹣440°=280°,∴∠BGD=360°﹣(∠GBC+∠C+∠CDG)=80°.故答案为:80°.53.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)【答案】见解析【解析】关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.解:如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.54.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【答案】B【解析】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.55.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【答案】B【解析】利用平行线的判定方法判断即可.解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B56.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【答案】120°【解析】设∠AOC=x,则∠BOC=2x,∠AOB=3x.先由角平分线的定义得出∠AOD=,再根据∠AOD﹣∠AOC=∠COD=20°,列出关于x的方程,解方程求出x的值,进而得到∠AOB的度数.解:设∠AOC=x,则∠BOC=2∠AOC=2x,∠AOB=∠BOC+∠AOC=3x.∵OD平分∠AOB,∴∠AOD=∠AOB=.又∵∠AOD﹣∠AOC=∠COD=20°,∴﹣x=20°,解得x=40°,∴∠AOB=3x=120°.57.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】(1)见解析;(2)90°;(3)成立,见解析【解析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB ≌△AEC (SAS ),∴BD=CE ;(2)∵△ADB ≌△AEC ,∴∠ACE=∠ABD ,而在△CDF 中,∠BFC=180°﹣∠ACE ﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA ﹣∠BDA=∠DAB=90°;(3)BD=CE 成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形 ∴AB=AC ,AD=AE ,∠BAC=∠EAD=90°, ∵∠BAC+∠CAD=∠EAD+∠CAD ∴∠BAD=∠CAE ,∵在△ADB 和△AEC 中,,∴△ADB ≌△AEC (SAS ) ∴BD=CE ,∠ACE=∠DBA ,∴∠BFC=∠CAB=90°.58. 如图,已知直线l 1∥l 2,且l 3和l 1、l 2分别交于A 、B 两点,点P 在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P 和A 、B 不重合)【答案】见解析【解析】(1)过点P 作l 1的平行线,根据平行线的性质进行解题.(2)(3)都是同样的道理.解:(1)∠1+∠2=∠3;理由:过点P 作l 1的平行线, ∵l 1∥l 2, ∴l 1∥l 2∥PQ , ∴∠1=∠4,∠2=∠5,(两直线平行,内错角相等) ∵∠4+∠5=∠3, ∴∠1+∠2=∠3;(2)同(1)可证:∠1+∠2=∠3;(3)∠1﹣∠2=∠3或∠2﹣∠1=∠3理由:当点P 在下侧时,过点P 作l 1的平行线PQ , ∵l 1∥l 2, ∴l 1∥l 2∥PQ , ∴∠2=∠4,∠1=∠3+∠4,(两直线平行,内错角相等) ∴∠1﹣∠2=∠3;当点P在上侧时,同理可得:∠2﹣∠1=∠3.59.如图:AB、CD相交于点O,OB平分∠DOE,若∠DOE=64°,则∠AOC的度数是.【答案】32°【解析】首先根据角平分线的定义求得∠BOD,然后根据对顶角相等即可求解.解:∵OB平分∠DOE,∴∠BOD=∠DOE=32°,∴∠AOC=∠BOD=32°.故答案是:32°.60.完成下列证明:如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.证明:∵AD⊥BC,EF⊥BC(已知)∴∠EFB=∠ADB=90°()∴EF∥AD()∴∠1=∠BAD()又∵∠1=∠2(已知)∴(等量代换)∴DG∥BA.()【答案】见解析【解析】由垂直得直角,这是利用了垂直的定义,再由平行线的判定填第2和第5空,由平行线的性质填第3空,第4空有等量代换可得∠BAD=∠2.证明:∵AD⊥BC,EF⊥BC(已知)∴∠EFB=∠ADB=90°(垂直定义)∴EF∥AD(同位角相等,两直线平行)∴∠1=∠BAD(两直线平行,同为角相等)又∵∠1=∠2(内错角相等,两直线平行)∴∠BAD=∠2(等量代换)∴DG∥BA.(内错角相等,两直线平行)。
第七章平面图形的认识(二) 图形证明专项训练1.如图,∠1=∠2,∠C=∠D.∠A与∠F有怎样的数量关系?请说明理由.2.如图,请你从下列三个条件中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.①AD∥BC;②AB∥CD;③∠A=∠C.已知:________________________________________________.结论:________________________________________________.理由:3.如图,∠A=65°∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.4.如图所示,已知∠1=∠2,再添加什么条件可使AB∥CD成立?请你说明理由.5.如图,已知∠1=45°,∠2=135°,∠D=45°,问:BC与DE平行吗?AB与CD呢?为什么?6.如图,若∠1+∠3=180°,能否得出AB∥CD?为什么?7.如图,直线AB和直线CD被直线GH所截,交点分别为点E、F,AEF EFD∠=∠.(1) AB与CD平行吗,为什么?(2)如果AEM NFD∠=∠,那么EM与FN是否平行,为什么?8.如图,25E∠=︒,求证://AB EF.∠=︒,10∠=︒,45BBCD∠=︒,30CDE9.如图,如果AB∥CD,∠B=38°,∠D=38°,那么BC与DE平行吗?为什么?10.如图,AB∥CD,∠ACB=90°,∠ACD=55°,求∠B的度数.11.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.12.已知,如图,在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=40°,∠C=30°,则∠DAE=_______;(2)若∠B=80°,∠C=40°,则∠DAE=_______;(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为______________,并说明理由.13.(1)如图,小莉画了一个角∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)聪明的小莉想出了一个画30°角的方法:①画两条相交的直线OX、OY,使∠XOY=60°,②在射线OX、OY上分别再任意取A、B点,③作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,则∠C就是30°的角.你认为小莉的方法正确吗?请你说明理由.14.如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠l+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?(2)如果把四边形ABCD沿时折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠l与∠2之间的关系吗?(直接写出关系式即可)15.认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A ,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∠1=12∠ABC ,∠2=12∠ACB ∴∠1+∠2=12(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A ∴∠1+∠2=12(180°﹣∠A)=90°-12∠A∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=90°+12∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________________.16.平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD,如图(1),点P在AB、CD外部时,由//AB CD,有B BOD∠=∠,又因为BOD∠是POD的外角,故BOD BPD D∠=∠+∠,得BPD B D ∠=∠-∠.如图(2),将点P 移到AB 、CD 内部,以上结论是否成立?若不成立,则BPD ∠、B ∠、D ∠之间有何数量关系?请证明你的结论;(2)在图(2)中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图(3),则BPD ∠、B ∠、D ∠、BQD ∠之间有何数量关系?(不需证明)(3)根据(2)的结论求图(4)中A B C D E F ∠+∠+∠+∠+∠+∠的度数.第七章 平面图形的认识(二) 图形证明专项训练参考答案1.相等.2.本题答案不唯一,如:已知:①②,结论:③.理由:因为AD ∥BC ,所以∠A=∠ABF ,理由是两直线平行,内错角相等.又因为AB ∥CD ,所以∠ABF=∠C ,理由是两直线平行,同位角相等,所以∠A=∠C3.131°4.解:添的条件为∠EBN=∠FDN ,理由为:∵∠1=∠2,∴∠1+∠EBN=∠2+∠FDN ,即∠ABD=∠CDN ,∴AB ∥CD .5.解:∵∠2=135°,∴∠BCD=180°﹣∠2=45°,而∠1=45°,∠D=45°,∴∠1=∠BCD ,∠D=∠BCD ,∴AB ∥CD ,BC ∥DE .6.解:能.∵∠3+∠2=180°,∠1+∠3=180°,∴∠1=∠2,∴AB ∥CD .7. (1)//AB CD 。
小学数学证明题课题:小学数学证明题第一部分:图形推理证明题(共10分)1. 证明:正方形的四条边是相等的。
2. 证明:所有直角三角形的两条直角边的平方和等于斜边的平方。
3. 证明:平行四边形的对角线互相等长。
4. 证明:矩形的对角线相等。
5. 证明:等腰三角形的底边角相等。
第二部分:数列证明题(共10分)1. 证明:等差数列的通项公式为an = a1 + (n-1)d。
2. 证明:等比数列的通项公式为an = a1 * r^(n-1)。
3. 证明:斐波那契数列的通项公式为an = (phi^n - (-phi)^(-n)) / sqrt(5),其中phi是黄金分割比。
第三部分:代数证明题(共10分)1. 证明:两个奇数的和是偶数。
2. 证明:平方数的平方根是整数。
3. 证明:a^2 - b^2 = (a+b)(a-b)。
第四部分:几何证明题(共10分)1. 证明:垂直平分线的两条半边相等。
2. 证明:等腰梯形的对角线相等。
3. 证明:在直角三角形中,斜边是直角边的平方和的平方根。
第五部分:方程证明题(共10分)1. 证明:二次方程ax^2 + bx + c = 0的判别式D = b^2 - 4ac可以用来判断方程的根的性质。
2. 证明:一元二次方程ax^2 + bx + c = 0有两个实根的条件是判别式D大于零。
3. 证明:一元二次方程ax^2 + bx + c = 0的解为x = (-b ±√(b^2 - 4ac)) / 2a。
第六部分:数学推理证明题(共10分)1. 证明:所有正整数的立方数都可以表示成两个或三个连续自然数的和。
2. 证明:任意两个正整数的最大公因数与最小公倍数的乘积等于这两个正整数的积。
3. 证明:任意两个正整数的最大公因数是它们的公因数中最大的一个。
第七部分:分数证明题(共10分)1. 证明:任意两个正整数的倒数之和等于它们的和的倒数。
2. 证明:相同分母的两个分数,分子越大,值越大。
初二数学图形与证明试题答案及解析1.如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.【答案】解:AB=CD,理由如下:∵∠1=∠2,,∠3=∠4∴∠1+∠3=∠2+∠4∴∠ABC=∠DCB又∵ BC=CB∴△ABC≌△DCB(ASA)∴ AB=CD【解析】略2.(8分)图3.1、图3.2、图3.3均是单位为1的方格图.(1)请把方格图3.1中的带阴影的图形适当剪开,重新拼成正方形;(画出分割线,在图3.2中画出拼成正方形的草图)(2)所拼成正方形的边长为多少?周长为多少?(3)利用这个事实,在图3.3的数轴上画出表示的点A.(要求保留画图痕迹)(4)在图3.3的数轴上画出表示的点B.(要求保留画图痕迹)【答案】略【解析】(1)如图1、图2 (2)边长为,周长为4(3)(4)如图33.(8分)已知:如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD,垂足分别是M、N.求证:AE=MN【答案】见解析【解析】先证四边形MENC为矩形,得MN=EC.再证△ABE≌△CBE,可得AE=EC.因此AE=MN试题解析:证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.【考点】1.正方形的性质;2.全等三角形的判定与性质.4.菱形的周长为4,两个相邻的内角的度数之比为1:2,则较短的对角线长为().A.2B.C.1D.【答案】C.【解析】因为菱形邻角互补,所以x+2x=180,x=60,较短的对角线和菱形的两条边构成等边三角形,菱形边长是1,所以较短对角线长是1,故选C.【考点】菱形性质.5.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB 的距离DE是()A.5cm B.4cm C.3cm D.2cm【答案】C【解析】如图:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.【考点】角平分线的性质.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【答案】B【解析】∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);【考点】全等三角形的判定7.直角三角形的两直角边长分别是3cm和4cm,则连接两直角边的中点的线段长是.【答案】2.5cm【解析】根据勾股定理可求得斜边为5cm,然后根据连接两直角边的中点的线段是其中位线可求得线段的长为2.5cm.【考点】勾股定理,三角形的中位线8.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C 重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B. C.3 D.【答案】B【解析】根据PE∥CB,PF∥CD可得四边形AFPE是平行四边形,因此可得△AOE≌△POF,因此阴影部分的面积为菱形面积的一半,然后根据菱形ABCD可知菱形的面积=×2×5=5,即阴影部分的面积为.故选B【考点】菱形的面积,三角形全等9.以下列各组数为边长的三角形是直角三角形的是().A.1、2、3B.5、12、13C.1、1、D.6、7、8【答案】B.【解析】运用勾股定理的逆定理判定一个三角形是直角三角形,∵,故选B.【考点】勾股定理逆定理的应用.10.(3分)如图,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A.AB=CDB.当AC⊥BD时,它是菱形C.AB=ACD.当∠ABC=90°时,它是矩形【答案】C.【解析】选项A,根据平行四边形对边相等可得AB=CD,选项A正确;选项B,根据菱形的判定定理可得对角线相互垂直的平行四边形是菱形,选项B正确;选项C,无法得到AB=AC,选项C错误;选项D,根据矩形的判定定理可得有一个角是90°的平行四边形是矩形,选项D正确.故答案选C.【考点】平行四边形的性质;菱形的判定;矩形的判定.11.如图,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=36,△ABO的周长为30,求AB的长.【答案】12【解析】根据平行四边形的性质:对角线互相平分和已知条件AC+BD=36,可求出AO+BO的长,再由△ABO的周长为30,即可求出AB的长.试题解析:∵四边形ABCD是平行四边形,∴AO=CO=AC,BO=DO=BD,∴AO+B0=(AC+BD)=18,∵△ABO的周长为30,∴AB=30﹣18=12.【考点】平行四边形的性质12.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用().A.9m B.7m C.5m D.3m【答案】D.【解析】为了不让羊吃到菜,必须小于等于点A到圆的最小距离.连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选:D.【考点】勾股定理的应用.13.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 _________.【答案】或3【解析】①∠B′EC=90°时,根据翻折变换的性质求出∠AEB=45°,然后判断出△ABE是等腰直角三角形,从而求出BE=AB;②∠EB′C=90°时,∠AB′E=90°,判断出A、B′、C在同一直线上,利用勾股定理列式求出AC,再根据翻折变换的性质可得AB′=AB,BE=B′E,然后求出B′C,设BE=B′E=x,表示出EC,然后利用勾股定理列出方程求解即可.【考点】翻折变换,等腰直角三角形的判断与性质,勾股定理的应用14.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.【答案】证明见解析【解析】过E作EF∥AB交BC延长线于F,根据等腰三角形的性质及平行线的性质可推出∠F=∠FCE,从而可得到BD=CE=EF,再根据AAS判定△DGB≌△EGF,根据全等三角形的性质即可证得结论.试题解析:证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.【考点】1.等腰三角形的性质;2.全等三角形的判定与性质.15.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()A.540°B.720°C.1080°D.1260°【答案】C【解析】用多边形的外角和除以一个外角的度数可得多边形的,即多边形的边数为360°÷45°=8,再根据多边形的内角和公式可得多边形的内角和是(8-2)×180°=1080°.故答案选C.【考点】多边形的内外角和.16.如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【答案】详见解析.【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,根据SAS可得△ABC≌△DEF,再由全等三角形的对应边相等即可得出BC=EF.试题解析:证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定及性质.17.如图,菱形ABCD的边长为8cm,∠BAD=60°,则对角线AC的长为.【答案】8cm【解析】如图,连接BD与AC交于点O,∵四边形ABCD是菱形,∴AB=BD,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=8cm,∴AO=AD×sin∠ADB=8×=4,∴AC=2AO=8.故答案为8cm【考点】菱形的性质.18.(3分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.【答案】4.【解析】连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.【考点】菱形的性质;线段垂直平分线的性质.19.已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.【答案】见试题分析【解析】(1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;(2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.试题解析:证明:(1)如图1.∵四边形ABCD是平行四边形,∴AB∥DC,AB="DC."∴∠1=∠2.∵AE∥CF,∴∠3=∠4.在△AEB和△CFD中,∴△AEB≌△CFD.(2)如图2.∵△AEB≌△CFD,∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.【考点】平行四边形的性质以及菱形的判定和全等三角形的判定与性质20.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°【答案】C【解析】∵∠ADB=∠B+∠C,∠AEB=∠A+∠C,∴∠ADB=45°+38°=83°,∠AEB=27°+38°=65°,∴∠BDC=97°,∠AEC=115°,∵∠DFE+∠AEC+∠BDC+∠C=360°,∴∠DFE=110°,故选C.【考点】1.三角形外角性质;2.四边形的内角和.21.如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段________(填一组即可).【答案】答案不唯一,如AC=BD【解析】答案不唯一,如AC=BD;∵∠C=∠D,∠CAB=∠DBA,AB=BA,∴△CAB≌△DBA,∴AC=BD.【考点】三角形全等的判定与性质.22.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确【答案】C.【解析】试题解析:若腰长为25cm,底边长为13cm,则周长为:25+25+13=63(cm);若腰长为13cm,底边长为15cm,则周长为:25+13+13=51(cm);故它的周长是:63cm或51cm.故选C.【考点】1.等腰三角形的性质,2.三角形三边关系23.已知△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:2【答案】B.【解析】选项A,当∠A、∠B、∠C三个角之比为2:3:4,根据三角形的内角和定理可求得∠A=40°,∠B=60°,∠C=80°;选项B,当∠A、∠B、∠C三个角之比为1:2:3,根据三角形的内角和定理可求得∠A=30°,∠B=60°,∠C=90°;选项C,当∠A、∠B、∠C三个角之比为4:3:5,根据三角形的内角和定理可求得∠A=60°,∠B=45°,∠C=75°;选项D,当∠A、∠B、∠C三个角之比为1:2:2,根据三角形的内角和定理可求得∠A=36°,∠B=72°,∠C=72°.四个选项能说明△ABC是直角三角形只有选项B,故答案选B.【考点】三角形的内角和定理.24.(8分)在△ABC中,∠A=∠C=∠ABC,BD是∠ABC的平分线,求∠A及∠BDC的度数.【答案】∠A=36°,∠BDC=72°.【解析】设∠A为x,根据已知可得∠C=∠ABC=2x,由三角形的内角和定理可得x+2x+2x=180°,解方程即可得∠A=36°.再由角平分线的性质及三角形的内角和定理即可求得∠BDC的度数.试题解析:解:设∠A为x,∵∠A=∠C=∠ABC,所以∠C=∠ABC=2x,∴x+2x+2x=180°解得,x=36°.即∠A=36°.又∵BD是角平分线,∠ABC=72°,∴∠DBC=36°,∴∠BDC=180°-∠DBC-∠C=72°.【考点】三角形的内角和定理.25.(本题10分)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)【答案】(1)①全等,理由见解析②1.5cm/s理由见解析(2)24s后在AC边相遇【解析】(1)①首先根据时间和速度分别求出BP、CQ和BD、PC边的长,然后根据SAS判定两个三角形全等.②首先判断出,然后利用全等三角形的性质得出边BP=CP,BD=CQ以及它们的长,再先求得点P运动的时间t,然后求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.试题解析:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC-BP,BC=4cm,∴PC=4-1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2,∴ =1.5cm/s;(2)24秒点P与点Q第一次在边AC上相遇.【考点】全等三角形的判定与性质、等腰三角形的性质.26.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12B.13C.14D.18【答案】B.【解析】∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【考点】1.等腰三角形的判定与性质;2.平行线的性质.27.如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2= .【答案】45°.【解析】连接AC,BC.由勾股定理,AC=BC=,AB=.∵,∴∠ACB=90°,∠CAB=45°.∵AD∥CF,AD=CF,∴四边形ADFC是平行四边形,∴AC∥DF,∴∠2=∠DAC(两直线平行,同位角相等),在Rt△ABD中,∠1+∠DAB=90°(直角三角形中的两个锐角互余);又∵∠DAB=∠DAC+∠CAB,∴∠1+∠CAB+∠DAC=90°,∴∠1+∠DAC=45°,∴∠1+∠2=∠1+∠DAC=45°.故答案为:45°.【考点】1.特殊角的三角函数值;2.网格型.28.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7【答案】D【解析】设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6,若截去一个角的多边形的直线经过两个顶点,则原多边形是七边形;若截去一个角的多边形的直线经过一个顶点,则原多边形是六边形;若截去一个角的多边形的直线不经过顶点,则原多边形是五边形,∴原多边形的边数为5或6或7,故选D.【考点】多边形29.已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC= .【答案】3.【解析】试题解析:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12-5-4=3.【考点】全等三角形的性质.30.已知:如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:△ABC≌△DEF.【答案】证明见解析.【解析】求出AC=DF,根据SAS推出两三角形全等即可;试题解析:证明:∵AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF.【考点】1.全等三角形的判定与性质;2.平行线的判定.31.若直角三角形的三边长为6,8,m,则的值为().A.10B.100C.28D.100或28【答案】D.【解析】由题意分析可得,m为斜边或m为直角边.根据勾股定理计算:当m为斜边时,m2=62+82,所以m2=100;当m为直角边时,m2=82-62=64-36=28,所以的值为100或28.故本题选D.【考点】勾股定理.32.作图题:(不写作法,但必须保留作图痕迹,6分)如图,OM,ON是两条公路,A,B是两个工厂,现欲建一个仓库P,使其到两条公路距离相等且到两工厂距离相等,请你确定该仓库P的位置..【答案】答案见试题解析.【解析】由线段垂直平分线上的点到线段两端点的距离相等,角平分线上的点到角的两边的距离相等的性质,分别作出AB的垂直平分线,∠MON的平分线,相交于点P,则点P即为所要求作的仓库的位置.试题解析:解:如图所示,点P即为所要求在的仓库的位置.【考点】1.作图—应用与设计作图;2.作图题.33.如图,,,,,.则阴影部分的面积= .【答案】24【解析】因为,,.所以由勾股定理可得AB=,又,所以∠ABD=90°,所以24.【考点】勾股定理及其逆定理.34.一个等腰三角形的两边长分别为3和7,那么这个三角形的周长是.【答案】17.【解析】(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【考点】1.等腰三角形的性质;2.三角形三边关系.35.若直角三角形的斜边长为10 cm,则斜边上的中线长为 cm.【答案】5.【解析】∵直角三角形斜边长为10cm,∴斜边上的中线长为5cm.故答案为:5.【考点】直角三角形斜边上的中线.36.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【答案】30°;4.【解析】根据等边三角形的性质得出∠B=60°,根据DE∥AB得出∠EDC=60°,根据垂直得出∠DEF=90°,根据三角形内角和定理可得∠F的度数;根据∠ACB=∠EDC=60°得出△EDC为等边三角形,则ED=DC=2,根据∠DEF=90°,∠F=30°得出DF=2DE=4.试题解析:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°∴DF=2DE=4.【考点】等边三角形的性质37.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,DE∥AB交BC于E,EF∥BD交CD于F,则图中等腰三角形的个数为()A.5个B.6个C.7个D.8个【答案】C.【解析】∵AB=AC,∴△ABC为等腰三角形,∵DE∥AB∴△DEC为等腰三角形,∵∠A=36°∴∠ABC=∠ACB=72°,∵BD平分∠ABC,所以∠ABD=∠DBC=36°=∠A,∴BD=AD,∴△ABD为等腰三角形,△BCD为等腰三角形,∵EF∥BD,∴△DEF为等腰三角形,△EFC为等腰三角形,△BED为等腰三角形.所以共有七个等腰三角形.故选C.【考点】1.三角形内角和定理;2.角平分线的性质;3.等腰三角形的判定与性质.38.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠CDF度数.【答案】74°.【解析】首先由三角形的内角和定理求得∠ACB的度数,再由CE平分∠ACB求得∠ACE的度数,则由三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.试题解析:解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【考点】1.三角形的外角性质;2.角平分线的定义;3.三角形内角和定理.39.已知:如图,,点是的中点,,、分别交于点、.(1)图中有几组全等三角形,请把它们直接表示出来;(2)求证:.【答案】(1)△OBA≌△OCD,△OBE≌△OCF,△ABE≌△DCF;(见解析)【解析】(1)利用AAS可证△OBA≌△OCD,利用AAS可证△OBE≌△OCF,利用SAS可证△ABE≌△DCF;(2)根据和可得∠A=∠D,∠BEO=∠CFO,然后得到∠AEB=∠DFC,然后根据AAS定理判定△ABE≌△DCF,即可得EB=CF.试题解析:(1)△OBA≌△OCD,△OBE≌△OCF,△ABE≌△DCF(每个1分,共3分)(2)证明:∵AB∥CD,∴∠A=∠D,∵BE∥CF,∴∠BEO=∠CFO,∴∠AEB=∠DFC,在△EBA和△FCD中∴△ABE≌△DCF(AAS).∴EB=CF.【考点】全等三角形的判定与性质.40.点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从点A出发向点B运动,点Q从点B出发向点C运动,它们同时出发,且速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?【答案】(1) 60°.(2)当第秒或第秒时,△PBQ为直角三角形.【解析】(1)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.(2)设时间为t,则AP=BQ=t,PB=4-t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.试题解析:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4-t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=;∴当第秒或第秒时,△PBQ为直角三角形.【考点】1.等边三角形的性质;2.全等三角形的判定与性质;3.直角三角形的性质.41.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于F,若BF=AC,则∠ABC等于()A.45°B.48°C.50°D.60°【答案】A.【解析】根据三角形全等的判定可以证明,得到,.故选A.【考点】三角形全等的判定和性质.42.盖房子时,木工师傅常常先在窗框上斜钉一根木条,这是利用三角形的_________性.【答案】稳定【解析】三角形具有稳定性,在我们的实际生活中的很多地方都能用到,固定窗框就是一种应用.【考点】三角形的稳定性.43.如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.【答案】证明见解析【解析】根据∠A=∠D,CO=BO以及∠AOC=∠DOB利用AAS判定定理得出三角形全等.试题解析:在△AOC和△DOB中,∴△AOC≌△DOB(AAS).【考点】三角形全等的判定44.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1.(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)(2)求BE的长.【答案】(1)证明见解析;(2)9.【解析】(1)由于△ABC是等边三角形,那么有AB=AC,∠BAE=∠ACD=60°,而AE=CD,利用SAS可证△BAE≌△ACD,从而有∠1=∠2,由∠BAE=∠1+∠BAD=60°,等量代换则有∠2+∠BAD=60°,再利用三角形外角性质可得∠BPQ=60°;(2)在Rt△BPQ,易求∠PBQ=30°,于是可求BP,进而可求BE,而△BAE≌△ACD,那么有AD=BE=9.试题解析:(1)∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,又∵AE=CD,∴△BAE≌△ACD,∴∠1=∠2,∵∠BAE=∠1+∠BAD=60°,∴∠BAE=∠2+∠BAD=60°,∴∠BPQ=60°;(2)∵BQ⊥AD,∴∠BQP=90°,又∵∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9.【考点】1.等边三角形的性质;2.全等三角形的判定与性质.45.如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE=AC,求证:(1)△ABE≌△CDA;(2)AD∥EC.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)直接根据SSS就可以证明△ABE≌△CDA;(2)由△ABE≌△CDA可以得出∠E=∠CAD,就可以得出∠ACE=∠CAD,从而得出结论.试题解析:(1)在△ABE和△CDA中∵△ABE≌△CDA(SSS);(2)∵△ABE≌△CDA,∴∠E=∠CAD.∵AE="AC,"∴∠E="∠ACE"∴∠ACE="∠CAD,"∴AD∥EC.【考点】全等三角形的判定与性质.46.如图,要测量河岸相对的两点间的距离,先在的垂线上取两点,使得,再定出的垂线,使点在同一条直线上,测得的的长就是的长,根据的原理是()A.B.C.D.【答案】B.【解析】试题解析:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【考点】全等三角形的应用.47.如下图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC【答案】C【解析】本题主要根据平行四边形的判定方法进行判定就可以得到答案.A、两组对边分别平行的四边形是平行四边形;B、对角线互相平分的四边形是平行四边形;D、两组对边分别相等的四边形是平行四边形.【考点】平行四边形的判定48.(2015秋•句容市月考)如图,点P是∠ABC的平分线上一点,PM⊥AB,PN⊥BC,垂足分别是M、N.求证:(1)∠PMN=∠PNM;(2)BM=BN.【答案】见解析【解析】(1)根据角平分线的性质得到PM=PN,根据等腰三角形的性质证明即可;(2)根据同角的余角相等解出证明.证明:(1)∵PB是∠ABC的平分线,PM⊥AB,PN⊥BC,∴PM=PN,∴∠PMN=∠PNM;(2)∵PM⊥AB,PN⊥BC,∴∠PMB=∠PNB=90°,又∠PMN=∠PNM,∴∠BMN=∠BNM,∴BM=BN.【考点】角平分线的性质.49.下列命题:①如果,,为一组勾股数,那么,,仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是,,,且,那么。
初三数学图形与证明试题1.若用半径为9,圆心角为的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是().A.1.5B.2C.3D.6【答案】C【解析】等弧长计算,半径为9,圆心角为的弧长=即这个圆锥的底面周长=6,即2r=6,故选C2.赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。
如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.【答案】25.【解析】根据垂径定理,得AD=AB=20米.设圆的半径是R,根据勾股定理,得R2=202+(R﹣10)2,解得R=25米.【考点】垂径定理的应用;勾股定理.3.如图,AB是⊙O的直径,AB=8,点M在⊙O上,,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则周长的最小值为()A.4B.5C.6D.7【答案】B.【解析】本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.【考点】轴对称-最短路线问题;圆周角定理.4.观光塔是潍坊市的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是 m.【答案】135【解析】根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD= m,所以在Rt△ACD中,CD= AD=×=135m.【考点】解直角三角形的应用.5.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.【答案】70.【解析】应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.试题解析:∵矩形的长和宽分别为a,b,周长为14,面积为10,∴a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.【考点】因式分解的应用.6.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1B.2C.3D.4【答案】C.【解析】∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选C.【考点】平行四边形的性质.7.在3×3的方格中,A、B、C、D、E、F分别位于如图所示的小正方形的顶点上,从C、D、E、F四点中任意取一点,以所取得一点及点A、B为顶点画三角形,则所画三角形为等腰三角形的概率是.【答案】.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,只有选取C、F点时,所画三角形是等腰三角形,即可得出答案;试题解析:根据从C、D、E、F四个点中任意取一点,一共有4种可能,只有选取C、D,F点时,所画三角形是等腰三角形,=.故P(所画三角形是等腰三角形)【考点】1.概率公式;2.等腰三角形的判定.8.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为.【答案】y=-3x+18.【解析】根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.试题解析:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.∴当Q到达B点,P在AD的中点时,△PAQ的面积最大是9cm2,设正方形的边长为acm,∴×a×a=9,解得a=6,即正方形的边长为6,当Q点在BC上时,AP=6-x,△APQ的高为AB,∴y=(6-x)×6,即y=-3x+18.【考点】动点问题的函数图象.9.(3分)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为 cm.(结果保留π)【答案】.【解析】如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.【考点】1.平面展开-最短路径问题;2.最值问题.10.(12分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB 于点E ,交CA 的延长线于点F .(1)求证:FE ⊥AB ;(2)当EF=6,时,求DE 的长.【答案】(1)证明见试题解析;(2)9.【解析】(1)连接AD 、OD ,由直径所对的圆周角是直角得出∠ADC=90°,由等腰三角形的性质可得到D 是BC 的中点,从而OD 是△ABC 的中位线,根据切线的性质证明结论;(2)由平行线分线段成比例定理,列出比例式计算得到答案.试题解析:(1)连接AD 、OD ,∵AC 为⊙O 的直径,∴∠ADC=90°,又∵AB=AC ,∴CD=DB ,又CO=AO ,∴OD ∥AB ,∵FD 是⊙O 的切线,∴OD ⊥EF ,∴FE ⊥AB ;(2)∵,∴,∵OD ∥AB ,∴,又EF=6,∴DE=9.【考点】1.切线的性质;2.相似三角形的判定与性质;3.综合题.11. (3分)如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向▱ABCD 内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率为( )A .B .C .D .【答案】C .【解析】∵四边形ABCD 为平行四边形,∴△OEH 和△OFG 关于点O 中心对称,∴S △OEH =S △OFG ,∴S 阴影部分=S △AOB =S 平行四边形ABCD ,∴飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率==.故选C . 【考点】1.几何概率;2.平行四边形的性质.12. 如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC .(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)见解析;(2)【解析】连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.[来试题解析:(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF=.【考点】切线的判定13.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°【答案】B.【解析】∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.【考点】平行线的性质.14.(3分)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市【答案】C.【解析】∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.【考点】专题:正方体相对两个面上的文字.15.在面积为60的▱ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=10,BC=12,则CE+CF的值为()A.22+11B.22-11C.22+11或22-11D.22+11或2+【答案】D.【解析】分两种情况:①由平行四边形ABCD的面积求出AE=5,AF=6,再根据勾股定理求出BE、DF,求出CE、CF,即可得出结果;②CE=10-5,CF=6-10,即可得出结果.试题解析:分两种情况:①如图1所示:∠A为锐角时;∵平行四边形ABCD的面积=BC•AE=AB•AF=60,AB=10,BC=12,∴AE=5,AF=6,∵AE⊥直线BC于点E,作AF⊥直线CD于F,∴∠AEB=∠AFD=90°,∴BE=,DF=,∴CE=12+5,CF=10+6∴CE+CF=22+11;②如图2所示:∠A为钝角时;由①得:CE=10-5,CF=6-10,∴CE+CF=2+;故选D.【考点】平行四边形的性质.16.如图,在▱ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.(1)求证:AD=CE;(2)判断直线BC与⊙O的位置关系,并说明理由;(3)若BC=3,DE=6,求BE的长.【答案】(1)证明见解析;(2)直线BC与⊙O相切,理由见解析;(3).【解析】(1)由平行四边形的性质得出∠AED=∠EDC,证出,即可得出AD=CE;(2)作直径CF,连接EF,则∠EFC=∠EDC,证出∠EFC=∠BCE,再由CF是⊙O的直径,得出∠FEC=90°,得出∠BCF=90°,即可得出结论;(3)证明△BCE∽△EDC,得出对应边成比例,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠EDC.∴,∴AD=CE;(2)解:直线BC与⊙O相切,理由如下:如图所示:作直径CF,连接EF.则∠EFC=∠EDC,∵∠BCE=∠CDE,∴∠EFC=∠BCE.∵CF是⊙O的直径,∴∠FEC=90°,∴∠EFC+∠FCE=90°,∴∠BCE+∠FCE=90°∴∠BCF=90°.∴OC⊥CB.∴直线BC与⊙O相切;(3)解:∵四边形ABCD是平行四边形,∴AD=BC,AB∥CD,由(1)得:AD=CE,∴BC=CE,∵AB∥CD,∴∠BEC=∠DCE.又∵∠BCE=∠CDE,∴△BCE∽△EDC,∴,∵BC=3∴CE=3,即,解得,BE=.【考点】1.切线的判定;2.平行四边形的性质;3.相似三角形的判定与性质.17.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A.【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=(360°﹣∠BAD)=(360°﹣60°)=150°.故选A.【考点】1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.18.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是 .【答案】AD=BD【解析】如图,连接CD由题意得:∠EDF=∠ECF,∴∠EDF+∠ECF=180°,∴D、E、C、F四点共圆,∴∠DEF=∠DCF;而∠DEF=∠A,∴∠DCF=∠A(设为α),DA=DC;∵∠B+α=∠BCD+α=90°,∴∠B=∠BCD,∴DB=DC,DA=DB,【考点】翻折变换(折叠问题).19.如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若BC为⊙O的直径,则图中阴影部分的面积为.【答案】π.【解析】如图,连接OP,∵PA、PB与⊙O相切,∴PA=PB,∠PAO=∠PBO=90°∵∠BPA=60°,∴△PAB为等边三角形,∠AOB=120°∴PB=AB=PA=3,∠POB=60°∴OB=.∵OB=OC,∴S△AOB =S△AOC∴S阴影=S扇形OAB==π.【考点】1.切线的性质;2.扇形面积的计算.20.如图,直线a∥b,AB⊥BC,∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°【答案】C【解析】先根据平行线的性质求出∠ACB的度数,再由垂直的定义得出∠ABC的度数,根据三角形内角和定理即可得出结论.∵直线a∥b,∠1=40°,∴∠ACB=∠1=40°.∵AB⊥BC,∴∠ABC=90°,∴∠2=90°﹣∠ACB=90°﹣40°=50°.【考点】平行线的性质21.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)【答案】【解析】过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,可得出∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,从而AF=FC=AN=NC,设AF=FC=x,则tan30°=,解得x=,由tan30°=,得到,解得:BN=,由AB=AN+BN,即可得出结论.试题解析:过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°=,解得:x=,∵tan30°=,∴,解得:BN=,∴AB=AN+BN==.答:灯塔A、B间的距离为()海里.【考点】1.解直角三角形的应用-方向角问题;2.几何图形问题.22.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 . 【答案】.【解析】如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2, ∴△ABD 的高为,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,,∴△ABG ≌△DBH (ASA ), ∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =.【考点】1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.23. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21cm 2,则该矩形的面积为( )A .60cm 2B .70cm 2C .120cm 2D .140cm 2【答案】A .【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm 2).故选A .【考点】矩形的性质.24. 如图,以Rt △ABC 的边AC 为直径的⊙O 交斜边AB 于点D ,点F 为BC 上一点,AF 交⊙O于点E,且DE∥AC.(1)求证:∠CAF=∠B.(2)若⊙O的半径为4,AE=2AD,求DE的长.【答案】【解析】(1)连接CE,根据圆周角定理可知∠AEC=90°,故∠CAF+∠ACE=90°.再由题意可知∠B+∠DAC=90°,根据DE∥AC,可得,故,由圆周角定理可知∠ACE=∠DAC,故可得出结论;(2)连接DC,由(1)知DE∥AC,故可得出AD=CE,由全等三角形的判定定理得出Rt△ACD≌Rt△CAE,所以CD=AE=2AD,设AD=x,则CD=2x,在Rt△ABD中根据勾股定理可求出AD,CD的长,过D作DM⊥AC,过O作ON⊥ED,由AD•CD=AC•DM可得出DM的长,连OD,在Rt△OND中,由勾股定理可求出DN的长,由ED=2DN即可得出结论.试题解析:(1)证明:连接CE,∵AC是⊙O的直径,∴∠AEC=90°,∴∠CAF+∠ACE=90°.∵∠ACB=90°,∴∠B+∠DAC=90°,∵DE∥AC,∴,∴,∴∠ACE=∠DAC,∴∠CAF=∠B;(2)解:连DC,∵DE∥AB,∴∠CAE=∠AED,∴AD=DE,在Rt△ACD与Rt△CAE中,∵,∴Rt△ACD≌Rt△CAE(HL),∴CD=AE=2AD,设AD=x,则CD=2x,在Rt△ACD中,x2+(2x)2=82,∴AD=,CD=.过D作DM⊥AC,过O作ON⊥ED,∴AD•CD=AC•DM,∴DM====ON,连OD,在Rt△OND中,∵DN===∴ED=2DN=.【考点】圆周角定理;勾股定理25.一个正方体的平面展开图如图所示,将它折成正方体后“设”字对面是()A.和B.谐C.泰D.州【答案】B.【解析】已知,这是一个正方体的平面展开图,共有六个面,其中面“建”与面“州”相对,面“和”与面“泰”相对,“谐”与面“设”相对.故答案选B.【考点】正方体的侧面展开图.26.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.3【答案】C.【解析】∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.【考点】1.圆内接四边形的性质;2.坐标与图形性质;3.含30度角的直角三角形.27.如图,四边形OBCD中的三个顶点在⊙O上,点A是优弧BD上的一个动点(不与点B、D 重合).(1)当圆心O在∠BAD内部,∠ABO+∠ADO=60°时,∠BOD= ;(2)当圆心O在∠BAD内部,四边形OBCD为平行四边形时,求∠A的度数;(3)当圆心O在∠BAD外部,四边形OBCD为平行四边形时,请直接写出∠ABO与∠ADO的数量关系.【答案】(1)120 °;(2)60°;(3)60°.【解析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=60°,然后根据圆周角定理易得∠BOD=2∠BAD=120°;(2)根据平行四边形的性质得∠BOD=∠BCD,再根据圆周角定理得∠BOD=2∠A,则∠BCD=2∠A,然后根据圆内接四边形的性质由∠BCD+∠A=180°,易计算出∠A的度数;(3)讨论:当∠OAB比∠ODA小时,如图2,与(1)一样∠OAB=∠ABO,∠OAD=∠ADO,则∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,所以∠ADO﹣∠ABO=60°;当∠OAB比∠ODA大时,用样方法得到∠ABO﹣∠ADO=60°.试题解析:(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=60°,即∠BAD=60°,∴∠BOD=2∠BAD=120°;(2)∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∵∠BOD=2∠A,∴∠BCD=2∠A,∵∠BCD+∠A=180°,即3∠A=180°,∴∠A=60°;(3)当∠OAB比∠ODA小时,如图2,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,∴∠ADO﹣∠ABO=60°;当∠OAB比∠ODA大时,同理可得∠ABO﹣∠ADO=60°,综上所述,|∠ABO﹣∠ADO|=60°.【考点】1.圆周角定理;2.平行四边形的性质;3.圆内接四边形的性质.28.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于 °.【答案】130【解析】∵四边形ABCD内接与⊙O,∴∠A+∠C=180°,∵∠A=115°,∴∠C=65°,∴∠BOD=2∠C=130°;【考点】1.圆内接四边形的性质;2.圆周角定理.29.如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.B.C.8D.10【答案】B.【解析】延长CO交AB于E点,连接OB,∵CE⊥AB,∴E为AB的中点,由题意可得CD=4,OD=4,OB=8,DE=(8×2﹣4)=×12=6,OE=6﹣4=2,在Rt△OEB中,根据勾股定理可得:OE2+BE2=OB2,代入可求得BE=,∴AB=.故选B.【考点】1.垂径定理;2.翻折变换(折叠问题).30.有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A.B.4C.D.2【答案】B【解析】经过正n边形的中心O作边AB的垂线OC,则∠B=60°,∠O=30°,在直角△OBC中,根据三角函数得到OB=2BC=AB=4.点评:正多边形的计算31.如图,AC是△ABD的高,∠D=45°,∠B=60°,AD=10.求AB的长.【答案】【解析】首先根据Rt△ACD的三角函数求出AC的长度,然后根据Rt△ABC的三角形函数求出AB的长度.试题解析:在Rt△ACD中,AC=10×sin∠D=10×sin45°=5在Rt△ABC中,AB=.【考点】锐角三角函数的应用.32.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2 B.3 C.4 D.5【答案】C.【解析】试题解析:∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,DD′=2DC=4,AE′=1,∴A′D=5,∴DE′=5-1=4∴PE+PD=PE′+PD=DE′=4,故选C.【考点】轴对称-最短路线问题.33.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6B.3C.3D.3【答案】D【解析】根据AB=AC以及∠BAC=120°可得:∠D=30°,根据BD为直径可得:∠BAD=90°,则根据Rt△ABD的性质可得:BD=2AB=6,AD=3【考点】圆的基本性质34.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为()A.2.5B.5C.10D.15【解析】试题解析:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【考点】圆锥的计算.35.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.160m B.80mC.120(-1)m D.120(+1)m【答案】A【解析】过点A作AD⊥BC,则CD=120m,BD=40m,则BC=CD+BD=160m.【考点】三角形函数的应用.36.如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).【答案】米【解析】设CD=EF=x,根据Rt△CAD,求出AD与x的关系,根据Rt△BEF,求出BF与x的关系,然后根据BD=DF-BF=2-BF,AB=AD+BD=4求出x的值.试题解析:设小明的身高为x米,则CD=EF=x米.在Rt△ACD中,∠ADC=90°,tan∠CAD=,即tan30°=,AD=x在Rt△BEF中,∠BFE=90°,tan∠EBF=EF/BF,即tan60°=,BF=由题意得DF=2,∴BD=DF-BF=2-,∵AB=AD+BD=4,∴x+2-=4 解得:x=.答:小明的身高为米.【考点】锐角三角函数的应用.37.在Rt△ABC中,∠C=90°,a=4,b=3,则sinA的值是()A.B.C.D.【解析】试题解析:如图所示:∵在Rt△ABC中,∠C=90°,a=4,b=3,∴c=5,∴sinA=.故选B.【考点】1.锐角三角函数的定义;2.勾股定理.38.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为.【答案】10cm.【解析】圆锥的底面周长=扇形的弧长,据此列等式求出r的值.,解得r=10cm.故答案为:10cm.【考点】圆锥的有关计算.39.计算:2sin60°+tan45°= .【答案】.【解析】试题解析:原式=2×+1=.【考点】特殊角的三角函数值.40.(2015•盐城校级模拟)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.【答案】3π.【解析】根据弧长公式L=求解.解:L===3π.故答案为:3π.【考点】弧长的计算.41.(2015•徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.【答案】125.【解析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.【考点】切线的性质.42. (2015秋•芜湖期末)若一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,则这个圆锥的底面半径长是 cm . 【答案】12【解析】设这个圆锥的底面半径为rcm ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程求出r 即可.解:设这个圆锥的底面半径为rcm ,根据题意得2πr=,解得r=12,所以这个圆锥的底面半径长为12cm . 故答案为12.【考点】圆锥的计算.43. 如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是 .【答案】2.5【解析】根据题意可得阴影部分的面积等于△ABC 的面积,因为△ABC 的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积. 解:设AP 与EF 相交于O 点. ∵四边形ABCD 为菱形, ∴BC ∥AD ,AB ∥CD . ∵PE ∥BC ,PF ∥CD , ∴PE ∥AF ,PF ∥AE .∴四边形AEFP 是平行四边形. ∴S △POF =S △AOE .即阴影部分的面积等于△ABC 的面积.∵△ABC 的面积等于菱形ABCD 的面积的一半, 菱形ABCD 的面积=AC•BD=5, ∴图中阴影部分的面积为5÷2=2.5. 故答案为:2.5.【考点】菱形的性质.44. 如图1,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m ,木板超出车厢部分AD=0.5m ,则木板CD 的长度为 .(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m).【答案】4.9m.【解析】根据∠ACB的正弦函数和AB的长度求AC的长,再加上AD即可.解:由题意可知:AB⊥BC.∴在Rt△ABC中,sin∠ACB=,∴AC===≈4.39,∴CD=AC+AD=4.39+0.5=4.89≈4.9(m).故答案为:4.9m.【考点】解直角三角形的应用-坡度坡角问题.45.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为_________.【答案】120°【解析】根据中点可得DE∥BC,则∠DEC+∠C=180°,根据∠C=60°,可得∠DEC=120°.【考点】三角形中位线的性质.46.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE【答案】D【解析】根据垂径定理分析即可.根据垂径定理和等弧对等弦,得A、B、C正确,只有D错误.故选D.【考点】垂径定理.47.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D= 度.【答案】90【解析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【考点】圆内接四边形的性质.48.如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.【答案】.【解析】作OH⊥AB,延长DC交⊙O于E,如图,根据垂径定理得到AH=BH=AB=,CD=CE,再利用相交弦定理得CD•CE=BC•AC,易得CD=,当CH最小时,CD最大,C点运动到H点时,CH最小,所以CD的最大值为.解:作OH⊥AB,延长DC交⊙O于E,如图,∴AH=BH=AB=,∵CD⊥OC,∴CD=CE,∵CD•CE=BC•AC,∴CD2=(BH﹣CH)(AH+CH)=(﹣CH)(+CH)=3﹣CH2,∴CD=,∴当CH最小时,CD最大,而C点运动到H点时,CH最小,此时CD=,即CD的最大值为.故答案为.【考点】垂径定理;勾股定理.49.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C= .【答案】75°.【解析】根据偶次幂具有非负性可得sinA﹣=0,tanB﹣1=0,再根据特殊角的三角函数值可得:∠A=60°,∠B=45°,然后再利用三角形内角和定理可得答案.解:由题意得:sinA﹣=0,tanB﹣1=0,解得:∠A=60°,∠B=45°,则∠C=180°﹣60°﹣45°=75°,故答案为:75°.【考点】特殊角的三角函数值;非负数的性质:偶次方.50.如图,正六边形ABCDEF的边长为2,两顶点A、B分别在x轴和y轴上运动,则顶点D到原点O 的距离的最大值和最小值的乘积为 . 【答案】12 【解析】当O 、D 、AB 中点共线时,OD 有最大值和最小值,BD=2,BK=1, ∴DK=,OK=BK=1, ∴OD 的最大值为:1+, 同理,把图象沿AB 边翻折180°得最小值为:-1,∴顶点D 到原点O 的距离的最大值和最小值的乘积为:(1+)(-1)=12.【考点】(1)、正多边形和圆;(2)、坐标与图形性质51. 下列四边形中,对角线相等且互相垂直平分的是A .平行四边形B .正方形C .等腰梯形D .矩形【答案】B .【解析】试题解析:对角线相等且互相垂直平分的四边形是正方形,故选B .【考点】1.等腰梯形的性质;2.平行四边形的性质;3.矩形的性质;4.正方形的性质.52. 如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下列结论:① △ODC 是等边三角形;②BC=2AB ;③∠AOE=135°; ④S △AOE =S △COE ,其中正确的结论的个数有A .1B .2C .3D .4【答案】C【解析】∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OC ,OD=OB ,AC=BD ,<BR>∴OA=OD=OC=OB ,∵AE 平分∠BAD ,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD ,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC ,∴△ODC 是等边三角形,∴①正确;∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠DAC=∠ACB=30°,∴AC=2AB ,∵AC >BC ,∴2AB >BC ,∴②错误;∵AD ∥BC ,∴∠DBC=∠ADB=30°,∵AE 平分∠DAB ,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD ∥BC ,∴∠DAE=∠AEB ,∴∠AEB=∠BAE ,∴AB=BE ,∵四边形ABCD 是矩形,∴∠DOC=60°,DC=AB ,∵△DOC 是等边三角形,∴DC=OD ,∴BE=BO ,∴∠BOE=∠BEO=(180°-∠OBE )=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC ,∴根据等底等高的三角形面积相等得出S △AOE =S △COE ,∴④正确;故选C .【考点】矩形的性质.53.如图,、是以线段为直径的⊙上两点,若,且,则( ).A.B.C.D.【答案】B.【解析】因为∠ACD=40°,CA=CD,所以∠CAD=∠D=(180°-40°)÷2=70°,所以∠B=∠D=70°,又因为AB为直径,所以∠ACB=90°,所以∠CAB=90°-∠B=90°-70°=20°,故选B.【考点】1.圆周角定理;2.弧,弦圆心角定理;3.三角形内角和定理.54.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48B.41.68C.43.16D.55.63【答案】B【解析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可,如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里)【考点】锐角三角函数的应用55.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时【答案】D.【解析】试题解析:∵∠CAB=10°+20°=30°,∠CBA=80°-20°=60°,∴∠C=90°,∵AB=20海里,∴AC=AB•cos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.【考点】解直角三角形的应用-方向角问题.56.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=42°32′,则∠2的度数()A.17°28′B.18°28′C.27°28′D.27°32′【答案】A.【解析】试题解析:过点A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=42°32′,∵∠BAC=60°,∴∠4=60°-42°32′=17°28′,∵NM∥AE,∴∠2=∠4=17°28′,故选A.【考点】平行线的性质.57.下列命题中,正确的是()A.平分弦的直径垂直于弦B.对角线相等的平行四边形是正方形C.对角线互相垂直的四边形是菱形D.三角形的一条中线能将三角形分成面积相等的两部分【答案】D.【解析】试题解析:A、平分弦(非直径)的直径垂直于弦,所以A选项错误;B、对角线垂直且相等的平行四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、三角形的一条中线能将三角形分成面积相等的两部分,所以D选项正确.故选D.【考点】命题与定理.58.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【答案】(1)四边形CEGF为菱形,理由详见解析;(2)3≤CE≤5.【解析】(1)根据折叠的性质,易证△EFG是等腰三角形,根据等腰三角形的性质可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,。
初二数学图形与证明试题1.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=________.【答案】.【解析】∵菱形的对角线垂直平分,∴BO=3,DO=4,AB=5,在Rt△AOB中,列面积相等的式子:AO×BO=AB×OH,3×4=5×OH,∴OH=.【考点】菱形性质及三角形面积计算.2.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.【考点】1.含30度角的直角三角形;2.正方形的性质.3.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72°D.60°【答案】B.【解析】在平行四边形ABCD中,根据平行四边形对角相等可得∠A:∠B:∠C:∠D=2:3:2:3,又因平行四边形的内角和是360度,设每份比为x,则得到2x+3x+2x+3x=360°,解得x=36°,即可得∠D=108°.故答案选B.【考点】平行四边形的性质.4.矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【答案】B【解析】根据矩形的对角线互相平分且相等,菱形的对角线互相垂直平分,正方形的对角线互相垂直平分且相等,可知它们三者的共同性质是:对角线互相平分.故选B【考点】矩形、菱形、正方形的对角线的性质5.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是_______________。
初一数学图形与证明试题答案及解析1.用圆规、直尺作出下图:(保留痕迹,不写作法)【答案】方法正确7分,结论1分【解析】分析:首先作AB的垂直平分线NM,交AB于点O,以AO的长为半径,分别以A,B,C,D为圆心作弧即可得出图形.解答:解:如图所示:点评:此题主要考查了作图与应用作图中,解决问题的关键是作出正方形,进而作出一边垂直平分线,题目应用较广同学们应学会这种图形作法.2.下列图形中不可以折叠成正方体的是()A. B C D【答案】C【解析】利用正方体及其表面展开图的特点解题.A,B,D都可以折叠成正方体,只有C有两个面重合,不能围成正方体.故选C.【考点】正方体及其表面展开图3.(9分)如图,已知∠AOB是直角,∠BOC=600, OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=600”改为:∠AOB= x0,∠EOF=y0,条件不变.①则请用x的代数式来表示y.②如果∠AOB+∠EOF=1560.则∠EOF是多少度?【答案】(1)45°;m(2)①y=x,②52°.【解析】(1)根据角平分线的定义和角的和差倍分的关系即可求得∠EOF的度数;(2)①把(1)中的数字换成字母即可解得x与y的关系;②根据x+y=156°,y=x即可解得x、y的值.试题解析:(1)∵∠AOB=90°,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB=×=90°=45°.(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.代入解得x=104°,y=52°.即∠EOF=52°.【考点】角平分线的性质;角的计算.4.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=35°,则∠B的度数为()A.25°B.35°C.55°D.65°【答案】C【解析】∵DE∥BC,∴∠C=∠1=35°,∵∠A=90°,∴∠B=90°-∠C=90°-35°=55°.故选C.【考点】1.平行线的性质;2.直角三角形的性质.5.(本题8分)如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.【答案】65°.【解析】应用三角形内角和定理求出∠EAC的度数,再应用角平分线的定义求得∠DAE的度数,应用三角形内角和定理求得∠ADE的度数.试题解析:解:因为AE是△ABC的高,所以∠AEC=90°,由三角形内角和定理得∠EAC=90°-40°=50°,因为AD平分∠EAC,所以∠EAD=25°,所以∠ADE=90°-25°=65°.【考点】三角形内角和定理;角平分线的定义.6.下面各图中,∠1、∠2互为邻补角的是:【答案】D.【解析】有公共顶点,相邻且互补的两个角互为邻补角,A没有公共顶点,B不互补,C不相邻,故选D.【考点】邻补角定义.7.(本题满分10分)如图,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)CD与EF平行吗?并说明理由;(2)若∠A=70°,求∠FEC的度数.【解析】(1)根据垂线的定义得∠CDB=∠FEB=90°,后根据同位角相等,两直线平行,可以得到EF∥CD;(2)先根据角平分线的定义得∠ACE=45°,再利用互余计算出∠ACD=90°-∠A=20°,则∠ECD=∠ACE-∠ACD=25°,然后根据平行线的性质求解.试题解析:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠FEB=90°,∴EF∥CD;(2)解:∵∠ACB=90°,CE平分∠ACB交AB于E,∴∠ACE=45°,∵∠A=70°,∴∠ACD=90°﹣70°=20°,∴∠ECD=∠ACE﹣∠ACD=25°,∵EF∥CD,∴∠FEC=∠ECD=25°.【考点】垂直的意义,角平分线,平行线判定8.(本题满分12分)如图(1),四边形ABCD中,AD∥BC,点E是线段CD上一点,(1)说明:∠AEB=∠DAE+∠CBE;(2)如图(2),当AE平分∠DAC,∠ABC=∠BAC.①说明:∠ABE+∠AEB=900;②如图(3)若∠ACD的平分线与BA的延长线交于点F,且∠F=600,求∠BCD.【答案】(1)见解析;(2)见解析;(3)∠BCD=600【解析】(1)如图(1),过点E作EF∥BC,交AB于F.根据平行线的性质可证得结论;(2)①如图(2),根据平行线的性质和互为补角,角平分线的性质可证;②根据平行线的性质和角平分线的性质,可求结果.试题解析:解:(1)如图(1),过点E作EF∥BC,交AB于F.∵EF∥BC,AD∥BC∴EF∥AD∥BC∴∠DAE=∠AEF,∠CBE=∠BEF∴∠AEF+∠BEF=∠DAE+∠CBE∵∠AEB=∠AEF+∠BEF∴∠AEB=∠DAE+∠CBE.(2)如图(2)∠ABC+∠BAC+∠ACB=180°∵∠ABC=∠BAC,∠ACB=2∠DAE∴2∠ABC+2∠DAE=180°即∠ABC+∠DAE=90°∠ABC=∠ABE+∠CBE由(1)得∠AEB=∠DAE+∠CBE∴∠ABE+∠AEB=90°.(3)∠ACB=180°-∠ABC-∠BAC=180°-2∠BAC∵∠BAC=∠F+∠ACF∴∠ACB=180°-2(∠F+∠ACF)=180°-2×60°-2∠ACF∵CF平分∠ACD∴∠ACD=2∠ACF即∠ACB=180°-2×60°-∠ACD得∠ACB+∠ACD=60°即∠BCD=60°.【考点】平行线的性质,角平分线的性质,互为补角9.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后展开得到()【答案】B.【解析】观察图形可得,剪去一个小正方形,得到四个小正方形,每两个小正方形构成一个矩形,并且这个矩形关于正方形纸片的一条对角线对称,只有选项B符合要求,故答案选B.【考点】翻折变换.10.如图,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.20B.30C.40D.10【答案】A【解析】根据图形可得:阴影部分的面积====×(100-60)=20.【考点】代数的计算.11.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 .【答案】25°.【解析】如图,根据平行线的性质可得∠1=∠3=20°,由题意知∠3+∠2=45°,所以∠2=25°.【考点】平行线的性质.12.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.【答案】三角形的稳定性【解析】注意能够运用数学知识解释生活中的现象,考查三角形的稳定性.一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【考点】三角形的稳定性13.(3分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
初三数学图形与证明试题1.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是___________【答案】6【解析】根据凸n边形的内角和为1260°,求出凸n边形的边数,即可得出,从一个顶点出发可引出(n-3)条对角线.解:∵凸n边形的内角和为1260°,∴(n-2)×180°=1260°,得,n=9;∴9-3=6.故答案为:6.本题考查了多边形的内角和定理及多边形的对角线,熟记多边形的内角和计算公式是正确解答本题的基础.2.如图所示几何体的左视图是().【答案】A【解析】找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形.故选A.3.如图,已知菱形ABCD的两条对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为 cm.【答案】4.8【解析】由四边形ABCD是菱形,AC=6cm,BD=8cm,即可得AC⊥BD,OC=AC=3cm,OB=BD=4cm,然后由勾股定理求得BC的长,又由S菱形ABCD=1AC•BD=BC•AE,即可求得答案.试题解析:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AC⊥BD,OC=AC=3cm,OB=BD=4cm,∴BC= =5(cm),∵S菱形ABCD=AC•BD=BC•AE,∴×6×8=5×AE,∴AE=4.8(cm).【考点】菱形的性质.4.一个圆锥形零件的高线长为,底面半径为2,则圆锥形的零件的侧面积为().A.2B.C.3D.6【答案】D.【解析】∵高线长为,底面半径为2,∴母线长为:,∴圆锥侧面积公式为:S=πrl=π×2×3=6π,故选D.【考点】圆锥的计算.5.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________。
图形证明题(图形的旋转)
1、在正方形ABCD的边AB上任取一点E.作EF⊥AB交BD 于点F,取FD的中点G,连结EG、CG,如图(1),易证EG=CG且EG⊥CG。
(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想。
(2)将△BEF绕点B逆时针旋转180°,如图(3).则线段EG和CG有怎样的数量关系和位置关系?请写出你的猜想。
并加以证明。
2、四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.
(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的
值;
(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,,当E,F,D三点共线时,求DF的长及tan∠ABF的值.
3、已知正方形ABCD和等腰直角三角形BEF,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.
(1)探索EG、CG的数量关系,并说明理由;
(2)将图①中△BEF绕B点顺时针旋转45°得图②,连接DF,取DF的中点G,问(1)中的结论是否成立,并说明理由;
(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间)得图③,连接DF,取DF的中点G,问(1)中的结论是否成立,请说明理由.
4、如图l,在△ABC中,∠BAC=90°,AB=AC,AO⊥BC于点0,F是线段AO上的点(与A,0不重合),∠EAF=90°,AE=AF,连结FE,FC,BE,BF.
(1)求证:BE=BF;
(2)如图2,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF交AB 于点G,交BE于点K.
①求证:△AGC∽△KGB;
②当△BEF为等腰直角三角形时,请你直接写出AB:BF的值.
5、(2016年山东东营)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成
立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=32时,求线段DH的长.
参考答案:
1、(1)EG⊥CG,;(2)结论还成立,证明见解析;
试题分析:(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,
根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,
根据直角三角形的判定推出△EGC是等腰直角三角形即可.
(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,
延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,
证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案. (3)连接BD,求出,推出∠DBE=60°,求出∠ABF=30°,
解直角三角形求出即可.
试题解析:(1)EG⊥CG,,理由是:
如图1,过G作GH⊥EC于H,
∵∠FEB=∠DCB=90°,∴EF∥GH∥DC.
∵G为DF中点,∴H为EC中点.
∴EG=GC,GH=(EF+DC)=(EB+BC),即GH=EH=BC.
∴∠EGC=90°,即△EGC是等腰直角三角形.
∴
(2)结论还成立,证明如下:
如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,
∵在△EFG和△HDG中,GF=GD,∠FGE=∠DGH,EG=HG,∴△EFG≌△HDG(SAS). ∴DH=EF=BE,∠FEG=∠DHG.∴EF∥DH.
∴∠1=∠2=90°-∠3=∠4.∴∠EBC=180°-∠4=180°-∠1=∠HDC.
在△EBC和△HDC中,BE=DH,∠EBC=∠HDC,BC=CD,∴△EBC≌△HDC.
∴CE=CH,∠BCE=∠DCH.
∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°.
∴△ECH是等腰直角三角形,
∵G为EH的中点,
∴EG⊥GC,,即(1)中的结论仍然成立.
(3)如图3,连接BD,
∵AB=,正方形ABCD,∴BD=2.∴.
∴∠DBE=60°.∴∠ABE=∠DBE-∠ABD=15°.∴∠ABF=45°-15°=30°.
∴.∴DE=BE=.
∴DF=DE-EF=.
2、解:(1)EG=CG.
证明:∵∠DEF=∠DCF=90°,DG=GF,∴EG=12DF=CG.
(2)(1)中结论成立,即EG=CG.
证明:过点F作BC的平行线,交DC的延长线于点M,连接MG.
∴EF=CM,易证四边形EFMC为矩形.
∴∠EFG=∠GDM.
在直角三角形FMD中,DG=GF,
∴FG=GM=GD.
∴∠GMD=∠GDM.∴∠EFG=∠GMD.
∴△EFG≌△CMG.∴EG=CG.
(3)成立.证明:取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC.∵OB=OD,∠DCB=90°,
∴CO=12BD.
∵DG=GF,BH=HF,OD=OB,
∴GH∥BO,且GH=12BD;OG∥BF,且OG=12BF.
∴CO=GH.
∵△BEF为等腰直角三角形,∴EH=12BF.∴EH=OG.
∵四边形OBHG为平行四边形,
∴∠BOG=∠BHG.
∵∠BOC=∠BHE=90°,
∴∠GOC=∠EHG.
∴△GOC≌△EHG.∴EG=GC.。