图形与证明
- 格式:doc
- 大小:1.00 MB
- 文档页数:4
数学中的几何图形与证明数学作为一门精确的科学,几何学是其中的重要分支之一。
几何学研究的是空间和形状,通过几何图形的研究来揭示事物的本质和规律。
在几何学中,图形是我们认识和研究的基本对象,而证明则是几何学的核心方法之一。
本文将探讨数学中的几何图形与证明的关系,以及一些有趣的几何图形和证明。
一、几何图形的分类几何图形可以分为二维图形和三维图形两大类。
二维图形是在平面上的图形,如点、线、圆等;而三维图形则是在空间中的图形,如球体、立方体等。
这些图形都有各自的特点和性质,通过对其进行研究和证明,可以揭示出许多有趣的数学定理和规律。
二、几何图形的性质与证明几何图形的性质是通过证明来得出的。
证明是数学中的一种推理方法,通过逻辑推理和演绎,以严密的语言和符号来证明一个命题的真实性。
在几何学中,证明是揭示几何图形性质的重要手段。
例如,我们可以通过证明来得出圆的性质。
圆是一个由一条曲线围成的图形,其内部的每一点到圆心的距离都相等。
这个性质可以通过构造和推理来证明。
我们可以通过构造一个等边三角形,然后证明其内切圆的性质,从而得出圆的性质。
另一个例子是证明平行线的性质。
平行线是指在同一个平面中,永远不会相交的两条直线。
我们可以通过利用平行线的定义和性质,进行角度推理和线段比较来证明平行线的性质。
这种证明方法可以帮助我们理解平行线的本质和特点。
三、有趣的几何图形与证明除了基本的几何图形和性质,还有一些有趣的几何图形和证明值得我们探索和研究。
1. 黄金分割黄金分割是指一条线段被分割成两部分,使得整条线段与较长部分的比值等于较长部分与较短部分的比值。
这个比值约为1.618,被认为是最美丽的比例之一。
黄金分割可以通过几何图形和代数方法进行证明,其中最著名的证明方法是欧几里得的证明方法。
2. 平面填充平面填充是指将一个平面完全填满,而不留下任何空隙或重叠。
平面填充有许多有趣的图形和方法,如著名的康威生命游戏和彼得斯图案。
这些图案和方法都可以通过几何图形和逻辑推理来证明其正确性。
苏教版数学九年级(上)第一章知识点归纳总结1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边是斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
判定——从边:1两组对边分别平行的四边形是平行四边形。
2一组对边平行且相等的四边形是平行四边形。
3两组对边分别相等的四边形是平行四边形。
从角:两组对角分别相等的四边形是平行四边形。
对角线:对角线互相平分的四边形是平行四边形。
矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。
定理1:矩形的4个角都是直角。
定理2:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
判定:1有三个角是直角的四边形是矩形。
2对角线相等的平行四边形是矩形。
菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。
定理1:菱形的4边都相等。
定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。
判定:1四条边都相等的四边形是菱形。
2对角线互相垂直的平行四边形是菱形。
正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。
正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。
判定:1有一个角是直角的菱形是正方形。
初中几何基本图形及证明说明:本资料中所有虚线为证明用的辅助线 一:与角平分线有关的基本图形 基本图形1结论:如图,若P 点是B ∠和C ∠的平分线的交点,则P ∠和A ∠的数量关系为:A P ∠+︒=∠2190B基本图形2结论:如图,若P 点是FBC ∠的平分线和ECB ∠的平分线的交点,则P ∠与A ∠的数量关系为:A P ∠-︒=∠2190基本图形3如图,若P 是ABC ∠的角平分线和ACB ∠的外角平分线的交点,则P ∠与A∠的数量关系为:A P ∠=∠21BE二:等腰直角三角形与其共斜边的直角三角形 基本图形4如图,在等腰直角三角形ABC 中,D 点与C 点分别在AB 两侧,且BD AD ⊥,形成共斜边的两个直角三角形。
结论:CD BDAD 2=+E(延长DA 使BD EA =)基本图形5如图,在等腰直角三角形ABC 中,点D 与C 在AB 同侧,且BD AD ⊥,形成共斜边的两个直角三角形。
结论:CD BDAD 2=-A(截取BD AE=)三:线段和最短与轴对称 基本图形6 两定点一动点如图,A ,B 为直线l 同侧两定点,P 为直线l 上一动点,A 和1A 关于l 成轴对称,连接BA 1交直线l 于P 点。
结论:PB PA +最短基本图形7 一定点两动点如图P 为AOB ∠内一点,点1P 与P 关于OB 成轴对称,2P 与P 关于OA 成轴对称,连接21P P 交OB 于E 点,交OA 于F 点。
结论:△PEF 的周长最短OA基本图形8 两定点两动点如图,A ,B 为直角坐标系中的两定点,1A 与A 关于y 轴对称,1B 与B 关于x 轴对称,连接11B A 分别交x 轴、y 轴于C 、D 两点,连A ,B ,C ,D 结论:四边形ABCD 周长最短。
基本图形9 一定点一动长如图,P 为一定点,AB 为直线l 上的定长。
结论:当P 在AB 的垂直平分线上时△PAB 的周长最短基本图形10 两定点一动定长如图,A ,B 为直线l 同侧的两点,DC 为直线l 上的一定长,作∥BE DC 且DC BE =,A 与1A 关于直线l 对称,连接E A 1交直线于D结论:BC AD +最短基本图形11 线段差最大如图,A ,B 分别位于直线l 的两侧,作1A 与A 点关于直线l 对称,连B A 1交直线l 于P 。
课题:等腰三角形的性质和判定学习目标:①会阐述、推证等腰三角形的性质判定定理.②学会比较等腰三角形性质定理和判定定理的联系与区别.③经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值.学习重点:等腰三角形的判定与性质的区别.学习难点:用“基本事实”和“已经证明的定理”为依据,证明等腰三角形性质定理和判定定理。
学习过程:一、情景创设:以前,我们曾经学习过三角形,你还记得按边分可以怎样分类吗?1、什么叫做等腰三角形?(等腰三角形的定义)2、等腰三角形有哪些性质?3、这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?二、探索活动:1、合作与讨论:等腰三角形的两底角相等这是一道文字题,要分清题设和结论,画出图形,写出已知、求证和证明过程已知;在△ABC中,AB=AC求证;∠B=∠C2、思考与讨论怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。
5、思考与探索“等腰三角形的两个底角相等”(1)写出它的逆命题:_________________(2)画出图形,写出已知、求证,并进行证明。
6、通过上面的证明,我们又得到了等腰三角形的判定定理:思考:1、在△ABC中,∠A=1100,∠C=350,则△ABC是三角形。
2、如图,在△ABC中,AB=AC,∠A=360,D是AC上一点,若∠BDC=720,则图形中共有()个等腰三角形。
A、1B、2C、3D、43有一个三角形,它的内角分别是200,400,1200,怎样把这个三角形分成两个等腰三角形?分成的两个等腰三角形的内角分别是多少?三、典例分析1、已知:如图,AB=AC,BD⊥AC,垂足为点D。
求证:∠DBC=21∠A。
2、已知:如图(1)∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC。
求证:AB=AC(1)(2)AB CDEAB CDEBDAAB CD2、在上图(2)中,如果AB=AC,AD∥BC,那么AD平分∠EAC吗?如果结论成立,你能证明这个结论吗?思:如图,△ABC中∠ABC与∠ACB的平分线交于点D.过点D作EF∥BC交AB于点E、交AC于点F.求证:EF=BE+CF.四练习巩固(一)基础练习1、如果等腰三角形有两边长为3和7,那么周长为_____。
1.1等腰三角形的性质和判定(1)九年级数学备课组【学习目标】1、进一步掌握证明的基本步骤和书写格式。
2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。
【重点、难点】1、等腰三角形的性质及其证明。
2、应用性质解题。
【预习指导】:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。
1、用_______________的过程,叫做证明。
经过________________称为定理。
2、证明与图形有关的命题,一般步骤有哪些?(1)_________________________;(2)_________________________;(3)_________________________.3、推理和证明的依据有哪几类?_____________、___________、___________。
4、我们初中数学中,选用了哪些真命题作为基本事实:(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________。
此外,还有_____________和____________也都看作是基本事实。
5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________;(6)______________________;(7)______________________;(8)______________________;(9)______________________;(10)______________________。
FED CBABACDEO图形与证明(二)复习课~~有关计算班级_________ 姓名__________学习目标:1.理解特殊三角形的概念,以及它们之间的关系;特殊四边形的概念,以及它们之间的关系;2.探索并证明特殊三角形、四边形的性质、判定定理,并能解决有关的运用;3.学会分析与综合的思考方法,能有条理的思考与表达自己的想法;4.感受公理化思想,转化思想。
学习重点:能运用特殊图形多边形的性质与判定的解决问题,并能进行有关计算。
学习难点:合理的运用多边形的性质,解决多边形的计算。
【课前练习】:1.以等腰三角形、菱形为例整理它们的判定、性质,画出知识结构图。
等腰三角形:判定:(几何语言) 性质:(组成元素)_____________________________________________________ ____________________ ______________________________ _____________________ (图形整体)______________________ _____________________ ______________________________ ______________________________ 菱形:由菱形面积的推导可以看出多边形的问题通常的思想方法:____________________________.【小试牛刀】:1.等腰三角形的一个角为︒30,则顶角的度数是____________.2.在□ABCD 中,∠ABC 的平分线交AD 于E ,且AE =2,DE =1,则□ABCD 的周长等于 .3.如图,在△ABC 中,∠C=900,点D 在BC 上,DE 垂直平分AB ,且DE=DC ,则∠B =______.4.如图,矩形ABCD 的对角线AC =8cm ,∠AOD =120º,则AB 的长为_____________。
第11章图形与证明11.1 你的判断对吗【新知导读】图中的两条线段AB与CD哪一条长一些?先猜一猜,再量一量.【范例点睛】如图11-1-1,假如用一根比地球赤道长1 m的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一颗红枣吗?能放进一个拳头吗?与同伴进行交流.图11-1-1思路点拨:要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有根有据地进行推理.【课外链接】费马数猜想:大师的失误1640年,在数论领域留下不可磨灭足迹的费马思考了一个问题:式子+1 的值是否一定为素数。
当n取0、1、2、3、4时,这个式子对应值分别为3、5、17、257、65537,费马发现这五个数都是素数。
由此,费马提出一个猜想:形如+1的数一定为素数。
在给朋友的一封信中,费马写道:“我已经发现形如+1的数永远为素数。
很久以前我就向分析学家们指出了这个结论是正确的。
”费马同时坦白承认,他自己未能找到一个完全的证明。
费马所研究的+1这种具有美妙形式的数,后人称之为费马数,并用F n表示。
费马当时的猜想相当于说:所有费马数都一定是素数。
费马是正确的吗?进一步验证费马的猜想并不容易。
因为随着n的增大,F n迅速增大。
比如对后人来说第一个需要检验的F5=4294967297已经是一个十位数了。
非常可能的是,由于这一数太大,所以费马在得出自己的猜想时并没有对它进行验证。
那么,它到底是否如同费马所相信的那样是一个素数呢?1729年12月1日,哥德巴赫(哥德巴赫猜想的提出者)在写给欧拉的一封信中问道:“费马认为所有形如+1的数都是素数,你知道这个问题吗?他说他没能作出证明。
据我所知,也没有其他任何人对这个问题作出过证明。
”这个问题吸引了欧拉。
1732年,年仅25岁的欧拉在费马死后67年得出F5=641×6700417,其中641=5×27+1这一结果意味着是一个合数,因此费马的猜想是错的。
初一数学图形与证明试题答案及解析1.下列正多边形的组合中,不能铺满地面的是A.正三角形和正五边形B.正三角形和正四边形C.正三角形和正十二边形D.正三角形和正六边形【答案】A【解析】找到两种多边形的若干个内角的和为360°的两种正多边形的组合即可.解:A正三角形的每个内角是60°,正五边形的每个内角为:180°-360°÷5=108°,∵60m+108n=360°,m,n不能得出正整数解。
∴不能够组成镶嵌,符合题意;B、正三角形的每个内角是60°,正方形的每个内角是90°,∵4×60°+1×90°=360°,∴能够组成镶嵌,不符合题意;C、正十二边形的每个内角是150°,正三角形的每个内角是60°,∵2×150°+1×60°=360°,∴能够组成镶嵌,不符合题意;D、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,或∵4×60°+1×120°=360°,能够进行镶嵌,不符合题意.故选A。
两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.2.(7分)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.【答案】AD=CF,证明略。
【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等,可根据AAS判定△ADE≌△CFE,即证AD=CF.解:AD=CF.∵AB∥FC,∴∠A=∠ECF,∠ADE=∠CFE.∵DE=FE,∴△ADE≌△CFE.∴AD=CF.3.一个角的补角是它的余角的4倍,则这个角是_________度.【答案】60【解析】设这个角为x°,根据题意可得:180-x=4(90-x),解得x=60.【考点】1.互余;2.互补.4.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A.①②B.①③C.②③D.以上都错【答案】C【解析】因为由∠1=∠2可得AD//BC,所以①错误;因为由∠3=∠4可得AD//BC,所以②正确;因为AD∥BE,所以∠1=∠2,又因为∠D=∠B,所以根据三角形的内角和可得∠3=∠4,所以AD//BC,因此③正确;所以②③正确,故选:C.【考点】平行线的判定与性质.5.下列说法正确的是()A.同位角相等.B.在同一平面内,如果a⊥b,b⊥c,则a⊥c.C.相等的角是对顶角.D.在同一平面内,如果a∥b,b∥c,则a∥c.[【答案】D.【解析】A选项说法错误,因为只有在两直线平行的情况下,同位角才能相等;B选项说法错误,因为垂直于同一直线的两直线平行,∴a∥c;C选项说法错误,由于位置关系不同,相等的角不一定是对顶角;D说法正确,根据是平行公理推论,即如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故选D.【考点】1.直线的位置关系及形成的角的名称;2.平行公理推论.6.(3分)(2015•本溪)如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.【答案】48°.【解析】已知∠BAC=90°,∠1=42°,根据平角的定义可得∠3=180°﹣90°﹣∠1=90°﹣42°=48°.再由平行线的性质即可得∠2=∠3=48°.【考点】平行线的性质.7.如图,△中,点是上的一点,,是中点,点F是BD的中点。
1
,贵阳)同一底上的两底角相等的梯形是等腰梯形吗?如果是,请给出证明(要求画出图形,写出已知、求证、证明);如果不是,请给出反例(只需画图说
是平行四边形,∠BCD的平分线
,求证:AC=BD.
D
E C
常州)如图,已知△ABC、
、
、要本节课中,你学习了哪些知识? 、你觉得成功的地方是: 、你觉得不足的地方是: 四、〖课后作业〗 ⊥
E
D
C
B A O
F
⑦.(2008 内江市)如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A 、B 两点分别作直线l 的垂线,垂足分别为D 、E ,请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全等的过程。
五、布置作业: 1、完成大本的题目
2、复习下一节的内容。