在腔QED中制备四原子的|D_4~2〉态
- 格式:pdf
- 大小:86.44 KB
- 文档页数:5
2020年第12期 信息通信2020 (总第 216 期)INFORMATION&COMMUNICATIONS(Sum.N o 216)在单独腔中通过捕获原子的方法实现信息分裂丁佩超,王平(安徽三联学院,安徽合肥230601)摘要:提出了一种利用原子与空腔间的共振相互作用进行信息分割的方案,通过选择不同的初始态,可以得到不同的末 态。
与原来的方案相比,该方案对原子自发发射和腔衰变不敏感,使得方案在实验中更容易实现。
关键词:量子信息分裂;分离腔;分束器中图分类号:〇431.2 文献标识码:A 文章编号:1673-1131(2020)12-0068-03Implement information split with trapped atoms in separate cavitiesDing Peichao, W ang Ping(Anhui Sanlian College, Anhui Hefei 230601)Abstract:A scheme for information split is proposed employing resonant interactions between atoms and cavities, choosing different initial states, we can obtain different state. In contrast to the original scheme, our scheme is not insensitive to the atomic spontaneous emission and cavity decay, which makes the schemes more easily realize in the experiments.Keyword:quantum-information splitting;distant cavity;beam-splitter量子纠缠是量子力学最引人入胜的特色之一,它不仅为区分量子力学与经典物理提供了重要工具,而且为用局部隐变量理论测试量子力学提供了可能性[1_3]。
2024年高考化学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个选项符合题意)1、我国自主研发的对二甲苯绿色合成项目取得新进展,其合成过程如图所示。
下列说法不正确...的是A.异戊二烯所有碳原子可能共平面B.可用溴水鉴别M和对二甲苯C.对二甲苯的一氯代物有2种D.M的某种同分异构体含有苯环且能与钠反应放出氢气2、下列化学式既能表示物质的组成,又能表示物质的一个分子的是A.NaOH B.SiO2C.Fe D.CO23、[安徽省合肥市2019年高三第三次教学质量检测]化工生产与人类进步紧密相联。
下列有关说法不正确的是A.空气吹出法提取海水中溴通常使用SO2作还原剂B.侯氏制碱法工艺流程中利用了物质溶解度的差异C.合成氨采用高温、高压和催化剂主要是提高氢气平衡转化率D.工业用乙烯直接氧化法制环氧乙烷体现绿色化学和原子经济4、海洋是一个资源宝库,海水资源的开发和利用是现代和未来永恒的主题。
下面是海水利用的流程图:下列有关说法不正确的是A.过程中制得NaHCO3是先往精盐溶液中通入CO2,再通入NH3B.氯碱工业在阳极产生了使湿润淀粉碘化钾试纸变蓝的气体C.反应②加热MgCl2·6H2O应在HCl气流保护下制备无水MgCl2D.反应⑤中,用Na2CO3水溶液吸收Br2后,用70—80%硫酸富集Br25、亚磷酸(H3PO3)是二元弱酸,主要用于农药中间体以及有机磷水处理药剂的原料。
常温下,向1L0.500mol·L-1H3PO3溶液中滴加等浓度的NaOH溶液,混合溶液中含磷粒子的物质的量分数(δ)与溶液pH的关系如图所示,下列说法正确的是A.a、b两点时,水电离出的c水(OH-)之比为1.43:6.54B.b点对应溶液中存在:c(Na+)=3c(HPO32-)C.反应H3PO3+HPO32-2H2PO3-的平衡常数为105.11D.当V(NaOH)=1 L 时,c(Na+)>c(H2PO3-)>c(OH-)>c(H+)6、“神药”阿司匹林是三大经典药物之一,下列有关阿司匹林的说法错误的是()A.能与NaHCO3 溶液反应产生气体B.与邻苯二甲酸()互为同系物C.在酸性条件,能发生水解反应生成乙酸D.1mol 阿司匹林最多能与 3mol H2 发生加成反应7、人体血液存在、等缓冲对。
基于腔QED的多粒子W态制备【摘要】研究了处于W类态的三纠缠原子与相干态光场相互作用过程中光场的量子特性;运用数值方法,讨论了三纠缠原子初始状态和相干态光场的强弱对系统光场压缩和二阶相干特性的影响。
提出了一个基于腔QED 技术的制备三原子最大W态的一般方案。
通过讨论表明三个原子不论是被同时注入腔中还是在不同的时刻被注入腔中我们都能得到三原子最大W态。
该方案可以在当前的技术范围内实现并且可以推广到制备n个原子的W态。
【关键词】W态J-C模型多原子量子纠缠现象首先是被Einstein.Podolsky.Rosen等人注意到的量子力学特有的现象,已广泛应用与量子信息领域,如量子隐形传送,量子密钥共享,量子安全直接通讯,量子纠错和量子密钥分配等等,制备纠缠态已经成为人们研究的中心课题一直[1-3]。
由于退相干和当前技术的限制,成功制备多比特纠缠态仍然存在很大挑战。
今年来已经有很多关于二体和多体纠缠态的理论和实验的报道,如制备两比特的EPR态,三比特和n比特的Greenberger-Home.Zeilinger(GHZ)态和W态等[4-7]。
特别是W态有它自身的优势,如当三个纠缠比特中的任意一个被追踪到的时候,剩余的两个比特仍然处于纠缠态,因此许多关于W态制备的方案被不断提出。
在1999年,Song等人首先提出了利用腔QED来制备W态的方案,郭光灿等人后来也提出了由腔量子电动力学的方式产生W态。
郑矢标等人提出了多原子W态的制备方案存在可能性。
本文把多原子样品看做是目标不大的目标原子,通过控制原子,实现多原子W态的制备。
1 理论模型在此我们引入Dicks态我们提出了一种有效产生N粒子W态的实验方案.通过控制原子使含有粒子的目标原子制备W态。
并通过仿真发现,该方案制备W态的纠缠度可达到0.9,如图1所示。
参考文献:[1]陈美香,李洪才.利用非Bell基测量实现两粒子纠缠态的隐形传输[J].量子光学学报,2006,01:40.[2]熊狂炜.利用Raman相互作用传送两比特的未知原子态[J].量子光学学报,2006,12:139.[3]陈美香,李洪才,黄志平,等.利用非Bell基测量实现三粒子W态的隐形传送[J].量子电子学报,2006,23:393.[4]PHENIX S J D,BARNETT S M. Non - local interatomic correlations in the micromaser [J].J Mod Opt,1993,40(6):979 - 983.[5]GERRY C C.Preparation of multiatom entangled states through dispersive atom - cavity - field interaction [J].Phys Rev,1996,A53:2857 - 2860.[6]宋克慧.利用原子—腔场的Raman 相互作用制备多种形式的原子纠缠态[J].物理学报,2000,49:441-444.[7]YANG Xiong ,XIANG Shao - hua,SONG Ke hui. Preparation of Three - atom Entangled W State Via Two - photon Jaynes - Cummings Model[J].量子光学学报,2002,166:169.。
1第三章腔量子电动力学3.1腔量子电动力学简介腔量子电动力学(Cavity Quantum Electrodynamics, Cavity QED)研究的是囚禁于腔中的原子与光场的相互作用[1-4]。
这里说的腔,是指光学的或者微波的共振系统,分别被称作微波腔和光学腔。
Cavity QED 是除了Josephson qubit 外,另一种研究较早并很有应用前景的量子计算体系。
与Josephson电路相比,Cavity QED 体系由于将原子囚禁在腔中,只要腔有足够高的品质因子,就能在很大程度上抑制体系与周围环境之间的消相干,这对于量子计算的物理实现是至关重要的。
Cavity QED 的主要理论背景是量子光学中的Jaynes-Cummings(JC)[5,6]模型。
考虑一个二能级原子与单模光场相互作用,体系的HamiltonianA F H H H er E =+-⋅ (3.1)其中原子的HamiltonianA i ii i H E σ=∑(3-2)ii i i σ=,i 代表上下两个能级,i E 为这两个能级的能量。
光场的Hamiltonian †12F C H a a ω⎛⎫=+ ⎪⎝⎭ (3.3)其中腔场频率表示为C ω。
在旋转波近似[5]下,整个体系的Hamiltonian 简化成††A C H a a ga ga ωσσωσσ+--+=+++(3.4) 我们用a ,b 代表两能缀原子的上下两个能级,a b σ+=为上升算符,其共轭()[,]()[,]z da t i a H i a ig dt d t i H i ig a dt ωσσσωσσ----⎧=-=--⎪⎪⎨⎪=-=-+⎪⎩ (3.5) 其中z a a b σ=-(p t 精确求解上述方程有一定的困难,然而,在弱激发条件下,z σ=-简化为在实际的Cavity QED 体系中,不可避免的存在消相干。
该体系消相干主要有两个途径,如图3.1所示,其一是由原子自发辐射导致的向腔外其它模式的耗散,耗散的速率表示为2γ;其二是腔本身存在的泄漏,泄漏速率由κ表示,它依赖于腔的品质因子,/2Q κω=。
利用腔QED制备量子纠缠态的开题报告开题报告题目:利用腔QED制备量子纠缠态背景介绍:量子纠缠是量子力学中独特的概念,描述一对或多对量子系统在某些方面彼此紧密地耦合,并且彼此之间的测量结果是高度关联的。
纠缠态已成为量子信息领域中的一个重要资源,可用于实现量子计算,量子通信和量子光谱学等应用。
腔量子电动力学(QED)是量子光学和量子磁学的交叉学科。
它涉及原子在高品质(Q)因子实空腔内的非线性光学响应,这种响应导致原子光学时钟和具有单光子幅度的单光子源。
腔QED可以用于制备和操纵光子和原子之间的量子态,该技术在量子信息和量子计算中具有广泛的应用。
研究目标:该研究将探索使用腔QED制备量子纠缠态的机制。
具体研究目标如下:1. 研究利用腔QED制备简单系统的量子纠缠态的优点和局限性。
2. 开发新的腔QED系统来制备更复杂的量子纠缠态。
3. 实现更高级的量子测量来检测制备的量子纠缠态。
计划方法:为了实现上述研究目标,我们将使用以下方法:1. 搭建内置原子的高Q因子目标腔系统,以制备能被控制的为原子和光子的量子态。
我们将使用量子力学的时间演化来描述该系统,以及计算该系统的哈密顿算符,并使用类似Green函数的方案来计算含有耦合原子和腔的系统的完整时间演化。
2. 制备系统的初态为简单的原子和光子的组合,并通过原子和腔的耦合,演化到量子纠缠态。
我们将使用密度矩阵的形式来表示演化过程,并利用密度矩阵几何来研究纠缠态。
3. 使用高分辨率的光谱测量来检测制备的量子纠缠态。
我们将使用高分辨率的光谱方法(例如拉曼光谱)来测量腔QED系统所产生的光子态和原子态的频率,以确定纠缠度和纠缠的质量。
预期成果和意义:通过通过腔QED制备量子纠缠态,我们将实现以下成果:1. 可以制备具有高纠缠度的量子纠缠态,这些纠缠态可用于量子计算,量子通信和量子测量等应用。
2. 这项研究将有助于加深我们对腔量子电动力学,量子光谱学和量子信息的理解,为相关领域的研究提供新的元素。
人教版高中化学选修四——《化学反应原理》课本习题参考答案第一单元第一节化学反应与能量的变化 1. 化学反应过程中所释放或吸收的能量,叫做反应热,在恒压条件下,它等于反应前后物质的焓变,符号是ΔH,单位是kJ/mol.例如 1 mol H2 (g)燃烧,生成 1 mol H2O(g), 其反应热ΔH=-241.8 kJ/mol. 2. 化学反应的实质就是反应物分子中化学键断裂,形成新的化学键,重新组合成生成物的分子.旧键断裂需要吸收能量,新键形成需要放出能量.当反应完成时,若生成物释放的能量比反应物吸收的能量大, 则此反应为放热反应; 若生成物释放的能量比反应物吸收的能量小,反应物需要吸收能量才能转化为生成物,则此反应为吸热反应. 第二节燃烧热能源 1. 在生产和生活中,可以根据燃烧热的数据选择燃料.如甲烷,乙烷,丙烷,甲醇, 乙醇,氢气的燃烧热值均很高,它们都是良好的燃料. 2. 化石燃料蕴藏量有限,不能再生,最终将会枯竭,因此现在就应该寻求应对措施. 措施之一就是用甲醇,乙醇代替汽油,农牧业废料,高产作物(如甘蔗,高粱,甘薯,玉米等) ,速生树木(如赤杨,刺槐,桉树等) ,经过发酵或高温热分解就可以制造甲醇或乙醇. 由于上述制造甲醇,乙醇的原料是生物质,可以再生,因此用甲醇,乙醇代替汽油是应对能源危机的一种有效措施. 3. 氢气是最轻的燃料,而且单位质量的燃烧热值最高,因此它是优异的火箭燃料,再加上无污染,氢气自然也是别的运输工具的优秀燃料.在当前,用氢气作燃料尚有困难,一是氢气易燃,易爆,极易泄漏,不便于贮存, 运输; 二是制造氢气尚需电力或别的化石燃料, 成本高. 如果用太阳能和水廉价地制取氢气的技术能够突破, 则氢气能源将具有广阔的发展前景. 4. 甲烷是一种优质的燃料,它存在于天然气之中.但探明的天然气矿藏有限,这是人们所担心的.现已发现海底存在大量水合甲烷,其储量约是已探明的化石燃料的2倍.如果找到了适用的开采技术,将大大缓解能源危机. 5. 柱状图略.关于如何合理利用资源,能源,学生可以自由设想.在上述工业原材料中,能源单耗最大的是铝;产量大,因而总耗能量大的是水泥和钢铁.在生产中节约使用原材料,加强废旧钢铁,铝,铜,锌,铅,塑料器件的回收利用,均是合理利用资源和能源的措施. 6. 公交车个人耗油和排出污染物量为私人车的1/5,从经济和环保角度看,发展公交车更为合理. 第三节化学反应热的计算1. C(s)+O2 (g) == CO2 (g) H=-393.5 kJ/mol 2.5 mol C 完全燃烧,H=2.5 mol×(-393.5 kJ/mol)=-983.8 kJ/mol 2. H2 (g)的燃烧热H=-285.8 kJ/mol 欲使H2完全燃烧生成液态水,得到1 000 kJ 的热量,需要H2 1 000 kJ÷285.8 kJ/mol=3.5 mol 3. 设S 的燃烧热为H S(s)+O2 (g) == SO2 (g) 32 g/mol H 4g -37 kJ H=32 g/mol×(-37 kJ)÷4 g =-296 kJ/mol 4. 设CH4的燃烧热为H CH4 (g)+O2 (g) == CO2 (g)+2H2O(g) 16 g/mol H 1g -55.6 kJ H=16 g/mol×(-55.6 kJ)÷1 g =-889.6 kJ/mol 5. (1)求3.00 mol C2H2完全燃烧放出的热量Q C2H2 (g)+5/2O2 (g) == 2CO2 (g)+H2O(l) 26 g/mol H 2.00 g -99.6 kJ H=26 g/mol×(-99.6 kJ)÷2.00 g =-1 294.8 kJ/mol Q=3.00 mol×(-1 294.8 kJ/mol)=-3 884.4 kJ≈-3 880 kJ (2)从4题已知CH4的燃烧热为-889.6 kJ/mol,与之相比,燃烧相同物质的量的C2H2放出的热量多. 6. 写出NH3燃烧的热化学方程式NH3 (g)+5/4O2 (g) == NO2 (g)+3/2H2O(g) 将题中(1)式乘以3/2,得: 3/2H2 (g)+3/4O2 (g) == 3/2H2O(g) 3/2H1=3/2×(-241.8 kJ/mol) =-362.7 kJ/mol 将题中(2)式照写: 1/2N2 (g)+O2 (g) == NO2 (g) H2=+33.9 kJ/mol 将题中(3)式反写,得NH3 (g) == 1/2N2 (g)+3/2H2 (g) -H3=46.0 kJ/mol 再将改写后的3式相加,得: 2 7. 已知1 kg 人体脂肪储存32 200 kJ 能量,行走1 km 消耗170 kJ,求每天行走5 km,1年因此而消耗的脂肪量: 170 kJ/km×5 km/d×365 d÷32 200 kJ/kg=9.64 kg 8. 此人脂肪储存的能量为4.2×105 kJ.快速奔跑1 km 要消耗420 kJ 能量,此人脂肪可以维持奔跑的距离为:4.2×105 kJ÷420 kJ/km=1 000 km 9. 1 t 煤燃烧放热2.9×107 kJ 50 t 水由20 ℃升温至100 ℃,温差100 ℃-20 ℃=80 ℃,此时需吸热: 50×103 kg×80 ℃×4.184 kJ/(kg℃)=1.673 6×107 kJ 锅炉的热效率=(1.673 6×107 kJ÷2.9×107 kJ)×100% =57.7% 10. 各种塑料可回收的能量分别是: 耐纶5 m3×4.2×104 kJ/m3=21×104 kJ 聚氯乙烯50 m3×1.6×104 kJ/m3=80×104 kJ 丙烯酸类塑料 5 m3×1.8×104kJ/m3=9×104 kJ 聚丙烯40 m3×1.5×104 kJ/m3=60×104 kJ 将回收的以上塑料加工成燃料,可回收能量为21×104 kJ+80×104 kJ+9×104 kJ+60×104 kJ=170×104 kJ=1.7×106 kJ 3 第二单元第一节化学反应速率1. 略. 2. 1:3:2. 3. (1)A; (2)C; (3)B. 4. D. 5. A. 第二节影响化学反应速率的因素1. (1)加快.增大了反应物的浓度,使反应速率增大. (2)没有加快.通入N2后,容器内的气体物质的量增加,容器承受的压强增大,但反应物的浓度(或其分压)没有增大,反应速率不能增大. (3)降低.由于加入了N2,要保持容器内气体压强不变,就必须使容器的容积加大,造成H2和I2蒸气的浓度减小,所以,反应速率减小. (4)不变.在一定温度和压强下,气体体积与气体的物质的量成正比,反应物的物质的量增大一倍,容器的容积增大一倍,反应物的浓度没有变化,所以,反应速率不变. (5)加快.提高温度,反应物分子具有的能量增加,活化分子的百分数增大,运动速率加快,单位时间内的有效碰撞次数增加,反应速率增大. 2.A.催化剂能够降低反应的活化能,成千上万倍地提高反应速率,使得缓慢发生的反应2CO+2NO== N2+2CO2迅速进行.给导出的汽车尾气再加压,升温的想法不合乎实际. 第三节化学平衡1. 正,逆反应速率相等,反应物和生成物的质量(或浓度)保持不变. 2. 3. 反应混合物各组分的百分含量,浓度,温度,压强(反应前后气体的物质的量有变化的反应) ,同等程度地改变正,逆反应,不能使. 4. (1)该反应是可逆反应,1 mol N2和3 mol H2不能完全化合生成2 mol NH3,所以,反应放出的热量总是小于92.4 kJ. (2)适当降低温度,增大压强. 5. B; 6. C;7. C; 8. C. 9. 设:CO 的消耗浓度为x. 第四节化学反应进行的方向1. 铵盐溶解常常是吸热的,但它们都能在水中自发地溶解.把两种或两种以上彼此不 4 发生反应的气体依次通入到同一个密闭容器中,它们能自发地混合均匀. 2. 在封闭体系中焓减和熵增的反应是容易自发发生的.在判断化学反应的方向时不能只根据焓变ΔH<0或熵增中的一项就得出结论,而是要全面考虑才能得出正确结论. 5 第三单元第一节弱电解质的电离1. 2. 氨水中存在的粒子:NH3H2O,NH4+,OH氯水中存在的粒子:Cl2,Cl-,H+,ClO3. (1) 错.导电能力的强弱取决于电解质溶液中离子的浓度,因此强,弱电解质溶液导电能力与二者的浓度及强电解质的溶解性有关. (2) 错.酸与碱反应生成盐,所需碱的量只与酸的物质的量有关,盐酸和醋酸都是一元酸, + 物质的量浓度相同的盐酸和醋酸中含有相同物质的量的H . (3) 错.一水合氨是弱碱,在水溶液中是部分电离的,其电离平衡受氨水浓度的影响,浓溶- 液的电离程度低于稀溶液.因此氨水稀释一倍时,其OH 浓度降低不到一半. + (4) 错.醋酸中的氢没有全部电离为H . ※(5) 错.此题涉及水解较复杂,不要求学生考虑水解. 4(1) 不变.一定温度下,该比值为常数——平衡常数. - (2) 4.18×10 4 mol/L 5. (1) 略; (2) 木头中的电解质杂质溶于水中,使其具有了导电性. 第二节水的电离和溶液的酸碱性 1. ③③③③;③③③③. 2. NH+4,OH-,NH3H2O,H+. 3. C;4A;5D;6D;7A;8A,D. 9. 注:不同品牌的同类物品,其相应的pH 可能不尽相同. 10. 6 11. 图略.(1) 酸性(2) 10, 1×10-4 (3) 9 mL 第三节盐类的水解1. D; 2. B;3. C; 4. D. + 5. 乙,如果是弱酸,所生成的盐电离出的A-会部分地与水电离出的H 结合成HA,则c(A - + )≠c(M ) . - + - - 3+ 6. >,Al +2SO42 +2Ba2 +4OH = 2BaSO4↓+AlO2 +2H2O; + - + - =,2Al3 +3SO42 +3Ba2 +6OH = 3BaSO4↓+2Al(OH)3↓ - - - + - 7. CO32 +H2O=HCO3 +OH , Ca2 +CO32 =CaCO3↓ - - 8. Na2CO3溶液的pH>NaHCO3溶液的pH,因为由HCO3 电离成CO32 比由H2CO3电离成- HCO3 更难,即Na2CO3与NaHCO3是更弱的弱酸盐,所以水解程度会大一些. 9. (1) SOCl2 +H2O SO2↑+ 2HCl↑ (2) AlCl3溶液易发生水解,AlCl36 H2O 与SOCl2混合加热,SOCl2与AlCl36 H2O 中的结晶水作用,生成无水AlCl3及SO2和HCl 气体. ,加氨水可中和水解反应生成的HCl,以10. 加水的效果是增加水解反应的反应物c(SbCl3) + 减少生成物c(H ) ,两项操作的作用都是使化学平衡向水解反应的方向移动. ※11. 受热时,MgCl26H2O 水解反应的生成物HCl 逸出反应体系,相当于不断减少可逆反应的生成物,从而可使平衡不断向水解反应方向移动;MgSO47H2O 没有类似可促进水解反应进行的情况. 第四节难溶电解质的溶解平衡难溶电解质的溶解平衡1. 文字描述略. 2. C; 3. D; 4. C. 7 5. (1) S2 与H 作用生成的H2S 气体会逸出反应体系,使FeS 的沉淀溶解平衡向溶解方向移动. (2) 硫酸钙也难溶于水,因此向碳酸钙中加硫酸是沉淀转化的问题,但硫酸钙的溶解度大于+ 碳酸钙,转化不能实现.醋酸钙溶于水,且醋酸提供的H 与碳酸钙沉淀溶解平衡中的CO32作用,可生成CO2逸出反应体系,使其沉淀溶解平衡向溶解的方向移动. (3) 硫酸溶液中的SO42-对BaSO4的沉淀溶解平衡有促进平衡向生成沉淀的方向移动的作用. 6. 略. - + 8 第四单元第一节原电池 1. 由化学能转变为电能的装置.氧化反应,负极;还原反应,正极. 2. 铜,Cu-2e == Cu ;银,Ag +e == Ag. 3. a,c,d,b. 4. B; 5. B,D. 2+ + - 图4-2锌铁原电池装置6. 装置如图4-2所示. 负极:Zn-2e == Zn 2+ 2+ 正极:Fe +2e == Fe 第二节化学电源1. A; 2. C; 3. C. 4. 铅蓄电池放电时的电极反应如下: 负极:Pb(s)+SO4 (aq)-2e == PbSO4(s) 正极:PbO2 (s)+4H (aq)+SO4 (aq)+2e == PbSO4 (s)+2H2O(l) 铅蓄电池充电时的电极反应如下: + 22- 9 阴极:PbSO4 (s)+2e == Pb(s)+SO4 (aq) 阳极:PbSO4 (s)+2H2O(l)-2e == PbO2(s)+4H (aq)+SO4 (aq) 总反应方程式: + 2- - 2- 第三节电解池1. A; 2. D. 3. 原电池是把化学能转变为电能的装置,电解池是由电能转化为化学能的装置.例如锌铜原电池,在锌电极上发生氧化反应,称为负极,在铜电极上发生还原反应,称为正极. 负极:Zn-2e == Zn (氧化反应) 正极:Cu +2e == Cu(还原反应) 电子通过外电路由负极流向正极. 电解池:以CuCl2溶液的电解装置为例.与电源正极相连的电极叫做阳极,与电源负极相连的电极叫阴极. 阳极:2Cl -2e == Cl2↑(氧化反应) 阴极:Cu +2e == Cu(还原反应) 电子通过外电路由阳极流向阴极. 4. 电镀是把待镀金属制品作阴极,把镀层金属作阳极,电解精炼铜是把纯铜板作阴极,粗铜板作阳极, 通过类似电镀的方法把铜电镀到纯铜板上去, 而粗铜中的杂质留在阳极泥或电解液中,从而达到精炼铜的目的.其电极主要反应如下: 阳极(粗铜) :Cu-2e == Cu (氧化反应) 阴极(纯铜) :Cu +2e == Cu(还原反应) 补充:若粗铜中含有锌,镍,银,金等杂质,则在阳极锌,镍等比铜活泼的金属也会被氧化: 阳极(粗铜) :Zn-2e = Zn 2+ 2+ 2+ 2+ 2+ 2+ 10 Ni—2e = Ni - 2+ 由于附着在粗铜片上银,金等金属杂质不如铜活泼,不会在阳极被氧化,所以当铜氧化后,这些微小的杂质颗粒就会掉进电解质溶液中,沉积在阳极附近(即"阳极泥",成为提炼贵重金属的原料) . 在阴极,电解质溶液中Zn 和Ni 的氧化性又不如Cu 强,难以在阴极获得电子被还原, 故Zn 和Ni 被滞留在溶液中.因此,在阴极只有Cu 被还原并沉积在纯铜片上,从而达到了通过精炼提纯铜的目的. 5. 电解饱和食盐水的电极反应式为: 阳极:2Cl -2e == Cl2↑(氧化反应) 阴极:2H +2e == H2↑(还原反应) 或阴极:2H2O+2e == H2↑+2OH (还原反应) 总反应:2NaCl+2H2O == 2NaOH+H2↑+Cl2↑ 在阴极析出 1. 42 L H2,同时在阳极也析出1.42 L Cl2. 6. 依题意,电解XCl2溶液时发生了如下变化: + 2+ 2+ 2+ 2+ 2+ 2+ M(X)=3.2 g×22.4 L/(1 mol×1.12 L)=64 g/mol 即X 的相对原子质量为64. 又因为2Cl - 2e == Cl2↑ 2 mol n(e ) - 22.4L 1.12L n(e )=2 mol×1.12 L/22.4 L=0.1 mol 即电路中通过的电子有0.1 mol.11 第四节金属的电化学腐蚀与防护1. 负极; Fe-2e- == Fe2+; 正极; 析氢腐蚀: ++2e- == H2↑, 2H 析氧腐蚀: 2O+O2+4e- == 4OH2H 2. (1)电化腐蚀,铁和铁中的杂质碳以及残留盐溶液形成了原电池. (2)提示:主要是析氧腐蚀.2Fe-4e- == 2Fe2+;2H2O+O2+4e- == 4OHFe2++2OH- == Fe(OH)2,4Fe(OH) 2+O2+2H2O == 4Fe(OH) 3 3. C; 4. B,D; 5. A,C; 6. A,D. 7. 金属跟接触到的干燥气体(如O2,Cl2,SO2)或非电解质液体直接发生化学反应而引起的腐蚀,叫做化学腐蚀.不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀.金属腐蚀造成的危害甚大,它能使仪表失灵,机器设备报废,桥梁,建筑物坍塌,给社会财产造成巨大损失. 8. 当钢铁的表面有一层水膜时,水中溶解有电解质,它跟钢铁中的铁和少量的碳形成了原电池.在这些原电池里,铁是负极,碳是正极.电解质溶液的H+在正极放电,放出H2,因此这样的电化腐蚀叫做析氢腐蚀. 如果钢铁表面吸附的水膜酸性很弱或呈中性, 溶有一定量的氧气,此时就会发生吸氧腐蚀,其电极反应如下: 负极:2Fe-4e- == 2Fe2+ 正极:2H2O+O2+4e- == 4OH- 总反应:2Fe+2H2O+O2 == 2Fe(OH) 2 9. 镀锌铁板更耐腐蚀.当镀锌铁板出现划痕时,暴露出来的铁将与锌形成原电池的两个电极,且锌为负极,铁为正极,故铁板上的镀锌层将先被腐蚀,镀锌层腐蚀完后才腐蚀铁板本身.镀锡铁板如有划痕,锡将成为原电池的正极,铁为负极,这样就会加速铁的腐蚀. 可设计如下实验: 取有划痕的镀锌铁片和镀锡铁片各一块, 放在经过酸化的食盐水中浸泡一会儿, 取出静置一段时间,即可见到镀锡铁片表面较快出现锈斑,而镀锌铁片没有锈斑.即说明上述推测是正确的.。
光学腔中腔量子电动力学系统的理论成果乔玉洁张罡(天津师范大学物理与材料科学学院,天津300387)1概述光学作为一门最基础的物理学科,在物理学的发展过程中起到至关重要的作用。
但随着研究的深入,物理学家们发现经典力学已经不足以描述微观系统,所以在20世纪初由普朗克、玻尔、海森堡、薛定谔等一大批物理学家共同创立的量子力学带领大家进入了“新世界”,至此一些经典力学中无法克服的困难———波粒二象性、黑体辐射、光电效应等都得到了合理地解释,量子力学的快速发展推动了科学技术的进步,也促进了我们对光的性质的进一步研究与探索。
当我们将量子场论与光学相结合,用量子力学的观点处理光与物质的相互作用时,量子光学的概念就此提出。
腔量子电动力学作为量子光学的一个主要的领域,在过去几十年中取得了巨大的进展,在量子信息和量子计算方面也体现出了极大的应用潜力。
2腔量子电动力学简介腔量子电动力学概念的首次提出可以追溯到20世纪40年代,1946年Edwar d M .Pur cel l 在美国物理学春季会议上的论文摘要中提到[2]:当自旋系统与共振电路耦合时,原子的射频跃迁的自发辐射率会发生变化,这就打破了在这之前人们普遍认为自发辐射是一种固有属性的说法,从而使更多的科学家们把注意力放在自发辐射和能级移动方面。
1948年,Cas i m i r 和Pol der 逐渐把单个原子与导电平面之间的研究扩展到两个平行金属板之间的相互作用情况[3,4],并发现了“Cas i m i r 效应”。
20世纪50年代,微波激射器[5]的实现激发了人们对腔中物质与辐射场相互作用的深入研究,在这段时期内,电子自旋跃迁自发辐射率的修正被预测并得到实验证实[6]。
1963年,J aynes 和Cum m i ngs建立了一个理想模型“J aynes Cum m i ng (J -C )模型”,该模型的提出在腔量子电动力学的发展过程中具有里程碑的意义。
2024届四川省高考化学四模试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个选项符合题意)1、短周期元素a、b、c、d的原子序数依次增大,a和b的最外电子数之和等于c和d的最外层电子数之和,这四种元素组成两种盐b2da3和bca2。
在含该两种盐的混合溶液中滴加盐酸,产生白色沉淀的物质的量与盐酸体积的关系如图所示。
下列说法正确的是A.1mol d的氧化物含2mol 化学键B.工业上电解c的氧化物冶炼单质cC.原子半径:a < b < c < dD.简单氢化物的沸点:a < d2、常温常压下,某烧碱溶液与0.05mol氯气恰好完全反应,得到pH=9的混合溶液(溶质为NaC1与NaC1O)。
下列说法正确的是(N A代表阿伏加德罗常数)A.氯气的体积为1.12L B.原烧碱溶液中含溶质离子0.2N AC.所得溶液中含OH-的数目为1×10-5N A D.所得溶液中ClO-的数目为0.05N A3、下表中对应关系正确的是CH3CH3+Cl2CH3CH2Cl+HCl均为取代反应ACH2=CH2+HCl CH3CH2Cl由油脂得到甘油均发生了水解反应B由淀粉得到葡萄糖Cl2+2Br‾=2Cl‾+Br2均为单质被还原的置换反应CZn+Cu2+=Zn2++Cu2Na2O2+2H2O+4NaOH+O2↑均为水作还原剂的氧化还原反应DCl2+H2O=HCl+HClOA.A B.B C.C D.D4、常温常压下,O3溶于水产生的游离氧原子[O]有很强的杀菌消毒能力,发生的反应如下:()反应①:O 3O2+[O] ΔH>0 平衡常数为K1反应②:[O]+O32O2 ΔH<0 平衡常数为K2总反应:2O33O2 ΔH <0 平衡常数为K下列叙述正确的是A.降低温度,K减小B.K=K1+K2C.增大压强,K2减小D.适当升温,可提高消毒效率5、下列化学用语的表述正确的是( )A.离子结构示意图:可以表示16O2-,也可以表示18O2-B.比例模型:可以表示甲烷分子,也可以表示四氯化碳分子C.氯化铵的电子式为D.CO2的结构式为O—C—O6、Na2FeO4只在强碱性条件下稳定,易被H2还原。