苏州大学高等代数00年到09年
- 格式:doc
- 大小:1.06 MB
- 文档页数:17
苏 州 大 学2002年攻读硕士学位研究生入学考试试题考试科目:高等代数1.(15分)设A =1111101111001110001100001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,123101221001320001200001n n n n n n B -⎛⎫ ⎪-- ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭都是n n ⨯矩阵。
解矩阵方程AX B =。
2.(20分)设143253442A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,A 是否相似于对角矩阵?如果相似于对角矩阵,求可逆矩阵C ,使得1C AC -是一个对角矩阵。
3.(10分)设,,,k m r s 都是非负整数。
设23()1,f x x x x =+++ 4414243()k m r s g x x x x x +++=+++。
证明:()f x 整除()g x 。
4.(10分)设A ,B 都是n n ⨯矩阵,G 是n m ⨯矩阵,并且G 的秩是n 。
证明:如果AG BG =,则A B =。
5.(10分)设A 是n n ⨯矩阵,并且A 是可逆的。
证明:如果A 与1A -的所有的元素都是整数,则A 的行列式是-1或1。
6.(10分)设A 是n n ⨯反对称矩阵,证明:2A -是半正定的。
7.(15分)设A 是n n ⨯矩阵。
如果2n A E =,并且()n A E -的秩是r ,A 是否相似于一个对角矩阵?如果是,求这个对角矩阵。
8.(10分)设V 是有理数域 上的线性空间,V 的维数是n ,A 与B 是V 的线性变换。
其中B 可对角化,并且AB BA A -=。
证明:存在正整数m ,使得m A 是零变换。
苏州大学硕士研究生各专业录取人数(2008、2009、2010年)学院专业代码专业名称 2008年录取人数 2009年录取人数 2010年录取人数凤凰传媒学院 050301 新闻学 15 19 15 凤凰传媒学院 050302 传播学 21 21 21 政治与公共管理学院 010101 马克思主义哲学 10 10 7政治与公共管理学院 010102 中国哲学12 7 3政治与公共管理学院 010103 外国哲学5 4 1政治与公共管理学院 010104 逻辑学 1 1 0政治与公共管理学院 010105 伦理学 5 4 3政治与公共管理学院 010108 科学技术哲学 1 1 0政治与公共管理学院 030201 政治学理论 10 11 10政治与公共管理学院030204 党史2 0政治与公共管理学院 030207 国际关系4 5 5政治与公共管理学院 030501 马克思主义基本原理 14 4 7政治与公共管理学院 030505 思想政治教育 19 21 13政治与公共管理学院 040102 课程与教学论 2 2 0政治与公共管理学院 120100 管理科学与工程 4 3 2政治与公共管理学院 120401 行政管理44 49 50政治与公共管理学院 120402 社会医学与卫生事业管理 2 7 10政治与公共管理学院 120405 土地资源管理 4 5 7政治与公共管理学院 420102 学科教学(思政) 34 45政治与公共管理学院 490100 公共管理硕士 24东吴商学院 020101 政治经济学 2 1 2 东吴商学院 020105 世界经济 7 2 2东吴商学院 020202 区域经济学 10 6 3 东吴商学院 020203 财政学 12 8 5东吴商学院 020204 金融学 25 16 16 东吴商学院 020205 产业经济学 6 4 4 东吴商学院 020206 国际贸易学 10 6 5 东吴商学院 120201 会计学 20 10 10 东吴商学院 120202 企业管理 22 16 11 东吴商学院 120280 工商管理硕士 70 78 176东吴商学院 120301 农业经济管理 2 4 1王健法学院 030101 法学理论 18 22 17 王健法学院 030102 法律史 11 13 10 王健法学院 030103 宪法学与行政法学25 30 23王健法学院 030104 刑法学 10 13 8王健法学院 030105 民商法学 15 21 20王健法学院 030106 诉讼法学 16 18 13 王健法学院 030107 经济法学 15 17 13 王健法学院 030108 环境与资源保护法学 5 5 5王健法学院 030109 国际法学 26 23 14 王健法学院 030180 法律硕士(非法学)50 50 60王健法学院 410200 法律硕士(法学)105 76教育学院 040101 教育学原理 11 6 1 教育学院 040102 课程与教学论 11 10 4教育学院 040106 高等教育学 14 12 5 教育学院 077101 基础心理学 17 10 10 教育学院 077102 发展与教育心理学18 25 25教育学院 077103 应用心理学 31 34 27 教育学院 120403 教育经济与管理 10 11 10教育学院 420101 教育管理 1体育学院 040301 体育人文社会学 13 14 13体育学院 040302 运动人体科学 16 20 18体育学院 040303 体育教育训练学 49 38 37体育学院 040304 民族传统体育学 5 4 4体育学院 540101 体育教学 21 21 体育学院 420112 学科教学(体育)3文学院 010106 美学 7 4 3文学院 040102 课程与教学论 5 4 2文学院 050101 文艺学 16 8 4文学院 050103 汉语言文字学 26 16 11 文学院 050105 中国古代文学 32 17 14 文学院 050106 中国现当代文学 26 17 16文学院 050108 比较文学与世界文学14 10 6文学院 050405 戏剧戏曲学 11 10 7文学院 420103 学科教学(语文) 36 12艺术学院 040102 课程与教学论 2 3 4艺术学院 050403 美术学 10 13 6艺术学院 050404 设计艺术学 42 39 35 艺术学院 430138 工业设计工程 40 0艺术学院 550107 美术 10艺术学院 550108 艺术设计 54 社会学院 030301 社会学 15 15 7社会学院 060105 专门史 4 5 2社会学院 060106 中国古代史 9 9 5社会学院 060107 中国近现代史 14 15 9社会学院 060108 世界史 9 10 6社会学院 120203 旅游管理 5 6 3社会学院 120404 社会保障 9 8 4社会学院 120502 情报学 6 8 7社会学院 120503 档案学 8 11 12社会学院 420109 学科教学(历史)12 2社会学院590100 社会工作硕士47外国语学院 040102 课程与教学论 10 9 8外国语学院 050201 英语语言文学 21 19 13Oil Paintings for saleLandscape paintingClaude Monet Weeping WillowGeorge Stubbs WhistlejacketGustav Klimt paintingsVincent van Gogh paintingsvan Gogh Wheat FieldsFragonard The SwingJohn Singer Sargent El Jaleo Winslow Homer The Gulf StreamHenri Rousseau The Sleeping Gypsy 外国语学院 050202 俄语语言文学 4 6 5外国语学院 050205 日语语言文学 10 10 7外国语学院 050211 外国语言学及应用语言学 33 39 27外国语学院 420108 学科教学(英语)34 0外国语学院580101 英语笔译21外国语学院580102 英语口译21数学科学学院 040102 课程与教学论 4 4 1数学科学学院 070101 基础数学 23 20 19数学科学学院 070102 计算数学 8 6 8 数学科学学院 070103 概率论与数理统计 14 9 10数学科学学院 070104 应用数学 20 13 12数学科学学院 070105 运筹学与控制论4 5 4数学科学学院 420104 学科教学(数学)11 3物理科学与技术学院 040102 课程与教学论 1 1物理科学与技术学院 070201 理论物理2 2 1物理科学与技术学院 070204 等离子体物理 2 3 4物理科学与技术学院 070205 凝聚态物理 17 21 16物理科学与技术学院 070207 光学 21 17 12物理科学与技术学院 080501 材料物理与化学 6 6 7物理科学与技术学院 081102 检测技术与自动化装置 3 8 11物理科学与技术学院 420105 学科教学(物理) 1 5信息光学工程研究所 080300 光学工程18 23 26材料与化学化工学部 040102 课程与教学论 5 2 2材料与化学化工学部 070301 无机化学27 29 31材料与化学化工学部 070302 分析化学13 13 21材料与化学化工学部 070303 有机化学28 34 40材料与化学化工学部 070304 物理化学16 16 18材料与化学化工学部 070305 高分子化学与物理 26 37 54材料与化学化工学部 080502 材料学45 29 19材料与化学化工学部 080503 材料加工工程 12 3 2材料与化学化工学部 081704 应用化学23 27 33材料与化学化工学部 430105 材料工程4 8材料与化学化工学部 420106 学科教学(化学) 1电子信息学院 080903 微电子学与固体电子学 14 8 10电子信息学院 081001 通信与信息系统21 27 15电子信息学院 081002 信号与信息处理19 14 16电子信息学院 430109 电子与通信工程13 26电子信息学院 430110 集成电路工程7计算机科学与技术学院 081202 计算机软件与理论 16 10 16计算机科学与技术学院 081203 计算机应用技术 88 69 52计算机科学与技术学院 120100 管理科学与工程 7 7 6计算机科学与技术学院 430112 计算机技术 7 19计算机科学与技术学院 430113 软件工程 4机电工程学院 080201 机械制造及其自动化 20 17 18机电工程学院 080202 机械电子工程15 16 18机电工程学院 080203 机械设计及理论10 8 9机电工程学院 080401 精密仪器及机械4 3 4机电工程学院 081101 控制理论与控制工程 10 13 13机电工程学院 430102 机械工程 3 0 城市轨道交通学院 080204 车辆工程4 5纺织与服装工程学院 082101 纺织工程如歌岁月福建音乐网搜歌网oil painting wholesale handmade oil painting 抽象画16 26 19纺织与服装工程学院 082102 纺织材料与纺织品设计 25 21 19纺织与服装工程学院 082103 纺织化学与染整工程 29 29 28纺织与服装工程学院 082104 服装设计与工程 11 12 8纺织与服装工程学院 430121 纺织工程13 20金螳螂建筑与城市环境学院 090402 农业昆虫与害虫防治 3 3 3金螳螂建筑与城市环境学院 090706 园林植物与观赏园艺 9 14 16医学部 040102 课程与教学论 1 1 0 医学部 071001 植物学 5 3 3医学部 071002 动物学 4 4 3医学部 071003 生理学 2 3 2医学部 071004 水生生物学 8 4 6医学部 071005 微生物学 10 8 10医学部 071006 神经生物学 4 4 6医学部 071007 遗传学 10 9 12医学部 071008 发育生物学 6 5 5医学部 071009 细胞生物学 13 13 24 医学部 071010 生物化学与分子生物学17 17 22医学部 071011 生物物理学 7 6 6医学部 077600 生物医学工程 3 3 5 医学部 077702 免疫学 16 29 41医学部 090504 特种经济动物饲养 11 5 5医学部 090801 水产养殖 8 5 5医学部 100101 人体解剖与组织胚胎学5 5 0医学部 100102 免疫学 2 2 3医学部 100103 病原生物学 2 5 1医学部 100104 病理学与病理生理学 5 9 4医学部 100105 法医学 3 9 2医学部 100106 放射医学 17 21 11医学部 100120 ★胚胎生理与围产基础医学 4 4 1医学部 100126 ★医学心理学 4 2 2 医学部 100401 流行病与卫生统计学11 11 13医学部 100402 劳动卫生与环境卫生学3 3 4医学部 100403 营养与食品卫生学 2 3 2医学部 100404 儿少卫生与妇幼保健学2 1 2医学部 100405 卫生毒理学 3 8 6医学部 100701 药物化学 13 18 26医学部 100702 药剂学 11 10 16医学部 100703 生药学 2 2 2医学部 100704 药物分析学 7 6 7医学部 100705 微生物与生化药学 3 2 5医学部 100706 药理学 9 19 34医学部 120402 社会医学与卫生事业管理 3 5 4医学部 420107 学科教学(生物) 6 0医学部 470105 养殖 2 0医学部儿科医学院 100202 儿科学 31 30 28医学部儿科医学院 450200 临床医学硕士(儿科学) 10 15医学部临床医学院 100201 内科学 96 99 96医学部临床医学院 100203 老年医学 4 3 4医学部临床医学院 100204 神经病学23 22 15医学部临床医学院 100205 精神病与精神卫生学 2 2 2医学部临床医学院 100206 皮肤病与性病学 6 5 3医学部临床医学院 100207 影像医学与核医学 30 27 30医学部临床医学院 100208 临床检验诊断学 6 7 5医学部临床医学院 100210 外科学 134 147 110医学部临床医学院 100211 妇产科学10 13 12医学部临床医学院 100212 眼科学 6 8 6医学部临床医学院 100213 耳鼻咽喉科学 3 4 5医学部临床医学院 100214 肿瘤学 18 24 20医学部临床医学院 100215 康复医学与理疗学 3 1 2医学部临床医学院 100217 麻醉学 10 10 12医学部临床医学院 100218 急诊医学 6 5 2医学部临床医学院 100602 中西医结合临床 2 3 0医学部临床医学院 450200 临床医学硕士合计 70 131医学部护理学院 100209 护理学 3 4 4 医学部护理学院 450200 临床医学硕士(护理) 5 0功能纳米与软物质研究院 070205 凝聚态物理 2 9功能纳米与软物质研究院 070301 无机化学 3 22功能纳米与软物质研究院 071010 生物化学与分子生物学 13功能纳米与软物质研究院 080502 材料学 6 19金融工程研究中心 070120 ★金融数学9 11系统生物学研究中心 070121 ★系统生物学 4 9。
2000年真题1.(14分)设f (x),g (x),h (x)都是数域P 上的一元多项式,并且满足:4(1)()(1)()(2)()0x f x x g x x h x ++-+-= (1)4(1)()(1)()(2)()0x f x x g x x h x +++++= (2) 证明:41x+能整除()g x 。
2.(14分)设A 是n ⨯r 的矩阵,并且秩(A )= r ,B ,C 是r ⨯m 矩阵,并且AB=AC ,证明:B=C 。
3(15分)求矩阵321222361A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的最大的特征值0λ,并且求A 的属于0λ的特征子空间的一组基。
4(14分)设⨯-2,3,-1是33矩阵A的特征值,计算行列式611n A A E -+3.5(14分)设A,B 都是实数域R 上的n n ⨯矩阵,证明:AB,BA 的特征多项式相等.证明:要证明AB,BA 的特征多项式相等,只需证明:E A E B λλ-=-6.(14分)设A 是n n ⨯实对称矩阵,证明:257n A A E -+是一个正定矩阵.证明:A 是实对称矩阵,则A的特征值均为实数.7.(15分)设A 是数域P 上的n 维线性空间V 的一个线性变换,设1,n V A α-∈≠使0,但是()n A α=0,其中n>1.证明:21{,,,,}n A A A αααα-是V的一组基.并且求线性变换A在此基下的矩阵,以及A的核的维数.2000年真题答案1、证明:1(2)(1):2()4()0()()2g x h x h x g x -+=⇒=- (3) 将(3)带入(1)中,得到:41(1)()()2x f x xg x +=- 441()x x x g x ∴++1与互素,.注:本题也可以把g,h 作为未知量对线性方程求解,用克莱姆法则导出结果。
2、证明:,()0.AB AC A B C =∴-=(),A n r R A r A ⨯=∴是的矩阵,是列满秩的矩阵,即方程0AX =只有零解.0,B C B C∴-==即3、解:()()224E A λλλ-=-+,02λ∴= 当02λ=时,求出线性无关的特征向量为()()12101012ξξ==,,',,,', 则()120,,L ξξλ构成的特征子空间12ξξ,是0λ的特征子空间的一组基.4、解:⨯-2,3,-1是33矩阵A的特征值,不妨设1232,3,1,λλλ=-==- 则矩阵611n A A E -+3对应的特征值为:12315,20,16ξξξ=== 故6111520164800n A A E -+=⨯⨯=35、利用构造法,设0λ≠,令1E B H A E λ=, 11010E BE E B A E A E E AB λλλ⎛⎫⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭- ⎪⎝⎭⎝⎭,两边取行列式得 11()n H E AB E AB λλλ=-=-.(1) 11100E E B E BA B A E A E E λλλ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎝⎭,两边取行列式得11()n H E BA E BA λλλ=-=-.(2)由(1),(2)两式得1()n E AB λλ-=1()n E BA λλ-E AB E BA λλ∴-=-.(3) 上述等式是假设了0λ≠,但是(3)式两边均为λ的n 次多项式,有无穷多个值使它们成立(0λ≠),从而一定是恒等式. 注:此题可扩展为A是m n ⨯矩阵,B是n m ⨯矩阵,AB,BA的特征多项式有如下关系:n m m n E AB E BA λλλλ-=-,这个等式也称为薛尔佛斯特(Sylvester )公式.6、设λ为A的任意特征值,则257n A A E -+的特征值为225357()024ξλλλ=-+=-+>.故257n A A E -+是一个正定矩阵.7、证明:1n n A A α-≠0,=0.令()()10110n n l l A l A ααα--+++=.(1) 用1n A -左乘(1)式两边,得到10()0n l A α-=.由于1n A -≠0,00l ∴=,带入(1)得()()1110n n l A l A αα--++=.(2) 再用2n A -左乘(2)式两端,可得10l =.这样继续下去,可得到0110n l l l -====. 21,,,,n A A A αααα-∴线性无关.21,,,,)n A A A A αααα-(=21,,,,)n A A A αααα-(0000100001000010⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. ∴A在此基下的矩阵为0000100001000010⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 可见,()1R A n =-,dimker(1)1A n n ∴=--=即A 的核的维数为1.2001年真题2002年真题1.(15分)设A =1111101111001110001100001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,123101221001320001200001n n n n n n B -⎛⎫ ⎪-- ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭都是n n ⨯矩阵。
苏州大学政治与公共管理学院哲学概论2007公共管理基础理论2007(A卷),2007(B卷)公共部门管理(行政管理)2007(A卷)公共部门管理(社会医学与卫生事业理论)2007管理学(行政管理专业)2000,2001,2002,2003(A卷),2003(B卷),管理学原理(行政管理专业)2004(A卷)行政法学与管理学原理2006管理学与行政法学2005行政管理学1998,2000,2001,2002,2003(A卷),2003(B卷),2004(B卷),2005,2006管理学原理(行政管理学专业)2000——2004行政管理学2003年复试试卷(含行政法学、政治学原理)教育学专业基础综合(全国统考试卷)2007教育学2000——2005马克思主义基本原理2007马克思主义哲学原著2005——2006马克思主义哲学经典著作2002马克思主义哲学原理2002马克思主义哲学1999——2000西方哲学史1999——2000,2002,2004——2006现代西方哲学2006西方现代美学与哲学2005中国哲学原著解读2006伦理学原理1999——2000辩证唯物主义原理1999——2000历史唯物主义原理1999——2000政治学原理1998,2000,2004——2007西方政治思想史1998,2000,2004,2006中西政治思想史2007思想政治教育学2004,2006——2007邓小平理论2000法学院专业基础课(法学各专业)2007(A卷),2007(B卷)基础课(法学)2000——2001基础课(国际法专业)2002基础课(国际法专业)(含法理学、民法学、经济法)2004——2005基础课(诉讼法学专业)(含法理学、民法学、刑法学)2003——2006基础课二(法理学、民法学、经济法)2006(A卷)专业课(国际法学专业)2007(A卷),2007(B卷)专业课B(法律史专业)2007(A卷),2007(B卷)专业课C(宪法学与行政法学专业)2007(A卷),2007(B卷)专业课D(刑法学专业)2007(A卷)专业课E(民商法学专业)2007(A卷)中国法律史2006(A卷)西方法律思想史2006(B卷)行政法学(含行政诉讼法学)2006(A卷)经济法学专业(经济法学)2007(A卷),2007(B卷)中国刑法学2002国际法学与国际私法学2005(B卷),2006(B卷)国际公法和国际私法2000——2002法理学1999——2002,2004——2006国际经济法学2000——2002民法学2000——2002,2004——2006民商法学2002民事诉讼法学2002刑事诉讼法学与民事诉讼法学2003——2006法理学与经济犯罪学2004——2006(A卷)刑法总论与刑法分则2004——2006(A卷)行政法学与行政诉讼法学2005行政法学(含行政诉讼法学)2006(A卷)法理学与宪法学2006(A卷)中国刑事诉讼法2002宪法学2000——2002行政法学2000,2002综合卷(法学、法学理论专业)1999——2001综合卷(理论法学)2002综合卷(行政法专业)2002综合课(民事诉讼法专业)2002法学综合(国经方向)2002综合法学2000,2002体育学院体育学专业基础综合2007(A卷),2007(B卷)运动生理学2002——2005人体生理学2005运动训练学2002,2004——2005运动解剖学2005体育概论2003——2005体育社会学2005教育学院教育学专业基础综合(全国统考试卷)2007——2008教育学2000——2005教学论2000——2001中外教育史2000——2005高等教育2000——2001教育心理学2000——2002,2004教育心理学(课程与教学论专业)2005教育心理学(含发展心理学)(发展与教育心理学专业)2005——2006心理学研究方法2007(A卷),2008(A卷)普通心理学(含实验心理学)2000——2007心理统计与测量2003——2004心理统计2002管理心理学2000——2002公共管理基础理论2007(A卷),2007(B卷)教育经济学2005教育管理学2000——2002,2005文学院文学基础综合2007(A卷),2007(B卷),2008(A卷)评论写作(1)(美学、文艺学、中国古代文学、中国现当代文学、比较文学与世界文学、戏剧戏曲学专业)2007(A卷),2008(A卷)评论写作(戏剧戏曲专业)2004评论写作(中国古代文学专业)2003评论写作(2)(中国现当代文学专业)2000,2002评论写作(2)(新闻学、传播学专业)2007(A卷),2007(B卷)评论写作(3)(文艺学专业)2002评论写作(5)(新闻学、传播学专业)1999——2002新闻传播基础2007(B卷)新闻传播理论2004——2006新闻学基础1999——2006大众传播理论1999——2006古代汉语2001——2008现代汉语2002——2008语言学概论2002,2005(复试)中外文学与比较文学综合考试2005中外文学综合知识2002中国现当代文学史2000,2003——2004,2006中国现代文学史2002文学理论2003——2006文学概论2002中国古代文学2001——2006中国文论2003——2006中国文学史2002外国文学史2002——2006文艺理论2000,2002,2003比较文学原理2002——2006美学原理2004——2005中西美学史2004——2005,2007戏剧理论基础2005,2007中国戏剧2005中国戏剧(古典戏曲或现代戏剧)2006中国现代戏剧史2004语文教学论2004——2005教学论2000——2001教育学专业基础综合(全国统考试卷)2007——2008教育学2000——2005社会学院社会学原理2002——2005,2006(A卷),2007(A卷),2007(B卷)社会研究方法2002——2005,2006(A卷),2007(A卷),2007(B卷)社会调查方法2002中国历史文选2004——2005中国通史2004历史学专业基础(全国统考试卷)2007公共管理基础理论2007(A卷),2007(B卷)公共部门管理(社会保障学)2007(A卷),2007(B卷)管理学原理(旅游管理)2007管理学原理A(社会保障专业)2004(A卷),2004(B卷),2005(A卷),2006(B卷)西方经济学(社会保障专业)2004(A卷),2004(B卷),2005(A卷),2006(A卷)信息检索2007(A卷),2007(B卷)信息资源管理2007(A卷),2007(B卷)档案管理学2004——2005档案学原理2004——2005外国语学院二外法语2001——2002,2004——2008二外日语2000,2002——2008二外俄语2005——2006基础英语1997,1999——2008(1997有答案)翻译与写作1997,2003——2008(1997有答案)英汉双语翻译1999——2002英文写作1999——2002英美文学1997(1997有答案)英语语言学1997(1997有答案)二外英语2005——2007基础俄语2004——2007现代俄语2004——2005综合俄语2006——2007日语写作与翻译2008日语翻译与写作2007综合日语2007——2008教育学专业基础综合(全国统考试卷)2007——2008教育学2000——2005数学科学学院高等代数2000——2002,2004——2007数学分析2000——2002,2004——2007(2004——2005有答案)数学分析与高等代数2003(A卷),2003(B卷)教育学专业基础综合(全国统考试卷)2007教育学2000——2005物理科学与技术学院信号系统与数字逻辑2003——2007数字电子技术基础1999——2002信号与线性系统1997——2002自动控制原理2004——2007(其中2005试卷共3页,缺P3)高等数学2003——2007普通物理2004——2007教育学专业基础综合(全国统考试卷)2007教育学2000——2005信息光学工程、现代光学技术研究所信号系统与数字逻辑2003——2007数字电子技术基础1999——2002信号与线性系统1997——2002自动控制原理2004——2007(其中2005试卷共3页,缺P3)普通物理2004——2007化学化工学院有机化学和仪器分析2007(A卷)有机化学1999,2001,2003,2004,2005(第1种,代码为456),2005(第2种,代码为360),2006有机化学(1)2001——2002化学原理2007(A卷)化学(2)2004——2005化学(3)2003——2006化学四(含无机、分析)2005分析化学2003分析化学(含定量分析、仪器分析)2005无机化学(1)2001——2002无机化学2003——2005物理化学2000——2002,2004——2005高分子化学1999,2003——2007教育学专业基础综合(全国统考试卷)2007教育学2000——2005计算机科学与技术学院数据结构与操作系统2003——2007数据结构与编译原理2005操作系统原理1998——2002数据结构及程序设计1998——2002数据库2003年复试电子信息学院半导体物理与集成电路设计原理2006——2007半导体物理2004信号系统与数字逻辑2003——2007数字电子技术基础1999——2002信号与线性系统1997——2002自动控制原理2004——2007(其中2005试卷共3页,缺P3)机电工程学院理论力学2000——2001,2004——2007自动控制原理2004——2007(其中2005试卷共3页,缺P3)电子技术基础2007材料工程学院材料结构与性能(含高分子物理、无机非金属材料概论,两者任选一门考)2007 专业课程考试(高分子物理或无机非金属材料概论)2005纺织材料学1999,2004——2007纺织工艺学1999服装材料学2004——2005高分子材料成形工艺学1999有机化学和仪器分析2007(A卷)化学原理2007(A卷)有机化学1999,2001,2003,2004,2005(第1种,代码为456),2005(第2种,代码为360),2006有机化学(1)2001——2002高分子化学1999,2003——2005化学(2)2004——2005化学(3)2003——2006化学四(含无机、分析)2005自动控制原理2004——2007(其中2005试卷共3页,缺P3)商学院管理学(企业管理专业)2004——2006管理学(会计学、企业管理、农业经济管理专业)2007(A卷),2007(B卷)管理学原理(企业管理专业)2002——2003微观与宏观经济学2007(A卷),2007(B卷)经济学原理2004——2005经济学(含西方经济学)2002经济学A2002世界经济1998(B卷),1999(A卷),1999(B卷),2000 世界经济理论2003——2005国际经济合作1999——2000财政学2002——2005金融学联考2002——2007(2002——2005有答案)会计学(含财务管理)2002——2005区域经济学2005企业管理专业复试试题2003艺术学院绘画基础(色彩画)2007绘画基础(美术学专业)2003——2006(设计系)色彩2003——2005艺术史2007设计艺术史2005美术史2003——2005医学院基础医学系病理学1994——2005流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002生命科学学院生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005细胞生物学2004——2007遗传学2005动物生理学2007教育学专业基础综合(全国统考试卷)2007——2008 教育学2000——2005放射医学与公共卫生病理学1994——2005预防综合2007流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002普通物理2004——2007医学院临床医学儿科系病理学1994——2005流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002医学院临床医学系病理学1994——2005流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002药学院药学综合2002,2007药理学2002生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005化学(2)2004——2005化学(3)2003——2006化学四(含无机、分析)2005有机化学和仪器分析2007(A卷)化学原理2007(A卷)有机化学1999,2001,2003,2004,2005(第1种,代码为456),2005(第2种,代码为360),2006有机化学(1)2001——2002城市科学学院生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005。
2012年苏州大学高等代数考研试题1. ('18)设()f x 是n 次多项式次多项式,,则()f x 有n 重根的充要条件是()()'f x f x .2. ('18)设A 为n 阶实矩阵矩阵,,证明: ()()rank A rank A A Τ=.3. ('18),A J 为n 阶矩阵.证明证明::(1)AJ JA =的充要条件条件是211112131++++n n n A a E a J a J a J −=L .其中0000110001010010000100011J =L L L MM M O M M L L . (2)令(){}|C J A AJ JA ==,求()C J 的维数.4. ('18)设n 维列向量12=n a a a βM ,且=2ββΤ. (1)求n E ββΤ−.(2)求()1n E ββ−Τ−. 5. ('18)设,A B 分别为,m n 阶矩阵阶矩阵,,并且,A B 没有公共特征值没有公共特征值。
证明证明::矩阵方程AX XB =仅有零解仅有零解。
6. ('18)设σ是数域P 上的线性变换上的线性变换,,且2=σσ.证明证明::(1)(){}ker |V σασαα=−∈.(2)如果τ是V 的线性变换的线性变换,,ker σ和()V σ都是τ的不变子空间.7. ()'20设σ是欧氏空间V 的线性变换的线性变换,,且3+=0σσ.证明证明::σ的迹为0.8. ()'20设A 为n 阶实可逆矩阵.证明证明::存在正交矩阵12,Q Q ,使得12Q AQ 为对角阵.且对角线元素全大于0.1. 计算n 阶行列式21000001210000012000000001210000012。
2. 设实二次型()2221231213232f x x x t x x x x x x =+++++。
问当t 取何值时,f 是正定的、半正定的?3. 设300114311A =−。
第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。
0807化二次型()123122313,,222f x x x x x x x x x =-+为标准型,并给出所用的非退化线性替换.一, 求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型. 二, 设,nR αβ∈且长度为2,矩阵T T nA E ααββ=++求A 的特征多项式.三, 设A 是n 阶反对称矩阵,n E 为单位矩阵.证明:a E A +可逆设,()()1Q=E+A b E A --设 求证Q 是正交阵.四, 设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得TQ BQ A =五, 设P是一个数域,()P x 是[]P x 中次数大于0的多项式,证明:如果对于任意的()f x ,()g x ,若有()()()|P x f x g x ()()()()||p x f x p x g x ⇒或者,那么()P x 是不可约多项式. 六, 设欧氏空间中有12,0.n βαααβ≠ ,,,,()112,,,,n W L ααα= ()212,,,,n W L βααα= 证明:如果,0i βα=,那么21dim dim W W ≠设σ是n 维欧氏空间中的一个对称变换,则()ker V V σσ=⊕.苏州大学2007年硕士研究生入学考试《高等代数》试题解答1. 解 所给二次型的矩阵为011101110A ⎛⎫⎪=- ⎪ ⎪-⎝⎭其特征多项式为2()||(1)(2)f E A λλλλ=-=-+.故特征值为121,2λλ==-.11λ=,解对应的特征方程()0E A X -=得1(110)T X =,2(101)T X =.22λ=-,解对应的特征方程(2)0E A X --=得3(111)T X =-.以123,,X X X 作为列向量作成矩阵C .则C 可逆,且TC AC 为对角阵. 这时做非退化线性替换1122133123y x x y x x y x x x=+⎧⎪=+⎨⎪=-++⎩得222123123(,,)2f y y y y y y =+-.■ 2. 解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪ ⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫⎪- ⎪ ⎪⎝⎭.■ 3. 解 A 的特征多项式为()||n f E A λλ=- (1)T Tn E λααββ=--- (1)()TT n E αλαββ⎛⎫=--⎪⎝⎭22(1)(1)()T n T E αλλαββ-⎛⎫=--- ⎪ ⎪⎝⎭22(1)(1)T T n TTE αααβλλβαββ-⎛⎫=--- ⎪⎝⎭21(1)1T T n T Tλαααβλβαλββ----=--- 222(1)(1025())n T λλλαβ-=--++.■ 4. 证 ⑴ A 是反对称实矩阵,故其特征值为零或纯虚数.其实,假定λ是A 的特征值,ξ是相应的特征向量.则()()()T T T T TT T T A A A A A ξλξξλξλξξξξξξξλξξ=⇒==⇒=-=-=-,又TTA ξ=,故λλ=-,这说明λ是零或纯虚数.由此得||0E A +≠,因而E A +可逆.⑵ 由⑴知E A -可逆,这说明Q 有意义.而1()()T Q E A E A -=+-,因此11()()()()T Q Q E A E A E A E A --=+-+- 11()()()()E A E A E A E A --=++--E =.故Q 是正交矩阵. ■5. 解 依题意有011003121003111003A -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1TX =-,()21,1,0TX =-.特征向量为1122l X l X +. ⑵23λ=,解特征方程(3)0E A X -=得()31,1,1T X =.特征向量为33l X . 以上123,,l l l R ∈.把向量12,X X正交并单位化得1(η=,2η⎛= ⎝.把向量3X 单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ == ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 6. 证 假设()p x 可约,不妨设12()()()p x p x p x =,其中120((),())(())p x p x p x <∂<∂.这时显然有12()|()()p x p x p x ,但不可能有1()|()p x p x 或者2()|()p x p x .这与题设矛盾,故假设错误.因而()p x 不可约. ■7. 证 依题显然有12W W ⊂,假设21dim dim W W =,则12W W =.于是1W β∈ ,这说明β可被12,,,n ααα 线性表出.记1122n n l l l βααα=+++给上式两边同时计算,ββ得,0ββ=,于是0β=,与题设矛盾,故假设错误, 原命题21dim dim W W ≠成立. ■8. 证 对于任意的ker ασ∈及任意的V σβσ∈,有,,0ασββ==,于是有ker V σσ⊥,因而ker {0}V σσ= .又dim ker dim V n σσ+=,于是dim(ker )V n σσ+=,故ker V V σσ=⊕.■06一,用正交线性替换将实三元二次型222123112132233(,,)44282f x x x x x x x x x x x x =-+-+-变成标准形,并写出所用的非退化线性变换。
二、设212254115A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦。
A 是否相似于一个对角阵?如果相似,则求出可逆矩阵C ,使得1C AC -为对角阵,且写出此对角阵。
三、设1110()n n n n f x a x a x a x a --=++++ 是一个整系数多项式,证明:如果0n a a + 是一个奇数,则()f x 不能被x-1整除,也不能被x+1整除。
四、设A 是一个n n ⨯矩阵,证明:如果A 的秩等于2A 的秩,则齐次线性方程组AX=0与齐次线性方程组2A X=0同解。
五、设V 是有理数域Q 上的线性空间,id 是V 的恒等变换。
又设δ是V 的一个线性变换,证明:如果325id δδδ=++,则δ没有特征值。
六、设 A 是n n ⨯实对称矩阵,b 是A 的最大的特征值。
证明:对任意n 维非零的实列向量α,都有(,)(,)A b αααα≤。
七、设V=5[]F x 是F 上全体次数<5的多项式及零多项式构成的线性空间。
()f x V ∀∈,定义映射(())()f x r x δ=,其中2()(1)()()f x x q x r x =-+,()r x =0或deg(())2r x <a) 证明映射δ是V 的一个线性变换。
b)求δ在基{1,x,2x ,3x ,4x }下的矩阵。
8.设A,B 都是n n ⨯矩阵,并且AB=BA 。
证明:如果A,B 都相似于对角矩阵,则A+B 也相似于对角矩阵。
051、(20分)设A,B 均为n 阶方阵,A 中的所有元素均为1,B 中的除元素为1外,其余元素均为0.问A,B 是否等价?是否合同?是否相似?为什么?2、(20分)设A=。
v 是的A 最大的特征值。
求A 的属于v 的特征子空间的基。
3、(20分)设f (x )是一个整系数多项式。
证明:如果存在一个偶数m 和一个奇数n 使得f (m )和f (n )都是奇数,则f (x )没有整数根。
4、(20分)设A是一个2n×2n的矩阵。
证明:如果对于任意的2n×2矩阵B,矩阵方程AX=B都有解,则A是可逆的。
5、(20分)证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0的解空间正交。
6、(20分)设A,B是n×n实对称矩阵,且A+B=E,E为单位矩阵。
证明下列结论等价:(1)AB=O,O为零矩阵(2)秩(A)+秩(B)=n7、(20分)设V是复数域上的n维线性空间,q,p是V上的两个可对角化的线性变换,且qp=pq。
证明:(1)如果k是q的特征值,那么V(k)是的不变子空间。
(2)存在一组基使得q、p在这组基下的矩阵都是对角矩阵。
8、(10分)设A,B,C分别是m×m,n×n,m×n矩阵(m>n),且AC=CB,C的秩为r.证明: A和B至少有r个相同的特征值。
注意:7题中V(k)在原题中k为V的下标。
111115'10112101021350101021252353120110111102122210210110112101521010213501031010102X X X ----⎛⎫⎛⎫⎛⎫⎪= ⎪⎪ ⎪⎝⎭⎝⎭⎪⎝⎭-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭-⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪⎪⎝⎭-⎝⎭⎛⎫-⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ ⎪⎝⎭一()求满足下列条件的解;1101021102411511222-⎛⎫⎛⎫ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭--⎛⎫⎪= ⎪-⎝⎭15∂∂1212i 12二(‘)设P 是一个数域,p (x)是P[x]中次数大于0的多项式,证明:如果对于任何多项式f(x),g(x),由p(x)|f(x)g(x)可以推出p(x)|f(x)或p(x)|g(x),那么p(x)是不可约多项式。
证明:假设p(x)是可约多项式,则存在p (x),p (x)使得p(x)=p (x)p (x),且(p (x))<(p(x)),i=1,2取f(x)=p (x),g(x)=p (x),因此f(x)g(x)=p(x)则p(x)|f(x)g(x)但p(x)不整除f(x)且不整除g(x)与题设矛盾!所以p(x)是不可约多项式21112112510{|}200()()000{|}P n V V V V σσσσασαασστσστσττσασασασασασασαασασσασααβσ-----==-∈=⊕∀∈-==-∈⇒⊇-∈∈三(’)设是数域上的维向量空间的一个线性变换,,证明:()()()()()(V)(3)如果是V 的线性变换,(),(V)都是的不变子空间,则有=证明:(1)V,则(())=()-()-则()()()()又取1211111120()0,{|}0{|}0{|}2,0000V V V V V σβββσββασαασασαασασαααασασαασασασσσσβσσσβαβσαβσασασσασ-------==-⇒∈-∈⇒⊆-∈=-∈∀∈-∈-∈++∈⋂∀∈==(),()()()()所以()()()则()()=()+()()(V)即V=()(V)任取()(V),则()=0,使得()从而()=()=(())=(1111100000V βσσσσσστασβσγγαβταστβσσταστβτβστγστγσταβστατβστβτβσασββτσγ-----⋂=⊕∀∈∈∈∈∈==)=0所以()(V)={0}因此()(V)(3)因为(),(V)是的不变子空间(),(V),V ,且=+()(),()(V),(())=0,(())=()()(())=((+))=(()+())=(())=()()=0,()=()τσγτσαβτσασβτβστγτσγσττσ⇒=(())=((+))=(()+())=()从而()=()11212120,s ss i i σασλααασλααααασλαασααλααααα==+=i+1i i+1i i+1i i+112s i 四(20)设是数域P 上的向量空间V 的一个线性变换,是属于特征值的特征向量,向量组,,……满足关系(-E )=,i=1,2 … s-1,其中E 是恒等变换证明:,,证明:因为(-E )=所以(),i=1,2 … s-1设k + k +… + k 即 k 1121111111111111111120()0()()0,00,0,ss s i i s s i i i i s s si i i i i i s i i s So σααασασαλααλαλααααααα-+=--+==-===-===+=⇒++=⇒+==⇒=∑∑∑∑∑∑∑∑12s 1i+11i+1i+1i i+1i i+123s-1k + k +… + k k k i=1,2 … s-1k k k k k 由于 k k k + k + … + k 1212111211120()0000000s s s s σααααααααααααααα-=======⇒====23s-134s-2s s 12s-1s-1s-112s k + k +… + k 重复上述过程可得k + k + … + k 继续重复上述过程,我们有k ,因为显然不为,所以k 从而我们有k + k + … + k 再继续上面步骤,可得k k 由归纳法得k k… + k 因此,,…… 线性无关21,231,212(20),122224242||0122224(2)(7)02422,72(0,1,1),(2,0,1)E A λλλλλλξξ-⎛⎫ ⎪-- ⎪⎪-⎝⎭-=---=-+=-==-===222123123121323五用正交线性替换三元二次型f(x ,x ,x )=x -2x -2x -4x x +4x x +8x x 为标准型并给出所用的正交线性替换.解:设A 为二次型矩阵,A=令即对应于的特征向量为对31122211132221237(1,2,2)(0,1,1)()11(2,,)(,)22(1,2,2)02111221122200020007)()''227C C AC X CYCY A CY Y C ACY y y y λξααξαξαααα=-=-=-=-=-=-⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭⎛⎫ ⎪'= ⎪⎪-⎝⎭=''==+-3123应于的特征向量为正交化令从而令从而令则f(x ,x ,x )=X AX=(****(15),,()()1,1()()1,()()1,0,0A B n r A r B n n r A r B n so r r because AA A E BB B E A B ==->==-======⇒******六设为两个阶方阵其中齐次线性方程组AX=0与BX=0同解,证明:A 的非零列与B 的非零列的非零列成比例,其中A ,B 分别是A,B 的伴随矩阵.证明:since A B 的列向量是AX=0的解,的列向量是BX=0的解For,AX=0与BX αβαβ⇒**=0同解设是A 的非零列,是B 的非零列=k,,((),)(,()),:(,())((),)(0,)0()()...............................................(1),(),(V V V and V σταβσαβατβστασσαατβσαββατστβτβ⊥⊥⊥∈=∀∈⇒===⇒∈⇒⊆∀∈⇒七(15)设,是n 维欧式空间V 的线性变换,对任意都有证明的核等于的值域的正交补证明:ker , so,()=0ker ,())0((),)(,())0()0()....................................................................(2)(1)(2)()V According and WeCanSeeV τβσβββτβσββστστσ⊥⊥=⇒==⇒=⇒∈⇒⊆=ker ,ker ker12112211111112(15)(1),(),()[]((),())1(),(),,,0,0,0.:(1),0()0()()()()0(2),(M P n n f x g x P x f x g x A f M B g M W W W ABX AX BX c W W A f M AB f M g M g M f M W W W W W Wbecause αααααααα>∈======∀∈∈=⇒=⇒===⇒∈⇒⊆⊆⇒+⊆12八设是数域上的阶方阵且分别是方程组的解空间,证明:证明同样W W (),())1,,(),()[]()()()()1()()()(),0,0,()0,()0(()()()())0{0}(3)sin ,,dim()dim(),{0}dim(f x g x so u x v x P x u x f x v x g x u M f M v M g M E A B f M g M u M f M v M g M E ce W so W Also αααααααα=∃∈+=⇒+=∀∈⋂==⇒==⇒+=⇒=⇒⋂=+⊆+≤⋂=⇒12121212121W W W W W W W W W W W )dim()dim()dim()dim()dim()....................................................(1),()()()dim()dim()dim()dim()dim()dim().........................W Still r A r B n r AB n n n n W W +=+⇒+≤+≤+⇒-+-≤+-⇒+≥212121212W W W W W W W W W ...........................(2),(1)(2),dim()dim()dim(){0}{0}From and W +=⋂=⇒⋂=121212W W also,W W W W1(10),..........(,(1,2..........)(())()(n V n i n στστστσσστσστλσαλατασταστατσα-⇒===2i i i i i i i i 九设是数域P 上的n 维线性空间,,是V 的线性变换,有n 个互异的特征值,证明:与可交换的充分必要条件是:是E,,的线性组合,其中E 是恒等变换.证明:因为=,设是的个互异的特征值,是属于的特征向量则也是的特征向量事实上对于每个有222(((((),)1,(1,2..........),(),(1,2..........),.........),..........),.....i i i n n V V i n u V u u i n λλτσατλαλταταλατταλλσααααααλτααα∈==∃∈==⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭i i i i i i i i i i i 1211n 1)=))=)=)从而由于互异,所以dim(故也是的特征向量)从而使于是有(((2111),.........)1121212 (1)..............................................n n n n n u u u n n n x x x u x x x u x x x u αααλλλλλλλ---⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭++=++=++= 121n (考虑方程组111222n n n由于系数行列式(){11211121121121()0(1.........,(1,2..........)..................n n i j i i j n n n n n i in i n i i a a u i n a a u a a λλλλλλλλλλλλααεσασατα--≤<≤---=-≠'++==++=++∏ 112n n 12n i i i i i i 互异)则方程组有唯一解,设为(a ,a ......a )则a 即(a )得(a ()())=()由于12121,.................,..........n n i n i n V a a ααατεσασατσσσ--++12是的一组基,因此=a ()()所以是E,,的线性组合037.设P 是一个数域,V 是P 上n 维的线性空间,A 是V的一个线性变换,记{|}W a a V =A ∈.证明:5236A =A -A ,则V是A 的核与W 的直和.8.设12(),(),,()n f x f x f x 是[0,1]上的连续函数.称12(),(),,()n f x f x f x 在[0,1]上线性相关,若存在不全为零的常数12,,nc c c ,使得1()0,[0,1]njj j cf x x =≡∈∑.证明:12(),(),,()n f x f x f x 在[0,1]上线性相关的充要条件是1d e t ((()()))0i j n nf x f x d x ⨯=⎰其中det()A 是A 的行列式.021.(15分)设A =1111101111001110001100001⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,12310122100132000120001n n n n n n B -⎛⎫⎪-- ⎪ ⎪--= ⎪⎪ ⎪⎪⎪⎝⎭都是n n ⨯矩阵。